JP2000219596A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JP2000219596A
JP2000219596A JP11021101A JP2110199A JP2000219596A JP 2000219596 A JP2000219596 A JP 2000219596A JP 11021101 A JP11021101 A JP 11021101A JP 2110199 A JP2110199 A JP 2110199A JP 2000219596 A JP2000219596 A JP 2000219596A
Authority
JP
Japan
Prior art keywords
growth
raw material
source
vapor phase
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11021101A
Other languages
Japanese (ja)
Other versions
JP4368443B2 (en
Inventor
Satoshi Aramaki
聡 荒巻
Masashi Nakamura
正志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP02110199A priority Critical patent/JP4368443B2/en
Publication of JP2000219596A publication Critical patent/JP2000219596A/en
Application granted granted Critical
Publication of JP4368443B2 publication Critical patent/JP4368443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vapor growth method by which a vapor growth film having an intended impurity distribution and an intended composition can be grown with good reproducibility. SOLUTION: The equipment for this method is provided with: (a) plural gaseous raw material sources 11, 12 and 13; (b) plural raw material pipelines 21, 22 and 23, one end of each of which is connected to the corresponding one of the gaseous raw material sources 11, 12 and 13; and (c) switching valves 31, 32, 33, 41, 42 and 43, each of which is connected to the other end of the corresponding one of the raw material pipelines 21, 22 and 23 and is used for switching the gaseous raw material supply to a growth chamber 60 and that to an evacuation system 70 from each other. The method using this equipment comprises (d) introducing gaseous raw materials into the growth chamber 60 through the raw material pipelines 21, 22 and 23 and the switching valves 31, 32, 33, 41, 42 and 43, to initiate vapor growth of a film and to perform the objective vapor growth, wherein (e) the vapor growth is initiated after at least one gaseous raw material is allowed to flow through the corresponding one of the raw material pipelines 21, 22 and 23 in an amount larger than that used when the vapor growth is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】半導体装置に用いられる半導体薄
膜のエピタキシャル成長などに用いられる気相成長法に
関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a vapor phase growth method used for epitaxial growth of a semiconductor thin film used for a semiconductor device.

【0002】[0002]

【従来の技術】気相成長法として、有機金属化合物のガ
スを原料として用いるMOCVD法は、III-V族化合物
半導体などのエピタキシャル膜(以下、エピ膜ともい
う)の成長に多く用いられている。
2. Description of the Related Art As a vapor phase growth method, an MOCVD method using an organic metal compound gas as a raw material is widely used for growing an epitaxial film (hereinafter also referred to as an epi film) of a III-V compound semiconductor or the like. .

【0003】従来例として、図1に示す気相成長装置に
よるGaAs基板上へのn型GaAsエピ膜の気相成長
を説明する。n型GaAsの原料ガスは、Ga源として
はトリメチルガリウムなどのアルキルガリウムを、As
源としてはアルシンを、不純物ドーピングのためのSi
源としてはシラン化合物を用いる。これらの原料ガス
は、それぞれの原料ガス源11,12,13から、原料
配管21,22,23、成長室側バルブ31,32,3
3を経て、各原料ガスが混合されて、成長室60に導入
される。原料ガスの導入により成長を開始し、成長室6
0内のGaAs基板61上にn型GaAsエピ膜が成長
する。この際の原料ガス源11,12,13からの流量
は、流量制御装置51,52,53により設定される。
As a conventional example, a vapor phase growth of an n-type GaAs epi film on a GaAs substrate by the vapor phase growth apparatus shown in FIG. 1 will be described. As a source gas of n-type GaAs, an alkyl gallium such as trimethyl gallium is used as a Ga source;
Arsine as the source, Si for impurity doping
A silane compound is used as a source. These source gases are supplied from source gas sources 11, 12, and 13 to source pipes 21, 22, 23 and growth chamber side valves 31, 32, 3 respectively.
After 3, the source gases are mixed and introduced into the growth chamber 60. Growth is started by introduction of raw material gas, and growth chamber 6
An n-type GaAs epitaxial film is grown on the GaAs substrate 61 in the area 0. At this time, the flow rates from the source gas sources 11, 12, 13 are set by flow control devices 51, 52, 53.

【0004】エピ膜成長時の不純物による汚染を防ぎ、
安定した成長を行うために、通常、成長前に水素ガスで
置換した原料配管21,22,23および流量制御装置
51,52,53に、成長時と同流量の原料ガスを流
し、成長室側バルブ31,32,33を閉じ、排気側バ
ルブ41,42,43を開くことにより、これらのガス
を排気系70へバイパスしている。そして、バルブを切
り替え、成長室側バルブ31,32,33を開き、排気
側バルブ41,42,43を閉じることにより、原料ガ
スを成長室60側に切り替え、成長を開始する。
[0004] Prevention of contamination due to impurities at the time of epitaxial film growth,
In order to perform stable growth, the same flow rate of the raw material gas as during the growth is supplied to the raw material pipes 21, 22, 23 and the flow rate control devices 51, 52, 53, which are usually replaced with hydrogen gas before the growth. These gases are bypassed to the exhaust system 70 by closing the valves 31, 32, 33 and opening the exhaust valves 41, 42, 43. Then, the source gas is switched to the growth chamber 60 side by switching the valve, opening the growth chamber side valves 31, 32, 33 and closing the exhaust side valves 41, 42, 43 to start the growth.

【0005】[0005]

【発明が解決しようとする課題】しかし、成長膜の組成
が目的のものにならないため、必要とする組成比や不純
物ドーピングプロファイルが得られない場合がある。特
に、エピ膜中の不純物のドーピング濃度や、その深さ方
向の分布は、半導体装置の性能・特性に大きな影響を与
える。この不純物ドーピングは、その原料ガスの流量に
より制御しているが、一定流量の原料ガスを流しても同
一の不純物濃度分布が得られないことがある。
However, since the composition of the grown film is not the desired one, the required composition ratio or impurity doping profile may not be obtained. In particular, the doping concentration of the impurity in the epitaxial film and the distribution in the depth direction greatly affect the performance and characteristics of the semiconductor device. Although the impurity doping is controlled by the flow rate of the source gas, the same impurity concentration distribution may not be obtained even when a constant flow rate of the source gas is supplied.

【0006】本発明の目的は、目的とする不純物分布や
組成比の気相成長膜を再現性よく成長させる気相成長方
法を提供するものである。
An object of the present invention is to provide a vapor phase growth method for reproducibly growing a vapor phase growth film having a target impurity distribution or composition ratio.

【0007】[0007]

【課題を解決するための手段】本発明者は、このような
課題を詳細に検討したところ、原料ガスの配管内壁への
吸着などにより、成長時の原料ガス流量に比べて配管の
容積が大きい場合などに、再現性が低下していることを
見いだした。そこで、気相成長開始時に原料ガスを確実
に供給する方法を検討し、その結果、本発明に想到し
た。
The inventor of the present invention has studied these problems in detail, and found that the volume of the pipe is larger than the flow rate of the source gas during growth due to the adsorption of the source gas to the inner wall of the pipe. In some cases, the reproducibility was found to be reduced. Therefore, a method for surely supplying a source gas at the start of vapor phase growth was studied, and as a result, the present invention was reached.

【0008】本発明による気相成長方法は、(a) 複数の
原料ガス源と、(b) それぞれのガス源に一端が接続され
た複数の原料配管と、(c) それぞれの原料配管の他端が
接続され、原料ガスを成長室と排気系に切り替える切り
替えバルブとを有する装置を用い、(d) 原料配管と切り
替えバルブを介して原料ガスを成長室に導入することで
気相成長を開始し、気相成長を行う気相成長方法におい
て、(e) 気相成長時よりも多い流量の原料ガスを少なく
とも1つの原料配管に流した後に気相成長を開始するも
のである。
The vapor phase growth method according to the present invention comprises: (a) a plurality of source gas sources; (b) a plurality of source pipes having one end connected to each of the gas sources; (D) Start vapor phase growth by introducing the source gas into the growth chamber through the source pipe and the switching valve, using a device that has an end connected and a switching valve that switches the source gas between the growth chamber and the exhaust system. In the vapor phase growth method for performing vapor phase growth, (e) the vapor phase growth is started after a flow rate of the source gas larger than that during the vapor phase growth is passed through at least one source pipe.

【0009】特に、成長開始前に原料配管を真空とし、
その後、気相成長時よりも多い流量の原料ガスを少なく
とも1つの原料配管に流した後に成長を開始することが
好ましい。
In particular, before starting the growth, the raw material piping is evacuated,
Thereafter, it is preferable to start the growth after flowing a source gas having a flow rate larger than that during the vapor phase growth into at least one source pipe.

【0010】[0010]

【発明の作用・効果】気相成長時の流量よりも多い流量
の原料ガスを原料配管に流した後に成長を開始するもの
であるため、原料ガス成分の配管内への吸着による原料
ガス濃度低下の影響を受けることなく、また、原料配管
中を原料ガスで置換する時間が短時間であっても、成長
時に所定の原料ガス濃度に設定できる。このため、短い
作業時間で、再現性のよい気相成長が可能となる。
Since the growth is started after a source gas having a flow rate larger than the flow rate during the vapor phase growth is supplied to the source pipe, the source gas concentration decreases due to the adsorption of the source gas component into the pipe. And the concentration of the source gas can be set at the time of growth even when the time for replacing the source pipe with the source gas is short. For this reason, vapor phase growth with good reproducibility is possible in a short working time.

【0011】[0011]

【好ましい実施の形態】[原料ガス源] 本発明における
原料ガス源は、気相成長の原料となる原料ガスを供給す
る手段であり、ガスボンベ、液状の原料を気化させるバ
ブラーなどが用いられる。通常、成長させる化合物に含
まれる元素に対応した数の原料ガス源が用意される。II
I-V族化合物半導体薄膜を成長させる場合には、薄膜の
特性を向上するため、III族元素源としてアルキル化金
属などの有機金属化合物を用いることが好ましい。ま
た、半導体膜を成長する場合には、Si、Ga、In、As、P
などの半導体を構成する元素と、ドーパントといわれる
半導体型を制御する微量の元素が用いられる。
[Raw material gas source] The raw material gas source in the present invention is a means for supplying a raw material gas to be a raw material for vapor phase growth, and a gas cylinder, a bubbler for vaporizing a liquid raw material, or the like is used. Usually, a number of source gas sources corresponding to the elements contained in the compound to be grown are prepared. II
When a group IV compound semiconductor thin film is grown, it is preferable to use an organic metal compound such as an alkylated metal as a group III element source in order to improve the characteristics of the thin film. When a semiconductor film is grown, Si, Ga, In, As, P
For example, an element constituting a semiconductor, such as, and a trace element for controlling a semiconductor type called a dopant are used.

【0012】[原料配管] 本発明における原料配管は、
原料ガス源と切り替えバルブの間の配管であり、原料ガ
ス源以降にある流量制御装置(マスフローコントロー
ラ)、水素導入バルブなどの配管部分をも含む。通常
は、原料配管の数は、原料ガス源の数と同じである。
[Raw material piping] The raw material piping according to the present invention comprises:
This is a pipe between the source gas source and the switching valve, and also includes a pipe part such as a flow control device (mass flow controller) and a hydrogen introduction valve provided after the source gas source. Usually, the number of source pipes is the same as the number of source gas sources.

【0013】[切り替えバルブ] 本発明における切り替
えバルブは、原料ガスを成長室と排気系に切り替えるこ
とにより、原料の供給により気相成長を制御する手段で
ある。切り替えバルブは、原料配管に対応して(したが
って、通常は原料元素に対応して)設けられており、主
成分となる原料ガスを切り替えることで気相成長を開始
・停止できる。切り替えバルブは、通常、成長室の近傍
に設けられており、これにより、成長の開始・停止によ
らず、原料ガス源から一定状態で原料を安定に供給する
ことができる。切り替えバルブは、成長室へのバルブ
と、排気系へのバルブとの2つを組み合わせて構成され
ていてもよい。
[Switching Valve] The switching valve in the present invention is a means for controlling the vapor phase growth by supplying the raw material by switching the raw material gas to the growth chamber and the exhaust system. The switching valve is provided corresponding to the raw material piping (and thus usually corresponding to the raw material element), and can start / stop the vapor phase growth by switching the raw material gas as the main component. The switching valve is usually provided in the vicinity of the growth chamber, so that the source gas can be stably supplied from the source gas source in a constant state regardless of the start / stop of the growth. The switching valve may be configured by combining two of a valve to the growth chamber and a valve to the exhaust system.

【0014】切り替えバブルから成長室に切り替えられ
た原料ガスは、通常、混合された後に成長室に導入され
る。半導体エピタキシャル成長の場合、成長室には、加
熱された基板が配置される。成長時には成長室内から排
気系へ、原料ガスの反応生成物や未反応の原料ガスが導
出される。この導出のために排気系が設けられている。
排気系は、通常、真空ポンプなどにより排気ガスを吸引
している。気相成長開始前には、原料ガスは成長室を経
由せずに切り替えバルブから直接に排気系へ吸引され
る。
The source gas switched from the switching bubble to the growth chamber is usually introduced into the growth chamber after being mixed. In the case of semiconductor epitaxial growth, a heated substrate is placed in a growth chamber. During growth, reaction products of the source gas and unreacted source gas are led out of the growth chamber to the exhaust system. An exhaust system is provided for this derivation.
The exhaust system normally sucks exhaust gas by a vacuum pump or the like. Before the start of the vapor phase growth, the source gas is sucked directly from the switching valve into the exhaust system without passing through the growth chamber.

【0015】[成長開始直前の原料配管流量] 本発明
は、気相成長時よりも多い流量の原料ガスを原料配管に
流した後に気相成長を開始するものである。この流量と
しては、充分に多い流量、具体的には、成長時流量の5
倍以上、特には、10倍から100倍が好ましい。特
に、原料配管内の容量の1.5倍以上、特には2倍から
10倍の容積となる時間流した後、成長時の流量に設定
して、すぐに気相成長を開始することが好ましい。
[Material Pipe Flow Rate Immediately Before the Start of Growth] In the present invention, the vapor phase growth is started after a flow rate of the source gas larger than that at the time of vapor phase growth is passed through the material pipe. As this flow rate, a sufficiently large flow rate, specifically, the growth flow rate of 5
More than twice, particularly preferably 10 to 100 times. In particular, it is preferable that after flowing for 1.5 hours or more, particularly 2 to 10 times the volume of the raw material pipe, the flow rate during growth is set and the vapor phase growth is started immediately. .

【0016】対象となる原料配管としては、ドーパント
などの低濃度でかつ流量が少ない配管での効果が大き
い。例えば、原料ガス濃度が1000ppm以下、特には
100ppm以下であり、原料配管内の容積を成長時のガ
ス流量で割った値が10分以上、特には20〜2000
分である場合に効果が顕著である。
As a target raw material pipe, a pipe having a low concentration of a dopant or the like and a small flow rate has a large effect. For example, the raw material gas concentration is 1000 ppm or less, particularly 100 ppm or less, and the value obtained by dividing the volume in the raw material pipe by the gas flow rate during growth is 10 minutes or more, particularly 20 to 2,000.
The effect is remarkable when it is minutes.

【0017】気相成長前に、多い流量の原料ガスを原料
配管に流す方法としては、原料配管の流量を制御してい
るマスフローコントローラの流量値の設定を変更するこ
とが容易であるが、原料ガス源からの配管を別に設けて
流量を増すなどの方法もある。
As a method of flowing a large flow rate of the source gas into the source pipe before the vapor phase growth, it is easy to change the setting of the flow rate value of the mass flow controller which controls the flow rate of the source pipe. There is also a method of separately providing a pipe from the gas source to increase the flow rate.

【0018】[原料配管の真空化] 本発明では、成長開
始前に原料配管を真空とし、その後、特にはその直後
に、気相成長時よりも多い流量の原料ガスを原料配管に
流した後に成長を開始することが好ましい。原料配管を
真空とした場合の管内の圧力は、成長時の2分の1以
下、特には10分の1以下とすることが好ましい。
[Evacuation of Raw Material Piping] In the present invention, the raw material piping is evacuated before the start of growth, and thereafter, particularly immediately after the source gas is flowed through the raw material piping at a higher flow rate than during vapor phase growth. It is preferred to start growing. When the source pipe is evacuated, the pressure in the pipe is preferably 以下 or less, particularly preferably 1/10 or less during growth.

【0019】排気系が真空ポンプなどの減圧手段を備え
ている場合、原料ガス源からのガス供給をなくし、切り
替えバルブを介して排気することで、原料配管を真空に
することで、簡便に原料配管を真空にできる。また、排
気系とは別に真空ポンプなどの減圧手段を設けて原料配
管を真空としてもよい。
When the exhaust system is provided with a decompression means such as a vacuum pump, the supply of gas from the source gas source is eliminated, and exhaust is performed through a switching valve, thereby making the source pipe vacuum, thereby simplifying the source material. Piping can be evacuated. Further, a pressure reducing means such as a vacuum pump may be provided separately from the exhaust system to evacuate the raw material piping.

【0020】[0020]

【実施例】以下、減圧MOCVD法によりGaAs基板
上のn型GaAsエピタキシャル層を気相成長する場合
を実施例として、本発明を具体的に説明するが、本発明
はこの実施例に何ら限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described by way of an example in which an n-type GaAs epitaxial layer on a GaAs substrate is vapor-phase grown by a reduced pressure MOCVD method, but the present invention is not limited to this example. Not something.

【0021】先ず、図1を用いて減圧MOCVD法によ
る気相成長を説明する。原料化合物としては、トリメチ
ルガリウム、アルシン、ジシランを用いた。トリメチル
ガリウム(Ga(CH)は、バブラー11から成
長時には500cc/分の流量が供給される。バブラー
11では、トリメチルガリウムが密閉容器に収められ、
水素でバブリングされる。供給される流量は、バブラー
11へ供給される水素量を流量制御装置51で制御する
ことで設定している。
First, vapor phase growth by the reduced pressure MOCVD method will be described with reference to FIG. As a raw material compound, trimethylgallium, arsine, and disilane were used. Trimethylgallium (Ga (CH 3 ) 3 ) is supplied from the bubbler 11 at a flow rate of 500 cc / min during growth. In bubbler 11, trimethylgallium is stored in a closed container,
Bubble with hydrogen. The supplied flow rate is set by controlling the amount of hydrogen supplied to the bubbler 11 by the flow control device 51.

【0022】アルシン(AsH)は、100%濃度の
ガスがアルシンボンベ12から供給され、成長時の流量
は500cc/分である。ジシラン(Si)は、
水素で10ppmに希釈したガスがジシランボンベ13
から供給され、成長時の流量は4cc/分である。アル
シンとジシランの流量は、原料配管22,23の途中に
設けられた流量制御装置52,53で設定している。原
料ガスは、原料配管21,22,23を経て、成長室側
バルブ31,32,33および排気側バルブ41,4
2,43の一端にそれぞれ供給される。原料配管21,
22,23は、それぞれ長さ6m、内径4.5mmであ
り、内容積は約100ccである。
Arsine (AsH 3 ) is supplied from the arsine cylinder 12 at a gas concentration of 100%, and the flow rate during growth is 500 cc / min. Disilane (Si 2 H 6 )
The gas diluted to 10 ppm with hydrogen was used for disilane cylinder 13
And the flow rate during growth is 4 cc / min. The flow rates of arsine and disilane are set by flow control devices 52 and 53 provided in the middle of the raw material pipes 22 and 23. The source gas passes through source pipes 21, 22, and 23, and grow chamber side valves 31, 32, 33 and exhaust side valves 41, 4.
2 and 43, respectively. Raw material piping 21,
Each of 22, 23 has a length of 6 m, an inner diameter of 4.5 mm, and an internal volume of about 100 cc.

【0023】成長室側バルブ31,32,33を開き、
排気側バルブ41,42,43を閉じることにより、原
料ガスを供給配管62から成長室60に供給することで
成長を開始する。成長室60内には、GaAs基板61
が置かれており、その上にn型GaAsエピ膜を成長す
る。n型GaAsエピ膜は、厚さ0.5μm、不純物濃
度1016/cmを目標とする。GaAs基板61
は、500〜800℃にランプヒータ63で加熱され
る。成長室60内は、20〜100torrの圧力とな
るように排気系70により排気されている。排気系70
は、ロータリーポンプ71で吸引されており、その排気
は除外装置72で処理される。
Opening the growth chamber side valves 31, 32, 33,
By closing the exhaust side valves 41, 42 and 43, the source gas is supplied from the supply pipe 62 to the growth chamber 60 to start the growth. A GaAs substrate 61 is provided in the growth chamber 60.
Is grown thereon, and an n-type GaAs epitaxial film is grown thereon. The target of the n-type GaAs epi film is a thickness of 0.5 μm and an impurity concentration of 10 16 / cm 3 . GaAs substrate 61
Is heated to 500 to 800 ° C. by the lamp heater 63. The inside of the growth chamber 60 is evacuated by the exhaust system 70 to a pressure of 20 to 100 torr. Exhaust system 70
Is sucked by the rotary pump 71, and the exhaust gas is processed by the elimination device 72.

【0024】[成長例1](比較例) 原料配管21,22,23、成長室60内などを水素ガ
スで置換してある状態から、成長室側バルブ31,3
2,33を閉じ、排気側バルブ41,42,43を開く
ことにより原料ガスを排気側に切り替え、気相成長時の
流量で原料ガスを40分間流す。その後、成長室側バル
ブ31,32,33を開き、排気側バルブ41,42,
43を閉じることにより原料ガスを成長室側に切り替え
て、気相成長を開始した。これにより得られたn型Ga
Asエピ膜のドーピングプロファイルを図2に示す。成
長開始当初は目的とする不純物濃度が得られていないこ
とがわかる。
[Growth Example 1] (Comparative Example) From the state in which the raw material pipes 21, 22, 23, the inside of the growth chamber 60, etc. are replaced with hydrogen gas, the growth chamber side valves 31, 3,
The source gases are switched to the exhaust side by closing the exhaust valves 41, 42, and 43, and the source gases are flowed at the flow rate during vapor phase growth for 40 minutes. Thereafter, the growth chamber side valves 31, 32, 33 are opened, and the exhaust side valves 41, 42,
By closing 43, the source gas was switched to the growth chamber side to start vapor phase growth. The n-type Ga obtained by this
FIG. 2 shows the doping profile of the As epi film. It can be seen that the desired impurity concentration was not obtained at the beginning of the growth.

【0025】[成長例2](実施例1) 原料配管21,22,23、成長室60内などを水素ガ
スで置換してある状態から、ジシランボンベ13を閉じ
てジシランガス原料の供給を中止したまま、ジシランガ
スの原料配管23の切り替えバルブである成長室側バル
ブ33を閉じ、排気側バルブ43を開き、排気系70に
より原料配管23内を0.01torrの真空状態にす
る。その後、成長室側バルブ31,32,33を閉じ、
排気側バルブ41,42,43を開いた状態で、ジシラ
ンガスの供給を開始して50cc/分の流量で、また、
他の原料ガスは気相成長時と同じ流量で5分間流す。そ
して、ジシランガスの流量を気相成長時の流量である4
cc/分として、直ちに成長室側バルブ31,32,3
3を開き、排気側バルブ41,42,43を閉じること
により成長を開始した。これにより得られたn型GaA
sエピ膜のドーピングプロファイルを図3に示す。成長
開始当初から目的とする不純物濃度が得られていること
がわかる。
[Growth Example 2] (Example 1) The disilane cylinder 13 was closed and the supply of the disilane gas raw material was stopped in a state where the raw material pipes 21, 22, 23, the inside of the growth chamber 60, and the like were replaced with hydrogen gas. The growth chamber side valve 33, which is a switching valve for the disilane gas source pipe 23, is closed, the exhaust valve 43 is opened, and the exhaust system 70 evacuates the source pipe 23 to 0.01 torr. After that, the growth chamber side valves 31, 32, 33 are closed,
With the exhaust-side valves 41, 42, and 43 opened, the supply of disilane gas was started at a flow rate of 50 cc / min.
Other source gases are flowed at the same flow rate as during vapor phase growth for 5 minutes. Then, the flow rate of the disilane gas is set to 4 which is the flow rate during the vapor phase growth.
cc / min, the growth chamber side valves 31, 32, 3 immediately
3 was opened, and growth was started by closing the exhaust side valves 41, 42, 43. N-type GaAs obtained by this
FIG. 3 shows the doping profile of the s epi film. It can be seen that the desired impurity concentration was obtained from the beginning of the growth.

【0026】[成長例3](実施例2) 原料配管21,22,23、成長室60内などを水素ガ
スで置換してある状態から、成長室側バルブ31,3
2,33を閉じ、排気側バルブ41,42,43を開い
た状態で、ジシランガスの供給を開始して50cc/分
の流量で、また、他の原料ガスは気相成長時と同じ流量
で5分間流す。そして、ジシランガスの流量を気相成長
時の流量である4cc/分として、直ちに成長室側バル
ブ31,32,33を開き、排気側バルブ41,42,
43を閉じることにより成長を開始した。これにより得
られたn型GaAsエピ膜のドーピングプロファイルは
図3と同じであった。成長開始当初から目的とする不純
物濃度が得られていることがわかる。
[Growth Example 3] (Embodiment 2) From the state in which the raw material pipes 21, 22, 23, the inside of the growth chamber 60 and the like are replaced with hydrogen gas, the growth chamber side valves 31, 3 are changed.
With the exhaust valves 41, 42, and 43 closed, the supply of disilane gas was started at a flow rate of 50 cc / min. Pour for minutes. Then, the flow rate of the disilane gas was set to 4 cc / min, which is the flow rate during the vapor phase growth, and the growth chamber valves 31, 32, 33 were immediately opened, and the exhaust valves 41, 42,
Growth was started by closing 43. The doping profile of the n-type GaAs epi film thus obtained was the same as in FIG. It can be seen that the desired impurity concentration was obtained from the beginning of the growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例で用いた気相成長装置を説明するため
の図
FIG. 1 is a diagram for explaining a vapor phase growth apparatus used in an embodiment.

【図2】 成長例1(比較例)によるエピ膜のドーピン
グプロファイルを示す図
FIG. 2 is a diagram showing a doping profile of an epitaxial film according to a growth example 1 (comparative example).

【図3】 成長例2、3(実施例)によるエピ膜のドー
ピングプロファイルを示す図
FIG. 3 is a view showing a doping profile of an epitaxial film according to growth examples 2 and 3 (example).

【符号の説明】[Explanation of symbols]

11 バブラー 12 アルシンボンベ 13 ジシランボンベ 21,22,23 原料配管 31,32,33 成長室側バルブ 41,42,43 排気側バルブ 51,52,53 流量制御装置 60 成長室 61 GaAs基板 62 供給配管 63 ランプヒータ 70 排気系 71 ロータリーポンプ 72 除外装置 REFERENCE SIGNS LIST 11 bubbler 12 arsine cylinder 13 disilane cylinder 21, 22, 23 raw material pipe 31, 32, 33 growth chamber side valve 41, 42, 43 exhaust side valve 51, 52, 53 flow rate control device 60 growth chamber 61 GaAs substrate 62 supply pipe 63 Lamp heater 70 Exhaust system 71 Rotary pump 72 Excluding device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a) 複数の原料ガス源と、(b) それぞれの
ガス源に一端が接続された複数の原料配管と、(c) それ
ぞれの原料配管の他端が接続され、原料ガスを成長室と
排気系に切り替える切り替えバルブとを有する装置を用
い、(d) 原料配管と切り替えバルブを介して原料ガスを
成長室に導入することで気相成長を開始し、気相成長を
行う気相成長方法において、(e) 気相成長時よりも多い
流量の原料ガスを少なくとも1つの原料配管に流した後
に気相成長を開始する気相成長方法。
(A) a plurality of source gas sources; (b) a plurality of source pipes having one end connected to each gas source; and (c) the other end of each source pipe is connected. Using a device having a switching valve for switching between a growth chamber and an exhaust system, (d) starting the vapor phase growth by introducing the source gas into the growth chamber via the source pipe and the switching valve, and performing the vapor phase growth In the vapor phase growth method, (e) a vapor phase growth method in which a source gas having a larger flow rate than during the vapor phase growth is caused to flow through at least one source pipe, and then the vapor phase growth is started.
【請求項2】 請求項1記載の気相成長方法において、 成長開始前に原料配管を真空とし、その後、気相成長時
よりも多い流量の原料ガスを少なくとも1つの原料配管
に流した後に成長を開始する請求項1記載の気相成長方
法。
2. The vapor phase growth method according to claim 1, wherein the source pipe is evacuated before the start of growth, and then the source gas is supplied to the at least one source pipe at a flow rate larger than that during the vapor phase growth. 2. The vapor phase growth method according to claim 1, wherein:
JP02110199A 1999-01-29 1999-01-29 Vapor growth method Expired - Fee Related JP4368443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02110199A JP4368443B2 (en) 1999-01-29 1999-01-29 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02110199A JP4368443B2 (en) 1999-01-29 1999-01-29 Vapor growth method

Publications (2)

Publication Number Publication Date
JP2000219596A true JP2000219596A (en) 2000-08-08
JP4368443B2 JP4368443B2 (en) 2009-11-18

Family

ID=12045490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02110199A Expired - Fee Related JP4368443B2 (en) 1999-01-29 1999-01-29 Vapor growth method

Country Status (1)

Country Link
JP (1) JP4368443B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118260A1 (en) * 2012-02-08 2013-08-15 岩谷産業株式会社 Method for treating inner surface of chlorine trifluoride supply path in device using chlorine trifluoride
CN113174637A (en) * 2021-04-26 2021-07-27 山东天岳先进科技股份有限公司 Gas supply device for crystal growth furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118260A1 (en) * 2012-02-08 2013-08-15 岩谷産業株式会社 Method for treating inner surface of chlorine trifluoride supply path in device using chlorine trifluoride
CN104040699A (en) * 2012-02-08 2014-09-10 岩谷产业株式会社 Method for treating inner surface of chlorine trifluoride supply path in device using chlorine trifluoride
US9416445B2 (en) 2012-02-08 2016-08-16 Iwatani Corporation Method for treating inner surface of chlorine trifluoride supply passage in apparatus using chlorine trifluoride
CN113174637A (en) * 2021-04-26 2021-07-27 山东天岳先进科技股份有限公司 Gas supply device for crystal growth furnace

Also Published As

Publication number Publication date
JP4368443B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US7368368B2 (en) Multi-chamber MOCVD growth apparatus for high performance/high throughput
JP2020096183A (en) Method of forming device structure using selective deposition of gallium nitride, and system for the same
US5637146A (en) Method for the growth of nitride based semiconductors and its apparatus
US20110244663A1 (en) Forming a compound-nitride structure that includes a nucleation layer
JP2008531458A (en) Single-step high-temperature nucleation method for lattice-mismatched substrates
US20110081771A1 (en) Multichamber split processes for led manufacturing
KR101598913B1 (en) Vapor growth device and vapor growth method
EP0196170B1 (en) Organic metallic compound pyrolysis vapor growth apparatus
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPH069257B2 (en) Method for producing gallium nitride compound semiconductor light emitting device
JP4368443B2 (en) Vapor growth method
EP1374282A1 (en) Hybrid deposition system & methods
JPH03203228A (en) Semiinsulating garium arsenic formation
JPS60131968A (en) Vapor growth deposition device
JP2757944B2 (en) Thin film forming equipment
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPH0323624A (en) Method and apparatus for vapor growth
JPH0594949A (en) Semiconductor vapor growth device
JP2681939B2 (en) Low pressure MOCVD equipment
JP3006776B2 (en) Vapor growth method
JPH04240198A (en) Vapor phase growth method for thin film
JP2000351694A (en) Method of vapor-phase growth of mixed crystal layer and apparatus therefor
JPS59170000A (en) Device for crystal growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees