JPH0621521A - Current modulating device - Google Patents

Current modulating device

Info

Publication number
JPH0621521A
JPH0621521A JP4175360A JP17536092A JPH0621521A JP H0621521 A JPH0621521 A JP H0621521A JP 4175360 A JP4175360 A JP 4175360A JP 17536092 A JP17536092 A JP 17536092A JP H0621521 A JPH0621521 A JP H0621521A
Authority
JP
Japan
Prior art keywords
superconductor
electrode
current
layer
current modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4175360A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Taketomi Kamikawa
武富 上川
Setsuya Iwashita
節也 岩下
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4175360A priority Critical patent/JPH0621521A/en
Publication of JPH0621521A publication Critical patent/JPH0621521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a current modulating device, which can be manufactured according to a micron-order pattern rule, is good in controllability and has sufficient switching characteristics. CONSTITUTION:In a current modulating device, which is provided with a first electrode 1, a channel joint 5, a second electrode 2 and a control electrode 7 and wherein a current, which is made to flow between the electrodes 1 and 2 via the joint 5, is controlled based on a control electrode signal, the channel joint 5 is formed by forming alternately a plurality of layers of superconductor layers 3 and non-superconductor layers 4 in parallel to the direction of flow of the current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロエレクトロニク
ス分野やパワーエレクトロニクス(電力)分野に適した
高速で且つ大電流容量化の可能な電流変調装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current modulator suitable for the field of microelectronics and power electronics (electric power) and capable of high speed and large current capacity.

【0002】[0002]

【従来の技術】高速化、大電流容量化を目指した電流変
調装置の代表に超伝導体を用いた素子が挙げられる。
2. Description of the Related Art A typical example of a current modulator intended for high speed and large current capacity is an element using a superconductor.

【0003】この超伝導体を用いた電流変調装置は一般
に2端子素子と3端子素子の2つに分類できるが、ここ
では高集積化の容易な3端子素子について説明する。
Current modulators using this superconductor can be generally classified into two terminals, a three-terminal element and a three-terminal element which can be easily highly integrated.

【0004】3端子素子は基本的には2つの電極(一般
的には超伝導体または金属)の間にチャネル接合体を設
け、該チャネル接合体に制御電極を取り付けた構造から
なる。チャネル接合体としては、絶縁体、半導体、常伝
導体、あるいは超伝導体が用いられる。さて、チャネル
接合体として超伝導体を用いた電流変調装置、換言する
と電極・チャネル超伝導体・電極の構造を有する電流変
調装置は他のチャネル接合体を用いた超伝導電流変調装
置と比較してチャネル接合体のサイズ制限がほとんどな
く、制御電極の取り付けが容易であり且つ大電流容量化
が可能と言う長所を持っている。これは、他のチャネル
接合体を用いる場合にはトンネル効果や近接効果という
数Å〜数100Å以下のサイズでしか有効でない効果が
素子特性を支配しているのに対し、チャネル接合体とし
て超伝導体を用いる場合にはチャネル超伝導体の超伝導
キャリヤが制御電極信号によって変調される効果が素子
特性を支配しているからである。それゆえ、通常のフォ
トリソグラフィー技術が利用可能なミクロンオーダー以
上のパターンルールで製造できる3端子素子は電極・チ
ャネル超伝導体・電極の構造からなる電流変調装置だけ
である。
The three-terminal element basically has a structure in which a channel junction is provided between two electrodes (generally a superconductor or metal) and a control electrode is attached to the channel junction. An insulator, a semiconductor, a normal conductor, or a superconductor is used as the channel junction body. Now, a current modulator using a superconductor as a channel junction, in other words, a current modulator having an electrode / channel superconductor / electrode structure is compared with a superconducting current modulator using another channel junction. In addition, there is almost no size limitation of the channel assembly, the control electrode can be easily attached, and a large current capacity can be achieved. This is because, when other channel junctions are used, the tunnel effect and the proximity effect, which are effective only at a size of several Å to several hundred Å or less, dominate the device characteristics, whereas the channel junction has a superconducting effect. This is because when the body is used, the effect that the superconducting carrier of the channel superconductor is modulated by the control electrode signal dominates the device characteristics. Therefore, the only three-terminal element that can be manufactured by the pattern rule of the micron order or more, which can be used in the ordinary photolithography technique, is the current modulator including the structure of the electrode, the channel superconductor, and the electrode.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の電極・
チャネル超伝導体・電極の構造を有する電流変調装置
は、上記のように製造が容易であるという長所がある反
面、制御電極信号による制御性が低く、スイッチング特
性が他のチャネル接合体を用いた電流変調装置、特に半
導体をチャネル接合体に用いた電流変調装置に比べて劣
るという欠点があった。スイッチング特性が悪いことは
電流変調装置の応用上大きな制約になり、製造が容易で
あるという長所を生かせる応用分野が限定されることを
意味する。それゆえこれは大きな問題である。
However, the conventional electrode
The current modulator having the structure of the channel superconductor / electrode has the advantage that it is easy to manufacture as described above, but on the other hand, the controllability by the control electrode signal is low and the switching characteristics of other channel junctions are used. There is a drawback that it is inferior to current modulators, especially current modulators that use a semiconductor for the channel junction. Poor switching characteristics impose great restrictions on the application of the current modulator, and limit the fields of application that can take advantage of the ease of manufacturing. Therefore this is a big problem.

【0006】本発明は以上述べた問題点を解決するもの
であり、ミクロンオーダーのパターンルールで製造が可
能でしかも制御電極信号による制御性が良好で充分なス
イッチング特性を有する電流変調装置を提供することに
ある。
The present invention solves the above-mentioned problems, and provides a current modulator which can be manufactured with a pattern rule of the order of microns, has good controllability by control electrode signals, and has sufficient switching characteristics. Especially.

【0007】[0007]

【課題を解決するための手段】本発明よりなる電流変調
装置は第1の電極、チャネル接合体、第2の電極、およ
び制御電極を具備し、チャネル接合体を介して第1の電
極と第2の電極の間を流れる電流を制御電極信号によっ
て制御する電流変調装置において電流の流れる方向に並
行に超伝導体と非超伝導体を交互に複数層形成しチャネ
ル接合体を構成すること、前記超伝導体が2層以上であ
ること、前記非超伝導体の厚さが超伝導体のコヒーレン
ト長の2倍以下であること、前記超伝導体の厚さが1単
位格子以上30Å以下であること、前記超伝導体と非超
伝導体が酸化物であること、基板上に基板と同じ組成の
中間層を形成した後第1の電極、チャネル接合体、第2
の電極、および制御電極等を形成することを特徴とす
る。
A current modulator according to the present invention comprises a first electrode, a channel assembly, a second electrode, and a control electrode, and the first electrode and the first electrode are connected via the channel assembly. Forming a channel junction by alternately forming a plurality of layers of superconductors and non-superconductors in parallel in a current flowing direction in a current modulator for controlling a current flowing between two electrodes by a control electrode signal, The superconductor has two or more layers, the thickness of the non-superconductor is not more than twice the coherent length of the superconductor, and the thickness of the superconductor is not less than 1 unit lattice and not more than 30Å. That the superconductor and the non-superconductor are oxides, and after the intermediate layer having the same composition as the substrate is formed on the substrate, the first electrode, the channel assembly, and the second
And the control electrode and the like are formed.

【0008】尚第1の電極と第2の電極は超伝導体であ
ることがより好ましい。
It is more preferable that the first electrode and the second electrode are superconductors.

【0009】[0009]

【実施例】以下、本発明を実施例に従い詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0010】図1は本発明の実施例における電流変調装
置の断面構造を示す図である。電流変調装置は第1の電
極1、第2の電極2、超伝導体層3と非超伝導体層4を
交互に積層したチャネル接合体5、誘電体6、制御電極
7、基板8及び中間層9から構成される。
FIG. 1 is a diagram showing a sectional structure of a current modulator according to an embodiment of the present invention. The current modulator includes a first electrode 1, a second electrode 2, a channel junction body 5 in which a superconductor layer 3 and a non-superconductor layer 4 are alternately laminated, a dielectric 6, a control electrode 7, a substrate 8 and an intermediate layer. Composed of layer 9.

【0011】本実施例の電流変調装置の作製プロセスと
材料のポイントは次のとおりである。まず、SrTiO
3単結晶よりなる基板8上にSrTiO3膜を100Å〜
300Åホモエピタキシャル成長させ中間層9を形成す
る。次にこの中間層9上に約10Å〜30ÅのHoBa
2Cu37ーX系酸化物よりなる超伝導体層3とLa1.5
1.5Cu3x酸化物よりなる非超伝導体層4を交互に
積層する。La1.5Ba 1.5Cu3x酸化物は半導体特性
を示し、超伝導体層3と格子定数の整合性がよい材料で
ある。酸化物超伝導体は異方性を持つためエピタキシャ
ル成長は必要不可欠であり格子定数の整合性をよくする
ことは重要なポイントである。成膜はECR活性酸素ビ
ームガンを備えたMBE装置を用い超伝導体層3と非超
伝導体層4の積層を同一チャンバー内で行う。膜厚制御
はRHEEDの振動強度をモニターしその情報を基に蒸
発源のシャッターをコントロールして行う。尚膜厚測定
はRHEEDの他にX線回折のラウエ関数解析(単位格
子数の決定)とSTM(走査トンネル顕微鏡)により行
い値を決定する。次に複数層形成した超伝導層3と非超
伝導層4をフォトリソグラフィーを用いてパターニング
をおこないチャネル接合体5を形成する。次に、膜厚が
700Å〜2000ÅでHoBa2Cu37ーX系酸化物
系超伝導体よりなる第1の電極1と第2の電極2を形成
・パターニングする。この第1の電極と第2の電極2間
の距離は従来の技術で述べたように自由に設定出来る。
次にSrTiO3よりなる誘電体6と制御電極7を形成
・パターニングする。ここで誘電体にSrTiO3を用
いた理由には酸化物超伝導体に近い結晶構造を持ちエピ
タキシャル成長し易いこと、誘電率に異方性が少ないこ
と、誘電率の膜厚依存性の少ないことの3点が上げられ
る。以上のプロセスにより電流変調装置を得る。
The manufacturing process of the current modulator of this embodiment and
The points of the material are as follows. First, SrTiO
3SrTiO 3 is formed on the substrate 8 made of single crystal.3Membrane 100 Å ~
Form 300 Å homoepitaxial growth to form the intermediate layer 9
It Next, about 10Å to 30Å HoBa is deposited on the intermediate layer 9.
2Cu3O7-XSuperconductor layer 3 made of a system oxide and La1.5B
a1.5Cu3OxAlternating non-superconductor layers 4 made of oxide
Stack. La1.5Ba 1.5Cu3OxOxide is a semiconductor property
And a material having a good lattice constant matching with the superconductor layer 3
is there. Since oxide superconductors have anisotropy, epitaxy
Growth is essential and improves lattice parameter matching
That is an important point. ECR active oxygen
Using the MBE device equipped with a mhgun,
The conductor layers 4 are laminated in the same chamber. Film thickness control
Monitors the vibration intensity of RHEED, and based on that information,
This is done by controlling the shutter of the source. In addition, film thickness measurement
In addition to RHEED, X-ray diffraction Laue function analysis (unit case
Number of children) and STM (scanning tunneling microscope)
Value to be determined. Next, a plurality of superconducting layers 3 and non-super
Patterning the conductive layer 4 using photolithography
Then, the channel bonded body 5 is formed. Next, the film thickness
HoBa from 700Å to 2000Å2Cu3O7-XOxides
A first electrode 1 and a second electrode 2 made of a system superconductor
-Pattern. Between this first electrode and second electrode 2
The distance of can be freely set as described in the prior art.
Next, SrTiO3Formed dielectric 6 and control electrode 7
-Pattern. Here, SrTiO is used as the dielectric.3For
The reason is that it has a crystal structure close to that of an oxide superconductor and
Easy to grow in the axial direction and little anisotropy in dielectric constant
And 3 points that the film thickness dependence of the dielectric constant is small are raised.
It The current modulator is obtained by the above process.

【0012】この様にして得られる電流変調装置の特徴
を以下に説明する。
The features of the current modulator thus obtained will be described below.

【0013】本実施例は誘電体6に電界を加えチャネル
超伝導体層3内のキャリヤ密度を変調(例えば空乏層を
形成)し制御するいわゆる電界効果型である。その電界
効果型の制御電圧Vg(ゲート電圧)と空乏層の深さd
sとの関係は周知の様に次の式(数1)により表され
る。
This embodiment is a so-called field effect type in which an electric field is applied to the dielectric 6 to modulate and control the carrier density in the channel superconductor layer 3 (for example, forming a depletion layer). The field effect control voltage Vg (gate voltage) and the depth d of the depletion layer
As is well known, the relationship with s is expressed by the following equation (Equation 1).

【0014】[0014]

【数1】 [Equation 1]

【0015】 ここで n=キャリヤ密度 (酸化物超伝導体は1021
/cm3) di=誘電体の厚さ e=電荷 εi=誘電体の誘電定数 εs=超伝導体の誘電定数 である。
Here, n = carrier density (oxide superconductor is 10 21
/ Cm 3 ) di = thickness of dielectric e = charge ε i = dielectric constant of dielectric ε s = dielectric constant of superconductor

【0016】式から判るようにゲート電圧を一般的に半
導体デバイスで使われている電圧(数ボルト)にすると
空乏層の深さdsは10〜30Åと極めて浅くなる。故
に必要なスイッチング比を得るには超伝導体層3の膜厚
を同じ様に極めて薄くする必要がある。しかし超伝導体
層3の膜厚と臨界温度との関係を示した図2から判る様
に超伝導体層3の膜厚が薄くなると揺らぎが増加するた
め臨界温度は急激に低下する。(臨界温度測定は図1の
非超伝導体層4を除いた構造の試料で測定)実際電流変
調装置として用いるには超伝導が不安定な状態では使え
ないため今までは超伝導体層3を厚くする必要がありス
イッチング比の低下を招いていた。
As can be seen from the equation, when the gate voltage is a voltage (several volts) generally used in semiconductor devices, the depth ds of the depletion layer becomes extremely shallow, 10 to 30 Å. Therefore, in order to obtain the required switching ratio, it is necessary to make the film thickness of the superconductor layer 3 similarly extremely thin. However, as can be seen from FIG. 2, which shows the relationship between the film thickness of the superconductor layer 3 and the critical temperature, as the film thickness of the superconductor layer 3 becomes thinner, the fluctuation increases and the critical temperature sharply drops. (Measurement of the critical temperature is performed on the sample of the structure excluding the non-superconductor layer 4 in FIG. 1) In actual use as a current modulator, superconductivity cannot be used in an unstable state. Therefore, the switching ratio must be reduced.

【0017】本発明は揺らぎを持つ複数の薄い超伝導体
層3を超伝導体のペアポテンシャルが互いに影響を与え
うる厚さの非超伝導体層4で連結することにより揺らぎ
を抑え臨界温度の低下を少なくしている。図3と図4は
その特性を示すものである。先ず図3は超伝導体層3が
互いに結合により揺らぎを抑制することが可能な非超伝
導体層4の膜厚を示すものである。尚超伝導体層3は連
結方向にa軸配向している。図から判るように臨界温度
の低下を抑制するには非超伝導体層4の厚さは40Å以
下の必要がある。a軸方向のコヒーレント長ξ0は約2
0Åであるためコヒーレント長ξ0の2倍の値である。
この厚さの上限値を超伝導体の結晶配向方向(配向方向
によりコヒーレント長ξ0が異なる)や超伝導体の種類
を変え調べたところ実施例と同様にコヒーレント長ξ0
の約2倍となっていた。コヒーレント長ξは次の式(数
2)で表わされるように使用温度により異なり、使用温
度が高くなるに従い増加するが本発明に於いては一般的
にコヒーレント長の意味で使われているコヒーレント長
ξ0の値とほぼ一致していた。
The present invention suppresses fluctuations by connecting a plurality of thin superconducting layers 3 having fluctuations with a non-superconducting layer 4 having a thickness at which the pair potentials of superconductors can influence each other, thereby suppressing fluctuations in the critical temperature. The decrease is reduced. 3 and 4 show the characteristics. First, FIG. 3 shows the film thickness of the non-superconductor layer 4 in which the superconductor layers 3 can suppress fluctuations by being coupled to each other. The superconductor layer 3 is a-axis oriented in the connecting direction. As can be seen from the figure, the thickness of the non-superconductor layer 4 needs to be 40 Å or less in order to suppress the lowering of the critical temperature. The coherent length ξ 0 in the a-axis direction is about 2
Since it is 0Å, it is twice the coherent length ξ 0 .
The thickness of coherence length similarly to Example where (coherence length xi] 0 differs by the alignment direction) was investigated changing the kind of and the superconductor crystal orientation direction of the upper limit superconductor xi] 0
It was about twice as much as The coherent length ξ varies depending on the operating temperature as expressed by the following equation (Equation 2) and increases as the operating temperature rises. In the present invention, the coherent length generally used in the sense of the coherent length. It was almost the same as the value of ξ 0 .

【0018】[0018]

【数2】 [Equation 2]

【0019】ここで Tc=臨界温度、T=使用温度、
ξ0=絶対零度に於けるコヒーレント長である。尚非超
伝導体層4の膜厚は非超伝導体層4のキャリヤ密度によ
っても異なり非超伝導体層4に絶縁体を用いる場合はコ
ヒーレント長ξ0×2より薄くする必要がある。
Where Tc = critical temperature, T = use temperature,
ξ 0 = coherent length at absolute zero. The film thickness of the non-superconductor layer 4 differs depending on the carrier density of the non-superconductor layer 4, and when an insulator is used for the non-superconductor layer 4, it must be thinner than the coherent length ξ 0 × 2.

【0020】図4は膜厚が23Å(C)と12Å(D)
の超伝導体層3と23Åの非超伝導体層4を積層したと
きの超伝導体層3の数と臨界温度の関係を示した図であ
る。超伝導体層3が2層以上になれば急激に臨界温度の
低下が抑制されることが判る。尚超伝導体層3の厚さは
1単位格子(酸化物超伝導体は1単位格子で超伝導が発
現されている)以上で、空乏層を形成し易い30Å以下
の必要がある。但しゲート電圧Vgが高いパワーデバイ
スや電界効果と準粒子注入効果等の併合効果デバイスは
超伝導体層3を厚くできるためこの限りではない。
FIG. 4 shows film thicknesses of 23Å (C) and 12Å (D).
FIG. 6 is a diagram showing the relationship between the number of superconductor layers 3 and the critical temperature when the superconductor layer 3 of 3 and the non-superconductor layer 4 of 23Å are laminated. It can be seen that when the number of superconductor layers 3 is two or more, the decrease in the critical temperature is suppressed rapidly. The thickness of the superconductor layer 3 needs to be 1 unit lattice (superconductivity is expressed in the oxide superconductor by 1 unit lattice) or more, and 30 Å or less where a depletion layer is easily formed. However, a power device having a high gate voltage Vg or a combined effect device such as an electric field effect and a quasi-particle injection effect can make the superconductor layer 3 thicker, which is not the case.

【0021】図2のAは電極の材料に超伝導体を用い、
BはAgを用いた試料であるが超伝導体層3が同じ厚さ
であるにも関わらずAg電極よりも超伝道体電極の方が
高い臨界温度を示している。これはAg電極との接合で
は超伝導体層3のペアポテンシャルは低下するが、超伝
導電極との接合では揺らぎやペアの染みだしのため低く
なっている超伝道体層3のペアポテンシャルを高いペア
ポテンシャルを有する超伝導電極(ここではペアポテン
シャルの低下の少ない超伝導体電極)が引き上るためと
考えられる。故に第1の電極1と第2の電極2は金属よ
り超伝道体の方が好ましく更にペアポテンシャルは高い
程より好ましいと言える。
In FIG. 2A, a superconductor is used as the material of the electrode,
B is a sample using Ag, but the superconductor electrode shows a higher critical temperature than the Ag electrode, although the superconductor layer 3 has the same thickness. This is because the pair potential of the superconductor layer 3 is lowered in the junction with the Ag electrode, but the pair potential of the superconductor layer 3 is lowered in the junction with the superconducting electrode due to fluctuations and exudation of the pair. It is considered that a superconducting electrode having a pair potential (here, a superconductor electrode having a small decrease in the pair potential) is pulled up. Therefore, it can be said that the first electrode 1 and the second electrode 2 are preferably made of a superconductor rather than a metal, and are more preferable as the pair potential is higher.

【0022】得られた電流変調装置のスイッチング比を
調べた。測定温度は65Kであり、スイッチング比は制
御電極7に信号を印加したときとしないときの第1の電
極1と第2の電極2間に流れる電流比(Jc off/
Jc on)により表した。
The switching ratio of the obtained current modulator was examined. The measurement temperature was 65 K, and the switching ratio was the ratio of the current flowing between the first electrode 1 and the second electrode 2 when the signal was applied to the control electrode 7 (Jc off /
Jcon).

【0023】結果を比較例と共に表1と表2に示した。The results are shown in Tables 1 and 2 together with the comparative examples.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】尚表1の比較例はチャネル接合体5を超伝
導体層3のみにしたものであり、その膜厚は実施例の超
伝導体層3のトータル厚(非超伝導体層4を除いた厚
さ)に近い値となっている。表2の比較例はSrTiO
3基板上にホモエピタキシャル成長膜の中間層9を形成
しない試料である。
In the comparative example of Table 1, the channel junction body 5 has only the superconductor layer 3, and the film thickness is the total thickness of the superconductor layer 3 of the embodiment (the non-superconductor layer 4 is It is a value close to (excluding thickness). The comparative example in Table 2 is SrTiO 3.
3 This is a sample in which the intermediate layer 9 of the homoepitaxial growth film is not formed on the substrate.

【0027】表1より、超伝導体層3と非超伝導体層4
を所定の膜厚で積層してなるチャネル接合体5を有する
電流変調装置は高い使用温度で動作可能で、顕著にスイ
ッチング比が向上していることが判る。
From Table 1, superconductor layer 3 and non-superconductor layer 4 are shown.
It can be seen that the current modulator having the channel junction body 5 in which is laminated with a predetermined film thickness can operate at a high operating temperature and the switching ratio is remarkably improved.

【0028】表2より、SrTiO3基板上に同一材料
よりなるSrTiO3膜をエピタキシャル成長させ中間
層9を形成した電流変調装置はSrTiO3基板上に中
間層9を形成しない電流変調装置よりスイッチング比が
顕著に高いことが判る。これは以下の理由によるものと
考えている。一般的に研磨をした後の基板の表面は30
Å〜60Åの凹凸を持っている。チャネル接合体5の超
伝導体層3と非超伝導体層4の膜厚はこの表面の値より
薄いため表面粗さが超伝導体層3と非超伝導体層4の結
晶性、結晶配向、界面部の接合性、内部応力、歪、相互
拡散等に悪い影響を与える。故に本来の材料の持つ特性
を引き出すことが出来なくなると共にデバイス特性に揺
らぎを与え特性劣化が生じる。一方基板表面にホモエピ
タキシャル成長させた中間層9の表面は15Å以下とな
り表面粗度が改良されるため超伝導体層3と非超伝導体
層への影響を少なくすることができる。故に本来の材料
の持つ特性を引き出すことができ、デバイス特性の揺ら
ぎを抑えられるため特性劣化が少ない。即ち実施例だけ
でなく超伝導デバイスの様に極薄い膜を形成する場合基
板表面の粗さを極力抑える必要があり、基板上にホモエ
ピタキシャル成長させた中間層9を形成する方法は容易
で且つ顕著の効果をもたらす有効なに手段と言える。
[0028] From Table 2, the switching ratio than the current modulation device without forming an intermediate layer 9 in SrTiO 3 current modulation device to form an intermediate layer 9 a SrTiO 3 film made of the same material on a substrate by epitaxial growth SrTiO 3 substrate It turns out that it is remarkably high. We believe this is due to the following reasons. Generally, the surface of the substrate after polishing is 30
Has irregularities of Å ~ 60Å. Since the film thicknesses of the superconductor layer 3 and the non-superconductor layer 4 of the channel junction body 5 are thinner than the surface value, the surface roughness has crystallinity and crystal orientation of the superconductor layer 3 and the non-superconductor layer 4. , And adversely affects the bondability of the interface, internal stress, strain, mutual diffusion and the like. Therefore, the characteristics of the original material cannot be derived, and the device characteristics fluctuate and the characteristics deteriorate. On the other hand, the surface of the intermediate layer 9 homoepitaxially grown on the surface of the substrate is 15 Å or less, and the surface roughness is improved, so that the influence on the superconductor layer 3 and the non-superconductor layer can be reduced. Therefore, the characteristics possessed by the original material can be derived, and fluctuations in device characteristics can be suppressed, resulting in less deterioration in characteristics. That is, when forming an extremely thin film not only in the embodiment but also in a superconducting device, it is necessary to suppress the roughness of the substrate surface as much as possible, and the method of forming the intermediate layer 9 homoepitaxially grown on the substrate is easy and remarkable. It can be said that it is an effective means to bring about the effect of.

【0029】尚実施例は超伝導体にLn(3価の希土
類)Ba2Cu37-x系超伝導体を用いているがBi2
2Ca2Cu3xを代表とするBi系、Tl2Ba2Ca
2Cu3xを代表とするTl系、Pb2Sr20.5Ca
0.2Cu3xを代表とするPb系など他の超伝導体を用
いても良く、非超伝導体4にLa1.5Ba1.5Cu3x
用いているがPrBa2Cu37-x、TbBa2Cu3
7-x等Ln系超伝導体のLnの部分を4価元素で置換し
たもの、使用温度より低い臨界温度を持つ酸化物超伝導
体、SrTiO3、SrVO3、SrTiFeO3、La
AlO3、LaCoO3、LaTiO3、LaVO3、Nd
MnO3、PrAlO3、PrCoO3、PrMnO3、S
mCoO3、SmVO3、La0.33NbO3、La0.33
aO3、Sm0.33TaO3、GdMnO3、PrMnO3
BaFeO3、BaTiO3、EuTiO3等ペロブスカ
イト構造酸化物、Ti3Zn、Pt3Zn、Pt3Ti、
Pd3Sn、PtMn3、IrMn3等であっても良い。
但し超伝導体と非超伝導体は極力同じ結晶構造をとり格
子定数の整合性が良いことが必要である。
In the embodiment, Ln (trivalent rare earth) Ba 2 Cu 3 O 7-x type superconductor is used as the superconductor, but Bi 2 S is used.
Bi system represented by r 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca
2 Cu 3 O x representative Tl system, Pb 2 Sr 2 Y 0.5 Ca
Other superconductors such as Pb-based typified by 0.2 Cu 3 O x may be used, and La 1.5 Ba 1.5 Cu 3 O x is used as the non-superconductor 4, but PrBa 2 Cu 3 O 7-x is used. , TbBa 2 Cu 3 O
7-x etc. Ln-based superconductor in which Ln part is substituted with tetravalent element, oxide superconductor having critical temperature lower than operating temperature, SrTiO 3 , SrVO 3 , SrTiFeO 3 , La
AlO 3 , LaCoO 3 , LaTiO 3 , LaVO 3 , Nd
MnO 3 , PrAlO 3 , PrCoO 3 , PrMnO 3 , S
mCoO 3 , SmVO 3 , La 0.33 NbO 3 , La 0.33 T
aO 3 , Sm 0.33 TaO 3 , GdMnO 3 , PrMnO 3 ,
Perovskite structure oxides such as BaFeO 3 , BaTiO 3 , EuTiO 3 , Ti 3 Zn, Pt 3 Zn, Pt 3 Ti,
It may be Pd 3 Sn, PtMn 3 , IrMn 3 or the like.
However, it is necessary that the superconductor and the non-superconductor have the same crystal structure as much as possible and that the lattice constants be well matched.

【0030】更に制御は電界効果の他にホットエレクト
ロン注入型、準粒子注入型または複合型(例えば電界効
果+準粒子注入型)等でもスイッチング比向上効果があ
る。
Further, in addition to the electric field effect, the control can be of a hot electron injection type, a quasi-particle injection type, a composite type (for example, a field effect + quasi-particle injection type), or the like, which has a switching ratio improving effect.

【0031】[0031]

【発明の効果】以上説明してきたように本発明によれば
高い使用温度(チャネル接合体の臨界温度の低下が少な
い)でミクロンオーダー以上のサイズだけから構成でき
てしかも制御電極信号による制御性が良好で充分なスイ
ッチイグ特性を有する電流変調装置を提供することがで
きる。
As described above, according to the present invention, it is possible to construct a device having only a size on the order of microns or more at a high operating temperature (the decrease in the critical temperature of the channel junction body) and the controllability by the control electrode signal. It is possible to provide a current modulator having good and sufficient switching characteristics.

【0032】本発明による超伝導電流変調装置は通常の
フォトリソグラフィー技術を用いて容易に製造できるか
らその効果は極めて大である。
Since the superconducting current modulator according to the present invention can be easily manufactured by using the usual photolithography technique, its effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における電流変調装置の
断面構造を示す図。
FIG. 1 is a diagram showing a cross-sectional structure of a current modulator according to a first embodiment of the present invention.

【図2】臨界温度の膜厚依存性を示す図。FIG. 2 is a diagram showing the film thickness dependence of the critical temperature.

【図3】臨界温度の超伝導体層間に形成する非超伝導体
層の膜厚依存性を示す図。
FIG. 3 is a diagram showing the film thickness dependence of a non-superconductor layer formed between superconductor layers at a critical temperature.

【図4】臨界温度の超伝導体層積層数依存性を示す図。FIG. 4 is a diagram showing the dependency of the critical temperature on the number of superconductor layer stacks.

【符号の説明】[Explanation of symbols]

1 ・・・ 第1の電極 2 ・・・ 第2の電極 3 ・・・ 超伝導層 4 ・・・ 非超伝導層 5 ・・・ チャネル接合体 6 ・・・ 誘電体 7 ・・・ 制御電極 8 ・・・ 基板 9 ・・・ 中間体 1 ... 1st electrode 2 ... 2nd electrode 3 ... Superconducting layer 4 ... Non-superconducting layer 5 ... Channel junction body 6 ... Dielectric 7 ... Control electrode 8 ... Substrate 9 ... Intermediate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 達也 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuya Shimoda 3-3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1の電極、チャネル接合体、第2の電
極、および制御電極を具備し、チャネル接合体を介して
第1の電極と第2の電極の間を流れる電流を制御電極信
号によって制御する電流変調装置において電流の流れる
方向に並行に超伝導体層と非超伝導体層を交互に複数層
形成しチャネル接合体を構成することを特徴とする電流
変調装置。
1. A control electrode signal comprising a first electrode, a channel assembly, a second electrode, and a control electrode, wherein a current flowing between the first electrode and the second electrode through the channel assembly is a control electrode signal. 1. A current modulator characterized in that a plurality of superconductor layers and non-superconductor layers are alternately formed in parallel with each other in a current flowing direction in a current modulator controlled by the above to form a channel junction.
【請求項2】 前記超伝導体層が2層以上であることを
特徴とする請求項1記載の電流変調装置。
2. The current modulator according to claim 1, wherein the superconductor layer is two or more layers.
【請求項3】 前記非超伝導体の厚さが超伝導体のコヒ
ーレント長の2倍以下であることを特徴とする請求項1
記載の電流変調装置。
3. The thickness of the non-superconductor is not more than twice the coherent length of the superconductor.
The described current modulator.
【請求項4】 前記超伝導体の厚さが1単位格子以上3
0Å以下であることを特徴とする請求項1記載の電流変
調装置。
4. The superconductor has a thickness of 1 unit cell or more and 3 or more.
The current modulator according to claim 1, wherein the current modulator is 0 Å or less.
【請求項5】 前記超伝導体と非超伝導体が酸化物であ
ることを特徴とする請求項1記載の電流変調装置。
5. The current modulator according to claim 1, wherein the superconductor and the non-superconductor are oxides.
【請求項6】 基板上に基板と同じ組成の中間層を形成
した後第1の電極、チャネル接合体、第2の電極、およ
び制御電極等を形成することを特徴とする電流変調装
置。
6. A current modulation device, comprising: forming an intermediate layer having the same composition as that of a substrate on a substrate and then forming a first electrode, a channel assembly, a second electrode, a control electrode, and the like.
JP4175360A 1992-07-02 1992-07-02 Current modulating device Pending JPH0621521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4175360A JPH0621521A (en) 1992-07-02 1992-07-02 Current modulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4175360A JPH0621521A (en) 1992-07-02 1992-07-02 Current modulating device

Publications (1)

Publication Number Publication Date
JPH0621521A true JPH0621521A (en) 1994-01-28

Family

ID=15994720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4175360A Pending JPH0621521A (en) 1992-07-02 1992-07-02 Current modulating device

Country Status (1)

Country Link
JP (1) JPH0621521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721196A (en) * 1991-02-12 1998-02-24 Sumitomo Electric Industries, Ltd. Stacked tunneling and stepped grain boundary Josephson junction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721196A (en) * 1991-02-12 1998-02-24 Sumitomo Electric Industries, Ltd. Stacked tunneling and stepped grain boundary Josephson junction

Similar Documents

Publication Publication Date Title
US5274249A (en) Superconducting field effect devices with thin channel layer
US5430011A (en) Crystal compensated superconducting thin film formed of oxide superconductor material
EP0511450B1 (en) Superconducting circuit elements with metallic substrate and method for manufacturing the same
JPH0834320B2 (en) Superconducting element
US5106822A (en) Transistor with superconducting collector, base, and emitter separated by non-superconducting barrier layers
US5828079A (en) Field-effect type superconducting device including bi-base oxide compound containing copper
JPH0621521A (en) Current modulating device
US5441926A (en) Superconducting device structure with Pr-Ba-Cu-O barrier layer
JP2831967B2 (en) Superconducting element
US5861361A (en) Superconducting field effect device having a superconducting channel and method for manufacturing the same
JPS63299281A (en) Superconducting device
JP3221037B2 (en) Current modulator
JP3232642B2 (en) Current modulator
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2597745B2 (en) Superconducting element and fabrication method
JP2597743B2 (en) Superconducting element fabrication method
JP3155641B2 (en) Superconducting tunnel junction device
JP2597747B2 (en) Superconducting element and fabrication method
JPH09312424A (en) Superconducting transistor
JPH06151988A (en) Superconducting three-terminal element
JPH0661537A (en) Current modulating device
JPH0555648A (en) Superconducting element
JPH04288885A (en) Tunnel-type josephson element
EP0893835A2 (en) Superconducting field effect device having a superconducting channel and method for manufacturing the same
JPH0587995B2 (en)