JPH01202827A - Forming method for film - Google Patents

Forming method for film

Info

Publication number
JPH01202827A
JPH01202827A JP2662488A JP2662488A JPH01202827A JP H01202827 A JPH01202827 A JP H01202827A JP 2662488 A JP2662488 A JP 2662488A JP 2662488 A JP2662488 A JP 2662488A JP H01202827 A JPH01202827 A JP H01202827A
Authority
JP
Japan
Prior art keywords
film
si3n4
tube
grown
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2662488A
Other languages
Japanese (ja)
Inventor
Akito Mifune
章人 美舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2662488A priority Critical patent/JPH01202827A/en
Publication of JPH01202827A publication Critical patent/JPH01202827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent a silicon nitride film from emulsifying by purging with ammonia a chemical vapor growth device when the film is grown with silane gas of chlorine series. CONSTITUTION:When a silicon nitride (Si3N4) film is grown, a cylinder valve 4A is opened, a cylinder valve 4B is closed, a furnace tube 1 is evacuated to a reduced pressure state, NH3 is fed from an ammonia (NH3) gas feed tube 2B, and the tube is purged for a predetermined time. Then, the supply of the NH3 is stopped, N2 is substituted, it is returned to a normal pressure, and an Si3N4 film is then grown. Thus, the tube 1 and a vacuum tube 5 are purged with the NH3 for a short time thereby to react unreacted substance NXHYClZ containing chlorine with the NH3 to be turned to stable ammonium chloride (NH4Cl). Thus, it can prevent the Si3N4 film from emulsifying.

Description

【発明の詳細な説明】 〔概要〕 窒化シリコン膜を成長させる際に適用して好結果が得ら
れる被膜形成方法に関し、 形成された窒化シリコン膜に白濁が発生しないようにす
ることを目的とし、 塩素系のシラン・ガスを用い窒化シリコン膜を成長させ
るに際しNH3で化学気相成長装置内のパージを行う工
程が含まれるよう構成する。
[Detailed Description of the Invention] [Summary] Regarding a film forming method that can be applied to grow a silicon nitride film and obtain good results, the present invention aims to prevent the formed silicon nitride film from becoming cloudy. When growing a silicon nitride film using chlorine-based silane gas, a step of purging the inside of the chemical vapor deposition apparatus with NH3 is included.

〔産業上の利用分野〕[Industrial application field]

本発明は、窒化シリコン(Si3N4)膜を成長させる
際に適用して好結果が得られる被膜形成方法に関する。
The present invention relates to a film forming method that can be applied with good results when growing a silicon nitride (Si3N4) film.

〔従来の技術〕[Conventional technology]

一般に、Si3N4膜を成長させるには、化学気相成長
(chemical  vapor  daposit
ion:CVD)法を採用することが多く、その場合、
材料ガスとしては、塩素系のシラン・ガス、即ち、S 
i H2C122或いは5iHCA!3を用いることが
行われている。このような材料ガスを用い゛る理由は、
バッチ方式で成長させたグループ内及びウェハ面内に於
ける膜厚の均一性が優れていることに依る。
Generally, to grow a Si3N4 film, chemical vapor deposition (chemical vapor deposition) is used.
ion:CVD) method is often adopted, in which case,
As the material gas, chlorine-based silane gas, that is, S
i H2C122 or 5iHCA! 3 is being used. The reason for using such a material gas is
This is due to the excellent uniformity of film thickness within the batch-grown group and within the wafer surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記したように、Si3N、膜の成長に塩素系シランを
用いた場合、例えば、連続して5回程度の成長を行うと
、S i 3 N 4膜に白濁を生ずるようになる。
As described above, when chlorine-based silane is used to grow a Si3N film, for example, if the growth is performed about five times in succession, the Si3N4 film becomes cloudy.

このようになると、例えば、フォト・リソグラフィ技術
に於ける露光工程で光に散乱を生じ、半導体装置の微細
加工に支障を来すことになる。
If this happens, for example, light will be scattered during the exposure process in photolithography, which will impede microfabrication of semiconductor devices.

本発明は、塩素系のシラン・ガスを用いSi3N4膜を
成長させた場合に白濁が発生しないようにする。
The present invention prevents clouding from occurring when a Si3N4 film is grown using chlorine-based silane gas.

〔課題を解決するための手段〕[Means to solve the problem]

前記したような白濁が発生する確たる原因及びメカニズ
ムは不明である。
The exact cause and mechanism by which the above-mentioned cloudiness occurs is unknown.

然しなから、前記したような材料ガスを用いた場合、S
 i 3 N 4以外の生成物が多量に発生することか
ら、その生成物が未反応の状態で存在するとSi3N4
の成長を行う際に異常反応が起きて白濁を生ずること、
また、減圧CVD装置に於ける真空ポンプの能力が不足
しているか劣化している場合、或いは、真空配管の容積
が大きい場合などで炉芯管から排気された未反応ガスの
逆拡散で白濁を生ずることなどが推定される。
However, when using the above-mentioned material gas, S
Since a large amount of products other than i3N4 are generated, if these products exist in an unreacted state, Si3N4
An abnormal reaction occurs during the growth of the liquid, causing cloudiness.
In addition, when the capacity of the vacuum pump in the low-pressure CVD equipment is insufficient or deteriorated, or when the volume of the vacuum piping is large, clouding may occur due to back diffusion of unreacted gas exhausted from the furnace core tube. It is estimated that this will occur.

そのようなことから、S i 3 N 4膜の成長を行
うに先立ち、N2に依るパージを長時間に亙って実施し
たところ、白濁は発生しなかったが、このパージを行う
には約12時間程度を必要とし、しかも、5回程度の連
続成長を行うと再び白濁が発生し始める。この為、スル
ー・プツトは著しく低下し、実用には程遠い。
For this reason, prior to growing the Si 3 N 4 film, we performed a long-term purge using N2, and no clouding occurred, but it took approximately 12 hours to perform this purge. It takes about time, and cloudiness starts to occur again after about 5 consecutive growths. As a result, the throughput is significantly reduced and it is far from practical.

そこで、考えられるのは、前記白濁が塩素系のシラン・
ガスを用いることで発生しているのであるから、その原
因は、塩素を含む未反応物質、即ち、N、HY Cβ2
が深(係わっているのであろうことである。従って、そ
のNXHvCl、を何らかの手段で化学量論的に安定な
物質に変換してやれば良いことになる。
Therefore, it is possible that the cloudiness is caused by chlorine-based silane.
Since it is generated by using gas, the cause is unreacted substances containing chlorine, that is, N, HY Cβ2
It is likely that NXHvCl is deeply involved. Therefore, it would be a good idea to convert that NXHvCl into a stoichiometrically stable substance by some means.

本発明者は、炉芯管及び真空配管をアンモニア(NH3
)を用いて短時間のパージを行ったところ、前記白濁の
発生防止に関して大変良い結果を得た。これは、NXH
vCl2がNH3と反応して安定な塩化アンモニウム(
NH4G/)に変わることに起因するものと考えられる
The present inventor has installed ammonia (NH3) in the furnace core tube and vacuum piping.
) was used to perform a short-term purge, and very good results were obtained in terms of preventing the occurrence of cloudiness. This is NXH
vCl2 reacts with NH3 to form stable ammonium chloride (
This is thought to be due to the change to NH4G/).

図は本発明を実施する装置の要部説明図を表している。The figure represents an explanatory view of the main parts of an apparatus implementing the present invention.

図に於いて、1は石英製の炉芯管、2Aは反応ガス送入
管、2BはNH3ガス送入管、3はパージ用配管、4A
及び4Bはシリンダ・バルブ、5は真空配管、6及び7
はメカニカル・ブースター・ポンプ、8は水封ポンプ、
9はStウェハをそれぞれ示している。
In the figure, 1 is a quartz furnace core tube, 2A is a reaction gas feed pipe, 2B is an NH3 gas feed pipe, 3 is a purge pipe, and 4A is a
and 4B are cylinder valves, 5 is vacuum piping, 6 and 7
is a mechanical booster pump, 8 is a water ring pump,
9 indicates an St wafer.

この装置を用いてSi3N4膜を成長させる場合、例え
ば、シリンダ・バルブ4Aを開放し、また、シリンダ・
バルブ4Bを閉成し、炉芯管1内を減圧状態となし、N
H3ガス送入管2BからNH3を流入させ、所定時間の
パージを行う。次いで、NH3の供給を停止し、N2置
換を行い、常圧に戻してやれば、その後、S i 3 
N 4膜成長を行っても白濁は発生しない。
When growing a Si3N4 film using this device, for example, open the cylinder valve 4A, and also open the cylinder valve 4A.
Close the valve 4B, reduce the pressure inside the furnace core tube 1, and apply N
NH3 is introduced from the H3 gas feed pipe 2B and purged for a predetermined period of time. Next, the supply of NH3 is stopped, N2 substitution is performed, and the pressure is returned to normal pressure. After that, S i 3
No clouding occurs even when N4 film is grown.

本発明を実施するには、次の各条件を適宜に組み合わせ
ることができる。
In order to carry out the present invention, the following conditions can be combined as appropriate.

(1)  装置の状態 (a)  減圧状態 (bl  常圧状態 (2)NH3の導入 (a)  炉芯管1を介して (bl  真空配管5に直接 (31NH3に依るパージ実施時期 (a)Si3N4成長前 (blsi3N4成長後 (C)Si3N4成長間 (4)希釈用N2  (含減圧度調整)(a)  有り (b)無し く5)パージ時間 NH3流量との兼ね合いで適宜に選択(パージ時間を長
く採った場合にはNH3流量は少な(て良い) (61NH3流量 パージ時間との兼ね合いで適宜に選択(NH3流量を多
くした場合にはパージ時間は短くて良い) 前記諸条件に於いて、NH3に依るパージを(1)−(
a)の減圧状態で行うには、シリンダ・バルブ4Bを閉
成し、且つ、シリンダ・バルブ4Aを開放し、(21−
(a)に見られるように炉芯管1を介してNH3の導入
を行うことになり、反対に、(1)−(blの常圧状態
で行うには、シリンダ・バルブ4Aを閉成し、且つ、シ
リンダ・バルブ4Bを開放し、(2)−(b)に見られ
るように真空配管5に直接、即ち、パージ用配管3を介
してNH3の導入を行うことになる。
(1) Condition of the device (a) Depressurized condition (bl Normal pressure condition (2) Introduction of NH3 (a) Via the furnace core tube 1 (bl Directly into the vacuum piping 5 (31 Purge implementation timing by NH3 (a) Si3N4 Before growth (after blsi3N4 growth (C) during Si3N4 growth (4) N2 for dilution (adjustment of reduced pressure) (a) Yes (b) Without 5) Purge time Select as appropriate in consideration of NH3 flow rate (purge time If the NH3 flow rate is long, the NH3 flow rate may be small. Purge according to (1) - (
To carry out step a) in the reduced pressure state, close the cylinder valve 4B, open the cylinder valve 4A, and (21-
As shown in (a), NH3 is introduced through the furnace core tube 1. Conversely, in order to introduce NH3 under the normal pressure state of (1) - (bl), the cylinder valve 4A must be closed. , and the cylinder valve 4B is opened, and NH3 is introduced directly into the vacuum pipe 5, that is, via the purge pipe 3, as shown in (2)-(b).

パージを(31−(alに見られるSi3N4成長前に
行うことは、信頼性の面からみて最も好ましいと考えら
れる。また、(31−(b)に見られるSi3N4成長
後に行う場合、(1) −(b)の常圧状態と(2) 
−(b)の真空配管5に直接を組み合わせると、パージ
中にSiウェハ9の取り出しを行うことができるのでス
ルー・プツトの面からは好ましい。
Purging before the Si3N4 growth seen in (31-(al) is considered the most preferable from the viewpoint of reliability. Also, when purging is performed after the Si3N4 growth seen in (31-(b)), (1) - (b) normal pressure state and (2)
- When directly combined with the vacuum piping 5 in (b), the Si wafer 9 can be taken out during purging, which is preferable from the viewpoint of throughput.

スルー・プツトの向上を重視するのであれば、S i 
3 N 4の成長を実施中にパージを行うことも可能で
あり、その場合、パージ用配管3をNH3ガス送入管2
Bから独立させ、シリンダ・バルブ4Bを開放してNH
3を流入させると良い。
If you place emphasis on improving throughput, S i
3 It is also possible to purge while growing N4, in which case the purge pipe 3 can be connected to the NH3 gas feed pipe 2.
B, open the cylinder valve 4B and NH
It is good to let 3 flow in.

前記したところから、本発明に依る被膜形成方法に於い
ては、塩素系のシラン・ガスを用い窒化シリコン膜を成
長させるに際しNH3で化学気相成長装置内のパージを
行う工程が含まれている。
From the above, the film forming method according to the present invention includes the step of purging the chemical vapor deposition apparatus with NH3 when growing a silicon nitride film using chlorine-based silane gas. .

〔作用〕[Effect]

前記手段を採ることに依り、装置内に存在する塩素を含
む未反応物質、即ち、N、 HY (1!、は短時間で
安定なNH,C1に変換されてしまうので、連続成長を
行っても、成長されたSi3N。
By adopting the above method, the unreacted substances containing chlorine present in the apparatus, that is, N, HY (1!), are converted into stable NH, C1 in a short time, so continuous growth is performed. Also, grown Si3N.

膜に白濁は生ずることはない。従って、例えばフォト・
リングラフィに於ける露光工程で光の散乱が発生するこ
とはなくなり、微細加工の実施が容易になる。
No clouding occurs in the membrane. Therefore, for example, photo
Light scattering does not occur during the exposure process in phosphorography, making it easier to carry out microfabrication.

〔実施例〕〔Example〕

図示説明した装置を用い、先ず、前記説明したNH3に
依るパージを種々の条件を付与して実施し、その後、S
 i 3 N 4の成長を行った。
Using the illustrated and explained apparatus, first, purge with NH3 as described above was carried out under various conditions, and then S
i3N4 growth was performed.

(A)  パージについて (11NH3の流量を変化させた場合 NH3流量: (a)  800 (cc/分〕 (b)  900 (cc/分〕 (cl  1000 (cc/分〕 (d)  110 Q (cc/分〕 (el  1200 (cc/分〕 パージ時間: 30〔分〕一定 減圧度: 1、D (Torr) (2)パージ時間を変化させた場合 パージ時間: (a)10(分〕 (b)20(分〕 TO)30(分〕 (d)40(分〕 18>50(分〕 NH3流量: 1200(cc/分〕一定 減圧度: 1.0 (Torr) CB)  Si3N4の成長について 5iH2Cj22 : 40 (cc/分〕NH3: 
800 (cc/分〕 成長温度ニア75(’C) 減圧度: 1.0 (Torr) 成長時間:43.O(分〕    ” 成長膜厚:1500(人〕 パージに関する前記諸条件の下に得られた結果は次の通
りである。
(A) About purging (NH3 flow rate when changing the flow rate of 11NH3: (a) 800 (cc/min) (b) 900 (cc/min) (cl 1000 (cc/min) (d) 110 Q (cc /min] (el 1200 (cc/min) Purge time: 30 [min] Constant degree of reduced pressure: 1, D (Torr) (2) When changing the purge time Purge time: (a) 10 (min) (b ) 20 (min) TO) 30 (min) (d) 40 (min) 18>50 (min) NH3 flow rate: 1200 (cc/min) Constant degree of vacuum: 1.0 (Torr) CB) About the growth of Si3N4 5iH2Cj22 : 40 (cc/min) NH3:
800 (cc/min) Growth temperature near 75 ('C) Degree of reduced pressure: 1.0 (Torr) Growth time: 43.0 (min) Growth film thickness: 1500 (person) Obtained under the above conditions regarding purge. The results obtained are as follows.

(A) −(1)−(alの場合 白濁有り (A) −(1)−(blの場合 白濁有り (A) −(11−(C)の場合 白濁有り(軽度) (A) −[1)−(d)の場合 白濁無し くA) −(1)−(elの場合 白濁無し くA) −(2)−(a)の場合 白濁有り (A)−(21−(blの場合 白濁有り (A) −(21−(C)の場合 白濁無し くA) −(2)−(d)の場合 白濁無し くA) −(2)−(114)の場合 白濁無し 前記実施例から判るように、NH3の流量を変えた場合
には1000 (。。/分〕で白濁の程度はかなり軽く
なり、1100 (。C/分〕では発生しない。そこで
、パージ時間を変える実験の際には、余裕を採って12
00(cc/分〕一定とした。このような点及び前記デ
ータからすると、NH3の流量:1200(cc/分〕 パージ時間:40〔分〕 とするのが、白濁防止及び経済性の面から見ると効率が
良いと思われる。
(A) -(1)-(Al has white turbidity (A) -(1)-(BL has white turbidity (A) -(11-(C) has white turbidity (mild) (A) -[ 1)-(d) No white turbidity A) -(1)-(el el no white turbidity A) -(2)-(a) case white turbidity (A)-(21-(bl) White turbidity (A) -(21-(C): No white turbidity A) -(2)-(d): No white turbidity A) -(2)-(114): No white turbidity From the above example As can be seen, when changing the flow rate of NH3, the degree of cloudiness becomes considerably lighter at 1000 (./min), and does not occur at 1100 (./min). Therefore, in an experiment where the purge time is changed, is 12, taking a margin.
Based on these points and the above data, it is recommended to set the flow rate of NH3: 1200 (cc/min) and the purge time: 40 [min] from the viewpoint of preventing white clouding and economical efficiency. It looks like it's efficient.

〔発明の効果〕〔Effect of the invention〕

本発明に依る被膜形成方法に於いては、塩素系のシラン
・ガスを用い窒化シリコン膜を成長させるに際しNH3
で化学気相成長装置内のパージを行うようにしている。
In the film forming method according to the present invention, when growing a silicon nitride film using chlorine-based silane gas, NH3
The inside of the chemical vapor deposition equipment is purged.

前記構成を採ることに依り、装置内に存在する塩素を含
む未反応物質、即ち、N x Hv Cj! zは短時
間で安定なNH4Clに変換されてしまうことから、多
数回の連続成長を行っても、得られるSi3N、膜に白
濁は生じない。従って、例えばフォト・リソグラフィに
於ける露光工程で光の散乱が発生することはなくなり、
微細加工の実施が容易になる。
By adopting the above configuration, unreacted substances containing chlorine present in the apparatus, that is, N x Hv Cj! Since z is converted into stable NH4Cl in a short period of time, cloudiness does not occur in the resulting Si3N film even if the growth is performed many times in succession. Therefore, for example, light scattering does not occur during the exposure process in photolithography.
It becomes easier to carry out microfabrication.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施する装置の要部説明図を表している。 図に於いて、lは石英製の炉芯管、2人は反応ガス送入
管、2BはNH3ガス送入管、3はパージ用配管、4A
及び4Bはシリンダ・バルブ、5は真空配管、6及び7
はメカニカル・ブースター・ポンプ、8は水封ポンプ、
9はSiウェハをそれぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 −
The figure represents an explanatory view of the main parts of an apparatus implementing the present invention. In the figure, l is a quartz furnace core tube, 2 is a reaction gas feed pipe, 2B is an NH3 gas feed pipe, 3 is a purge pipe, 4A
and 4B are cylinder valves, 5 is vacuum piping, 6 and 7
is a mechanical booster pump, 8 is a water ring pump,
9 indicates a Si wafer. Patent applicant: Fujitsu Ltd. Representative Patent Attorney Shoji Aitani Representative Patent Attorney Hiroshi Watanabe −

Claims (1)

【特許請求の範囲】  塩素系のシラン・ガスを用い窒化シリコン膜を成長さ
せるに際しNH_3で化学気相成長装置内のパージを行
う工程 が含まれてなることを特徴とする被膜形成方法。
[Scope of Claims] A film forming method comprising the step of purging a chemical vapor deposition apparatus with NH_3 when growing a silicon nitride film using chlorine-based silane gas.
JP2662488A 1988-02-09 1988-02-09 Forming method for film Pending JPH01202827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2662488A JPH01202827A (en) 1988-02-09 1988-02-09 Forming method for film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2662488A JPH01202827A (en) 1988-02-09 1988-02-09 Forming method for film

Publications (1)

Publication Number Publication Date
JPH01202827A true JPH01202827A (en) 1989-08-15

Family

ID=12198620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2662488A Pending JPH01202827A (en) 1988-02-09 1988-02-09 Forming method for film

Country Status (1)

Country Link
JP (1) JPH01202827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044023A (en) * 2007-08-10 2009-02-26 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device and substrate processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044023A (en) * 2007-08-10 2009-02-26 Hitachi Kokusai Electric Inc Manufacturing method of semiconductor device and substrate processing device

Similar Documents

Publication Publication Date Title
US5129958A (en) Cleaning method for semiconductor wafer processing apparatus
US7112544B2 (en) Method of atomic layer deposition on plural semiconductor substrates simultaneously
US5316793A (en) Directed effusive beam atomic layer epitaxy system and method
JP3265042B2 (en) Film formation method
JP5185486B2 (en) Deposition method of film on substrate
TWI274790B (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
US20110247561A1 (en) Thermal Chemical Vapor Deposition Methods, and Thermal Chemical Vapor Deposition Systems
KR100758758B1 (en) Atomic layer deposition methods of forming silicon dioxide comprising layers
EP1164206A3 (en) Chemical vapor deposition method for amorphous silicon and resulting film
JPH01202827A (en) Forming method for film
US7323412B2 (en) Atomic layer deposition methods, and methods of forming materials over semiconductor substrates
JP2004228602A (en) Vertical type semiconductor manufacturing equipment
JP3847928B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
KR20000009711A (en) Fabricating method of a semiconductor device
JPH0410617A (en) Manufacturing device for semiconductor
KR0124563B1 (en) Method of amorphous silicon evaporation
JPS60211072A (en) Gasification apparatus of volatile substance
JP3068516B2 (en) Method for manufacturing semiconductor device
JPH03196524A (en) Formation of silicon nitride film
JP2000219596A (en) Vapor growth method
GB2191510A (en) Depositing doped polysilicon films
JPH03206618A (en) Manufacture of semiconductor device
JPS61111518A (en) Vapor phase epitaxial growth equipment
JPH03257166A (en) Method and device for chemical vapor growth of tantalum oxide film
JPH02282481A (en) Formation of amorphous multilayered thin film