KR0124563B1 - Method of amorphous silicon evaporation - Google Patents

Method of amorphous silicon evaporation

Info

Publication number
KR0124563B1
KR0124563B1 KR1019890002273A KR890002273A KR0124563B1 KR 0124563 B1 KR0124563 B1 KR 0124563B1 KR 1019890002273 A KR1019890002273 A KR 1019890002273A KR 890002273 A KR890002273 A KR 890002273A KR 0124563 B1 KR0124563 B1 KR 0124563B1
Authority
KR
South Korea
Prior art keywords
reactor
gas
zone
amorphous silicon
temperature
Prior art date
Application number
KR1019890002273A
Other languages
Korean (ko)
Other versions
KR900013584A (en
Inventor
이영종
하용안
Original Assignee
문정환
엘지반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문정환, 엘지반도체주식회사 filed Critical 문정환
Priority to KR1019890002273A priority Critical patent/KR0124563B1/en
Publication of KR900013584A publication Critical patent/KR900013584A/en
Application granted granted Critical
Publication of KR0124563B1 publication Critical patent/KR0124563B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

An amorphous silicon deposition method at three-zone LPCVD(low pressure chemical vapor deposition) reactor is disclosed. The method comprises the steps of: controlling a temperature of zone by positive temperature gradient in three-zone horizontal reactor(1); injecting a source gas in the inner of the reactor(1) through a gas inlet(12); depositing a silicon on a wafer(2) by flowing the injected source gases; removing the remained residue gases by flowing N2 gases; closing a vacuum pump line(9) and flowing N2 gases; opening a reactor door(5); and unloading the growing wafer, thereby forming an wafer deposited the amorphous silicon.

Description

3-존 저압화학 증착 반응로에서의 비정질 실리콘 증착방법Amorphous Silicon Deposition Method in 3-zone Low Pressure Chemical Vapor Deposition Reactor

제1도는 종래의 3-존 저압 화학기상 장치도.1 is a conventional three-zone low pressure chemical vapor apparatus diagram.

제2도는 본 발명에 따른 3-존 저압 화학기상 장치도.2 is a three-zone low pressure chemical vapor apparatus according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 3-존 반응로 2 : 웨이퍼1: 3-zone reactor 2: wafer

3a, 3b : 기체용기 4 : 기체인젝터3a, 3b: gas container 4: gas injector

5 : 반응로 도어 6 : 압력계5: reactor door 6: pressure gauge

7a, 7b : 유량조절기 8 : 후면 사일렌 기체 주입라인7a, 7b: flow regulator 8: rear xylene gas injection line

9 : 진공 펌프 라인 10 : 진공 펌프9: vacuum pump line 10: vacuum pump

11 : 인젝터 구멍 12 : 기체 주입구11 injector hole 12 gas inlet

a∼d : 밸브a to d: valve

본 발명은 반도체 소자의 게이트나 상호 연결된 물질로 사용되는 비정질 실리콘의 증착방법에 관한 것으로, 특히, 튜브형태의 길이가 긴 반응로에서 대량의 웨이퍼 위에 두께가 균일하고 불순입자가 없는 비정질 실리콘을 증착시킬 수 있도록 원료기체 인입구에서 반응 부산물 기체 배출구까지의 반응 용기 길이 방향으로 온도 구배를 주어 인젝터의 사용을 제거하고 원료 기체 사용량을 줄이도록 한 비정질 실리콘의 증착방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of depositing amorphous silicon used as a gate or interconnect material of a semiconductor device, and in particular, deposits amorphous silicon without uniform particles on a large number of wafers in a tube-type long reactor. The present invention relates to a method of depositing amorphous silicon to reduce the use of injectors and to reduce the use of injectors by giving a temperature gradient in the length direction of the reaction vessel from the source gas inlet to the reaction by-product gas outlet.

종래의 비정질 실리콘 증착기술은 다결정 실리콘의 저압화학 기상 증착 기술과 동일하되 증착온도만 차이가 있으므로 여기서는 다결정 실리콘 증착기술을 그대로 설명하기로 한다.The conventional amorphous silicon deposition technique is the same as the low pressure chemical vapor deposition technique of polycrystalline silicon, but only the deposition temperature is different, so the polycrystalline silicon deposition technique will be described here.

튜브형태의 3-존(Zone) 반응로(1)의 입구쪽에 압력계(6)가 달린 반응로 도어(5)가 부착되고 반응로(1)의 하부에 적당한 간격으로 구멍(11)이 뚫린 기체 인젝터(4)가 설치되며 인젝터(4) 상부에 다량의 웨이퍼(2)가 설치되고 반응로(1) 외부의 질소 및 사일렌 용기(3a, 3b)는 밸브(a, b)를 통하여 유량조절기(7a, 7b)와 연결되고 유량조절기(7a, 7b)는 직접 반응로 도어(5)로 연결됨과 동시에 밸브(d)를 통하여는 반응로 도어(5)로 연결되고 밸브(d)를 통하여는 반응로(1)의 후면부로 연결되며, 진공펌프(10)는 진공펌프 라인(9)을 통하여 반응로 후면부로 연결된다.Reactor door 5 having a pressure gauge 6 attached to the inlet of the 3-zone reactor 1 in the form of a tube, and a gas having holes 11 drilled at appropriate intervals in the lower part of the reactor 1. The injector 4 is installed, and a large amount of wafers 2 are installed on the injector 4, and the nitrogen and xylene containers 3a and 3b outside the reactor 1 are flow rate regulators through the valves a and b. (7a, 7b) and the flow regulators (7a, 7b) are directly connected to the reactor door (5), at the same time through the valve (d) to the reactor door (5) and through the valve (d) It is connected to the rear of the reactor (1), the vacuum pump 10 is connected to the rear of the reactor through the vacuum pump line (9).

상기와 같은 장치에서 다량의 웨이퍼(2)위에 실리콘을 증착시킬 때 약 570°정도의 온도를 반응로 길이방향으로 존(Zone)에 관계없이 일정하게 유지시키며 사일렌용기(3b)의 사일렌(SiH4) 기체를 분당 약 200SCCM내외로 투입하되 석영관에 적당한 간격으로 구멍(11)이 뚫린 기체 인젝터(4)를 이용하여 균일하게 분사시킨다.When depositing silicon on a large amount of wafer 2 in the above apparatus, the temperature of about 570 ° is kept constant regardless of the zone in the longitudinal direction of the reactor, SiH 4 ) gas is injected into and out of about 200 SCCM per minute, and is uniformly sprayed using a gas injector 4 having holes 11 drilled into the quartz tube at appropriate intervals.

비정질 실리콘 증착반응 전후의 반응로(1)내의 분위기 및 온도조절방식은 일반적인 저압 화학 기상 증착 방식과 동일하다.The atmosphere and temperature control method in the reactor 1 before and after the amorphous silicon deposition reaction is the same as the general low pressure chemical vapor deposition method.

사일렌 기체(SiH4)를 원료로 약 300∼450mTorr정도의 압력에서 비정질 실리콘을 얻으려면 증착반응 온도가 570∼590°이하이어야 하며 이 온도보다 늦으면 점차 결정화된 실리콘을 얻게 된다.In order to obtain amorphous silicon at a pressure of about 300 to 450 mTorr as a raw material of xylene gas (SiH 4 ), the deposition reaction temperature must be 570 to 590 ° or less, and later crystallized silicon is gradually obtained.

원래 다결정 실리콘 증착시(증착온도 : 600℃이상)에서 3-존(Zone) 반응로의 각 존(Zone)의 온도가 다르면 보다 고온에서 성장시킨 다결정 실리콘의 결정립 크기가 더 커지므로 온도가 균일해야 함은 불가피하다.When the temperature of each zone of 3-zone reactor is different at the time of polycrystalline silicon deposition (deposition temperature: 600 ℃ or higher), the grain size of polycrystalline silicon grown at higher temperature becomes larger, so the temperature should be uniform. It is inevitable.

그러므로 원료 기체 주입방법에서 일방향 흐름은 불가하고 인젝터를 이용한 균일분사 방식을 줄 수 밖에 없었다.Therefore, the one-way flow is impossible in the raw material gas injection method, and the uniform injection method using the injector is inevitably given.

그런데 비정질 실리콘을 저압 화학 기상 증착시킬 때는 증착 온도차이에 따라 결정립 크기 문제가 전혀 없는데도 불구하고 온도 균일 증착 방식을 고수하여 왔었다. 570°정도의 온도에서 비정질 실리콘 박막의 성장속도는 약 50±5Å/min이다.However, when low-pressure chemical vapor deposition of amorphous silicon, the temperature uniform deposition method has been adhered to even though there is no grain size problem according to the deposition temperature difference. The growth rate of the amorphous silicon thin film at a temperature of about 570 ° is about 50 ± 5 Å / min.

종래 기술의 동작상태를 설명하면, 웨이퍼(2)를 반응용기(1)내에 삽입시킨 후 진공펌프(10)를 이용하여 10∼20mTorr정도의 저압 혹은 약간의 질소(N2)기체를 불어 넣어 20mTorr정도의 압력 하에서 3-존(Zone)의 온도를 550∼590℃ 사이의 것으로 하여 ±1℃변화 범위내에서 균일하도록 조절한다.Referring to the operation state of the prior art, the wafer 2 is inserted into the reaction vessel 1, and then a low pressure or a small amount of nitrogen (N 2 ) gas of about 10 to 20 mTorr is blown using the vacuum pump 10 and 20 mTorr is used. The temperature of the 3-zone under the pressure of about 550 ~ 590 ℃ is adjusted to be uniform within the range of ± 1 ℃ change.

온도조절이 끝난후 질소(N2)를 차단하고 유량 조절기(7b)를 통과하면서 약 200SCCM(Standard cc/min) 정도의 유입 속도가 유지되는 사일렌(SiH4) 기체를 기체 인젝터(4)를 통하여 반응로(1)내에서 균일하게 분사시켜 웨이퍼(2)위로 실리콘을 증착시킨다.For four days alkylene (SiH 4) gas injector 4, the gas blocks the nitrogen (N 2) flow through the flow regulator (7b) the flow rate of about 200SCCM (Standard cc / min) while maintaining after the temperature control over By uniformly spraying in the reactor (1) through to deposit the silicon on the wafer (2).

증착이 완료되면 사일렌 기체의 밸브(b)를 차단하고 진공펌프(10)만 가동하여 잔류기체를 제거한다.When the deposition is completed, the valve (b) of the silylene gas is blocked and only the vacuum pump 10 is operated to remove residual gas.

잔류기체를 완전히 제거하기 위해 질소(N2)기체를 불어넣는 퍼징(Purging)을 수차례 반복할 수 있다. 잔류기체 제거가 완료되면 진공펌프라인(9)을 차단하고 질소 기체만 불어넣어 대기압화시킨다.Purging with blowing nitrogen (N 2 ) gas may be repeated several times to completely remove residual gas. When the removal of residual gas is completed, the vacuum pump line 9 is shut off, and only nitrogen gas is blown to atmospheric pressure.

다음 반응로 도어(5)를 열고 실리콘이 성장된 웨이퍼를 꺼내면 모든 과정이 완료된다.Then open the reactor door (5) and take out the silicon-grown wafer to complete the process.

그런데 종래에는 반응로(1)의 3-존(Zone)을 모두 같은 온도로 유지시키면서 비정질 실리콘을 증착시키므로 일방향 기체흐름 방식에 의해서는 후면부의 기체 고갈로 인해 실리콘 박막 성장 속도가 감소되기 때문에 불가피하게 기체 인젝터(4)를 사용해 왔음에도 불구하고 원료 기체(사일렌 기체)주입속도에 무관하게 후면부 성장 속도는 여전히 낮아 전체 기체 주입량의 약 25% 정도를 후면 주입라인(8)으로 유입시켜야 했는데 이는 성장 속도 균일화에는 도움을 주지만 기체 추돌류(Turbulent Flow)를 일으켜 박막에 반응 불순물입자(particles)가 형성되는 문제가 있었다.However, in the related art, since amorphous silicon is deposited while maintaining all three zones of the reactor 1 at the same temperature, the silicon thin film growth rate is inevitably reduced due to gas depletion at the rear side by the one-way gas flow method. Despite the use of the gas injector (4), the rear growth rate was still low, regardless of the feed rate of the raw gas (silylene gas), and about 25% of the total gas injection had to be introduced into the rear injection line (8). Although helpful in speed uniformity, there was a problem in that reactive impurity particles were formed in the thin film by causing gas flow (Turbulent Flow).

또한 반응로를 한번 세척한 후 진행할 수 있는 공정 횟수가 약 50회 정도인데 비해 기체 인젝터는 20회 정도 진행후에 세척을 해주어야 하므로 장비의 다운 타임(Down Time)을 증가시킬 뿐 아니라 기체 인젝터(4)를 통해 기체분사를 하기 위해서는 기체 주입량을 기체 인젝터를 쓰지 않은 일방향 흐름 방식의 기체 주입량보다 늘려야 하는데 이로인해 반응로 내의 압력 증가는 실리콘 박막의 성장속도를 약간 증가시키기는 하나 웨이퍼 내의 두께 균일도 감소 및 기체 상태 반응에 의해 반응입자 생성등의 문제점이 있었다.In addition, since the number of processes that can be performed after washing the reactor once is about 50 times, the gas injector needs to be cleaned after 20 times, thus increasing down time of the equipment as well as gas injector (4). In order to inject the gas through the gas, the gas injection rate should be increased than the one-way flow gas injection without the gas injector. Thus, the increase in pressure in the reactor may slightly increase the growth rate of the silicon thin film, but decrease the thickness uniformity and the gas There was a problem such as reaction particle generation due to the state reaction.

본 발명은 상기의 문제점을 해결하기 위한 것으로 첨부도면을 참조하여 상세히 설명하면 다음과 같다.The present invention to solve the above problems will be described in detail with reference to the accompanying drawings.

제2도에서 온도 구배 3-존 저압화학 기상장치의 구성을 보면, 3-존(Zone) 반응로(1)내에 다량의 웨이퍼(2)가 설치되고 3-존 반응로(1) 입구쪽에 압력계(6)가 달린 반응로 도어(5)가 설치되며 3-존 반응로(1)의 하단부에는 반응로 도어(5)에 부착되는 기체 주입구(12)가 설치되고 반응로(1)외부에 있는 질소 및 실리콘 용기(3a, 3b)의 기체는 밸브(a, b)를 통하여 기체유량 조절기(7a, 7b)를 거쳐 반응로 도어(5)로 인가되며 진공펌프(10)는 진공펌프라인(9)를 통하여 반응로 후면부에 연결된다.Referring to the configuration of the temperature gradient three-zone low pressure chemical vapor device in FIG. 2, a large amount of wafers 2 are installed in the three-zone reactor 1 and a pressure gauge at the inlet of the three-zone reactor 1 A reactor door 5 with (6) is installed and a gas inlet 12 attached to the reactor door 5 is installed at the lower end of the three-zone reactor 1 and located outside the reactor 1. Gases of the nitrogen and silicon vessels 3a and 3b are applied to the reactor door 5 through the gas flow regulators 7a and 7b through the valves a and b and the vacuum pump 10 is connected to the vacuum pump line 9. Is connected to the rear of the reactor.

상기와 같은 3-존 저압 화학 기상장치에 있어서의 3-존(Zone) 수평 반응로(1)내에서 저압 화학 기상증착 방법에 의해 비정질 실리콘을 증착시키는데 있어 존(Zone) 1의 온도(T1)를 550℃±10℃·존(Zone) 2의 온도(T2)를 565℃±10℃ 존(Zone) 3의 온도(T3)를 580℃±10℃로 조절하고 원료 사일렌 기체(SiH4)는 기체 인젝터 사용없이 반응로 도어(5)쪽 기체라인만을 통해 주입하여 반응로(1)내에서, 인입부에서 배출부까지 일방향으로 흐르도록 한다.The temperature of zone 1 (T 1 ) in depositing amorphous silicon by low pressure chemical vapor deposition in a three-zone horizontal reactor 1 in a three-zone low pressure chemical vapor deposition apparatus as described above. ), The temperature (T 2 ) of 550 ° C. ± 10 ° C. and Zone 2 is adjusted to 565 ° C. ± 10 ° C., and the temperature (T 3 ) of Zone 3 is adjusted to 580 ° C. ± 10 ° C. SiH 4 ) is injected through the gas line toward the reactor door 5 without using a gas injector to flow in one direction from the inlet to the outlet in the reactor 1.

이때 기체 주입속도는 140±20SCCM 정도로 하며 반응시의 압력은 250∼390mTorr이다. 이외에는 반응로의 하드웨어 및 소프트웨어 구성은 종래와 동일하다. 증착과 동시에 인(P)이 도핑되는 비정질 실리콘 증착에 있어서도 온도 구배를 갖는 3-존(Zone) 반응로를 이용할 수 있다.이 경우 질소(N2) 아르곤(Ar) 및 사일렌(SiH4) 기체에 희석된 포스핀(PH3) 기체와 순수한 사일렌 기체가 희석된 포스핀 기체만 인젝터로 주입시킬 수 있다.At this time, the gas injection speed is about 140 ± 20SCCM and the pressure during the reaction is 250 ~ 390mTorr. Otherwise, the hardware and software configuration of the reactor are the same as before. A 3-zone reactor with a temperature gradient can also be used for amorphous silicon deposition doped with phosphorus (P) simultaneously with deposition. In this case, nitrogen (N 2 ) argon (Ar) and xylene (SiH 4 ) Only phosphine (PH 3 ) gas diluted with gas and phosphine gas diluted with pure xylene gas can be injected into the injector.

본 발명에 따른 3-존(Zone) 저압 화학기상장치의 동작방법을 설명하면 다음과 같다.Referring to the operation method of the three-zone (Zone) low pressure chemical vapor apparatus according to the present invention.

각 존(Zone)마다 독립적인 온도 조절 시스템에 의해 ±1℃범위 오차로 존 1의 온도(T1)는 550℃±10℃, 존 2의 온도(T2)는 565±10℃, 존 3의 온도(T3)는 580±10℃로 조절한다. (T1<T2<T3)온도조절이 끝난 후 원료 사일렌 기체(SiH4)를 증착시에 기체 주입구(12)를 통해 약120∼160SCCM(±2SCCM)정도의 유입속도로 주입하여 존1→존2→존3 방향으로 일방향 흐름이 일어나면서 웨이프(2) 위로 비정질 실리콘이 증착된다.Zone 1's temperature (T 1 ) is 550 ° C ± 10 ° C, zone 2's temperature (T 2 ) is 565 ± 10 ° C and zone 3 with ± 1 ° C range error by independent temperature control system for each zone. The temperature (T 3 ) of is adjusted to 580 ± 10 ℃. After the temperature control (T 1 <T 2 <T 3 ), the raw material xylene gas (SiH 4 ) is injected through the gas inlet 12 at the inflow rate of about 120 to 160 SCCM (± 2 SCCM) during deposition. One-way flow occurs in the direction of 1? Zone 2? Zone 3 and amorphous silicon is deposited on the wafer 2.

증착시간이 완료되면 원료 사일렌 기체를 차단하고 진공펌프(10)를 가동한 뒤 질소(N2) 기체를 불어넣어 잔류 반응 생성기체를 제거한다. 잔류 기체 제거가 완료되면 진공펌퍼 라인(9)을 차단하고 질소기체만 불어넣어 대기압화시킨후 반응로 도어(5)를 열고 실리콘이 성장된 웨이퍼를 꺼내면 모든 과정이 완료된다.When the deposition time is completed, the raw material xylene gas is cut off, the vacuum pump 10 is operated, and nitrogen (N 2 ) gas is blown to remove residual reaction gas. When the residual gas removal is completed, the vacuum pump line 9 is cut off, and only nitrogen gas is blown to atmospheric pressure. Then, the reactor door 5 is opened, and the silicon-grown wafer is taken out.

본 발명은 비정질 실리콘 박막의 성장 속도는 분당 40Å이상이 되므로 종래의 성장속도 50±50Å/min에 비교될 만하고 증착 박막을 임의 시간동안 열처리(950℃, 질소주입)했을 때 결정화된 실리콘의 결정립 크기는 종래의 결정립 크기(2500Å)와 같으며 특히 로딩존(Zone)에 관계없이 결정리 성장속도가 균일하고 전체 웨이퍼 위에 비정질 실리콘 박막의 두께를 균일하게 유지하면서도 반응압력을 인젝터 사용시보다 약 50∼70mTorr 정도 감소시킬 수 있어 입자 발생 문제를 상당히 개선하고, 또 반응로 세척 주기에 비해 주기가 짧은 인젝터 세척 과정이 없으므로 장비의 다운타임이 줄어들고, 웨이퍼간의 두께 균일도의 증가로 1회 공정에 비정질 실리콘을 입힐 수 있는 웨이퍼 수를 약 25장 정도 높일 수 있으며 일방향 기체 흐름으로 추돌류를 억제하여 입자 발생문제를 감소시키는 효과가 있다.In the present invention, the growth rate of the amorphous silicon thin film is more than 40 kW / min, which is comparable to the conventional growth rate of 50 ± 50 kW / min. Is the same as the conventional grain size (2500Å), especially the crystal growth rate is uniform regardless of the loading zone, while maintaining the thickness of the amorphous silicon thin film uniformly on the entire wafer, the reaction pressure is about 50 to 70mTorr than when using the injector. Significantly improves particle generation problems and eliminates injector cleaning processes that are shorter than reactor cleaning cycles, reducing equipment downtime and increasing thickness uniformity between wafers resulting in amorphous silicon in one process The number of wafers that can be used can be increased by about 25 sheets and particles are generated by suppressing colliding flows with a unidirectional gas flow. It has the effect of reducing the problem.

Claims (1)

3-존 수평 반응로(1)내에서 각 존마다 독립적인 온도조절 시스템으로서 반응로(1)의 길이방향으로 양의 온도구배를 주어 존의 온도를 조절하는 단계와, 온도조절 완료후 기체 주입구(12)를 통해 반응로 내부로 원료 기체를 주입하는 단계와, 반응로(1)내부로 주입된 원료 사일렌 기체가 존의 온도 구배로 인해 반응로(1)의 길이 방향으로 일방향 흐름을 가지며 웨이퍼(2) 위로 실리콘이 증착되는 단계와, 증착 완료 후 원료 사일렌 기체를 차단하고 진공 펌프(10)를 가동한 뒤 질소 기체를 불어넣어 잔류반응 생성기체를 제거하는 단계와, 잔류기체 제거완료후에 진공펌프라인(9)을 차단하고 퍼징(purging)을 실시한 다음 질소기체만 불어넣어 대기압화 시킨후 반응로 도어(5)를 열고 실리콘이 성장된 웨이퍼를 꺼내는 단계를 거치도록한 3-존 저압화학 증착 반응로에서의 비정질 실리콘 증착방법.Controlling the zone temperature by giving a positive temperature gradient in the longitudinal direction of the reactor (1) as an independent temperature control system for each zone in the 3-zone horizontal reactor (1), and after completion of temperature control Injecting the raw material gas into the reactor through the (12), and the raw material xylene gas injected into the reactor (1) has a one-way flow in the longitudinal direction of the reactor (1) due to the temperature gradient of the zone Silicon is deposited on the wafer 2, and after completion of the deposition, the raw material xylene gas is cut off, the vacuum pump 10 is operated, and nitrogen gas is blown to remove residual reaction gas, and residual gas is removed. Later, the vacuum pump line 9 was shut off and purged, and then nitrogen gas was blown to atmospheric pressure. Then, the 3-zone low pressure was passed through the step of opening the reactor door 5 and removing the silicon-grown wafer. Chemical vapor deposition reactor Amorphous silicon deposition process of the document.
KR1019890002273A 1989-02-27 1989-02-27 Method of amorphous silicon evaporation KR0124563B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890002273A KR0124563B1 (en) 1989-02-27 1989-02-27 Method of amorphous silicon evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890002273A KR0124563B1 (en) 1989-02-27 1989-02-27 Method of amorphous silicon evaporation

Publications (2)

Publication Number Publication Date
KR900013584A KR900013584A (en) 1990-09-06
KR0124563B1 true KR0124563B1 (en) 1997-12-10

Family

ID=19284064

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890002273A KR0124563B1 (en) 1989-02-27 1989-02-27 Method of amorphous silicon evaporation

Country Status (1)

Country Link
KR (1) KR0124563B1 (en)

Also Published As

Publication number Publication date
KR900013584A (en) 1990-09-06

Similar Documents

Publication Publication Date Title
KR100790416B1 (en) Method for vapour deposition of a film onto a substrate
US7105054B2 (en) Method and apparatus of growing a thin film onto a substrate
US6432205B1 (en) Gas feeding system for chemical vapor deposition reactor and method of controlling the same
US5503875A (en) Film forming method wherein a partial pressure of a reaction byproduct in a processing container is reduced temporarily
US20050223982A1 (en) Apparatus and method for depositing thin film on wafer using remote plasma
US20070087579A1 (en) Semiconductor device manufacturing method
US20060121211A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method using the same
KR20050100610A (en) Method and apparatus for layer by layer deposition of thin films
US7432215B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JPS61117841A (en) Formation of silicon nitride film
KR0124563B1 (en) Method of amorphous silicon evaporation
KR940006667B1 (en) Removing non-reactive gas and reaction restraint apparatus
US6333266B1 (en) Manufacturing process for a semiconductor device
KR100375834B1 (en) gas transfer device of ALE apparatus using the remote plasma
CN108048819B (en) A kind of chemical vapor deposition process
KR200157376Y1 (en) Gate valve for chemical vapor depostion system
JP3119475B2 (en) Method for manufacturing semiconductor device
JPH03206618A (en) Manufacture of semiconductor device
US20230008131A1 (en) Chemical vapor deposition furnace with a cleaning gas system to provide a cleaning gas
KR100988730B1 (en) Method of Atomic Layer Deposition for Silicon Nitride
JP3847928B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP3006776B2 (en) Vapor growth method
KR100273227B1 (en) Method for preventing align substance during cvd process
KR930002838Y1 (en) Apparatus for low pressure chemical vapor deposition
CN111876749A (en) Method for improving thickness difference of silicon wafer film in furnace tube process

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090828

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee