JPH0120214B2 - - Google Patents

Info

Publication number
JPH0120214B2
JPH0120214B2 JP56104800A JP10480081A JPH0120214B2 JP H0120214 B2 JPH0120214 B2 JP H0120214B2 JP 56104800 A JP56104800 A JP 56104800A JP 10480081 A JP10480081 A JP 10480081A JP H0120214 B2 JPH0120214 B2 JP H0120214B2
Authority
JP
Japan
Prior art keywords
rare earth
electrolyte
earth concentrate
powder
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56104800A
Other languages
Japanese (ja)
Other versions
JPS586947A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP56104800A priority Critical patent/JPS586947A/en
Priority to GB08219010A priority patent/GB2102402B/en
Priority to DE19823224856 priority patent/DE3224856A1/en
Priority to FR8211695A priority patent/FR2508931B1/en
Priority to IT48750/82A priority patent/IT1148195B/en
Publication of JPS586947A publication Critical patent/JPS586947A/en
Publication of JPH0120214B2 publication Critical patent/JPH0120214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/271Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/282Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/221Remelting metals with heating by wave energy or particle radiation by electromagnetic waves, e.g. by gas discharge lamps
    • C22B9/225Remelting metals with heating by wave energy or particle radiation by electromagnetic waves, e.g. by gas discharge lamps by microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 本発明は、Ce、Nd、Pr、La、Gd及びSm等の
希土類金属の製錬に於て、従来その原鉱として用
いられている希土類元素のリン酸塩鉱物
(RPO4、Rは希土類元素、以下同じ)である塊
状モナズ石またはモナズ砂(Monajate、以下モ
ナザイトまたはRPO4と言う)、または弗化炭素
塩鉱物(RFCO3)であるバストネサイト
(Bastnaesite、以下バストネサイトまたは
RFCO3と言う)、その他ゼノタイム(Xenotime、
主としてリン酸イツトリウム鉱、YPO4)ガドリ
ナイト等の内の一種の精鉱粉、または一種以上を
含む混合精鉱粉を物理化学的処理方法により処理
して水酸化希土や塩化希土を得る処理方法、また
は工程の改良乃至は新規な処理方法、一種の物理
的又は電気的及び化学的処理方法に関するもの
で、処理工程を簡単化し、省エネルギ化及び省資
源的で使用薬品の種類及び量が少なく、従つて安
価な処理方法であつて、また精鉱粉をバツチ的及
び連続的にも処理が可能で、また例えばモナザイ
トとバストネサイトとの混合精鉱粉の還元処理に
も好適に適用できる等精鉱原料粉の種類に左右さ
れることなく処理を行なうことができ、また本発
明のより好ましい実施の態様によればさらに水酸
化希土(R(OH3))や塩化希土(RCl3)への処
理効率が高い丈でなく、処理操作、操業に伴つて
発生する有害液や気体の発生量を極めて少なくす
ることができて大型公害処理装置を必要としない
等極めて有用な処理方法、即ち希土精鉱粉(モナ
ザイト、バストネサイト等)の分解還元法であ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rare earth phosphate minerals (which have been conventionally used as raw ores in the smelting of rare earth metals such as Ce, Nd, Pr, La, Gd, and Sm). RPO 4 , R is a rare earth element, hereinafter referred to as massive monazite or monazite (monazite or RPO 4 ); or fluorocarbon salt mineral (RFCO 3 ), bastnaesite (hereinafter referred to as monazite or RPO 4); Bastnaesite or
RFCO 3 ), other Xenotime (Xenotime,
Processing to obtain rare earth hydroxide or rare earth chloride by treating one type of concentrate powder, mainly yttrium phosphate, YPO4 ) gadolinite, etc., or a mixed concentrate powder containing one or more types, using a physicochemical treatment method. It relates to an improved method or process or a new treatment method, a kind of physical or electrical and chemical treatment method, which simplifies the treatment process, saves energy and resources, and reduces the types and amounts of chemicals used. It is a low-cost treatment method, and it is also possible to treat concentrate powder both batchwise and continuously, and is also suitable for reduction treatment of mixed concentrate powder of monazite and bastnaesite, for example. The treatment can be carried out regardless of the type of concentrate raw material powder, and according to a more preferred embodiment of the present invention, rare earth hydroxide (R(OH 3 )) or rare earth chloride ( RCl 3 ) is an extremely useful treatment that has high treatment efficiency and can extremely reduce the amount of harmful liquids and gases generated during treatment operations and operations, eliminating the need for large-scale pollution treatment equipment. This method is a decomposition and reduction method of rare earth concentrate powder (monazite, bastnasite, etc.).

希土類元素精鉱の化学的処理法としては、アー
ク炉法や塩化処理法のような乾式法が考えられて
はいるが、一般的には湿式法の硫酸処理方法が広
く用いられ、また一部に於てはアルカリ(苛性ソ
ーダ)法が採用されている。
As a chemical treatment method for rare earth element concentrates, dry methods such as arc furnace method and chlorination treatment method are considered, but wet method sulfuric acid treatment method is generally widely used, and some In this case, the alkaline (caustic soda) method is used.

しかして、上記硫酸処理法、及びアルカリ法に
於ては、93%硫酸の如き濃硫酸、及び45%
NaOHの如き強アルカリの使用が不可欠である
だけでなく、該酸及びアルカリによる処理を前者
に於ては200〜250℃、また後者に於ては150℃前
後の高温で数時間前後維持して処理を行なう必要
があり、このため種々の問題があつた。
However, in the above sulfuric acid treatment method and alkaline method, concentrated sulfuric acid such as 93% sulfuric acid and 45%
Not only is it essential to use a strong alkali such as NaOH, but the treatment with the acid and alkali is maintained at a high temperature of 200 to 250°C for the former, and around 150°C for the latter for several hours. It was necessary to carry out processing, which caused various problems.

例えば、モナザイトを硫酸処理法で処理する際
には大量のSOxの発生が避けられず、このため近
時アルカリ法が多用されているようであるが、大
量のアルカリミストの発生と言う問題があり、他
方バストネサイトには前述の如きアルカリ法は適
用できず、このため硫酸処理法に依存することに
なるが、大量のSOx、及びHFが発生するため、
大型廃ガス処理装置の設置が必須で、省エネルギ
及び省資源的にも問題があるだけでなく、希土類
金属を高価格のものとしていた。
For example, when treating monazite with a sulfuric acid treatment method, the generation of a large amount of SOx is unavoidable, and for this reason, the alkaline method seems to be frequently used these days, but it has the problem of generating a large amount of alkali mist. On the other hand, the above-mentioned alkaline method cannot be applied to bastnaesite, so it relies on the sulfuric acid treatment method, which generates large amounts of SOx and HF.
The installation of large-scale waste gas treatment equipment is essential, which not only poses problems in terms of energy and resource conservation, but also makes rare earth metals expensive.

希土類元素の精鉱(粉)としては、モナザイト
系と、バストネサイト系とが夫々別個に産出採取
される場合が少なくないものゝ、例えば中国白雲
鉱山より産出する希土含有鉱石の如く、モナザイ
ト系とバストネサイト系の混合精鉱(モナザイト
約40%、バストネサイト約60%)として得られる
場合もあり、このような混合精鉱の場合は、廃ガ
ス処理が大層なものとなる硫酸処理法を避けて、
アルカリ法を適用したとすると、該アルカリ法は
バストネサイトに対して殆んど無効であるから、
バストネサイト系の精鉱は無駄となり、希土類元
素の収率が低いものになり、大型高価な公害処理
装置等が必要でも硫酸処理法による外はなく種々
の問題があつた。
As concentrates (powders) of rare earth elements, monazite and bastnasite are often produced and collected separately. In some cases, it is obtained as a mixed concentrate of monazite and bastnaesite (approximately 40% monazite and 60% bastnasite), and in the case of such a mixed concentrate, sulfuric acid, which requires extensive waste gas treatment. Avoid processing methods,
If an alkaline method is applied, the alkaline method is almost ineffective against bastnaesite.
The bastnaesite concentrate was wasted, the yield of rare earth elements was low, and even though large and expensive pollution treatment equipment was required, sulfuric acid treatment was the only method, which caused various problems.

本発明は、叙上の如き点に鑑みて提案されるも
ので、希土類元素含有鉱石粉、または好ましくは
希土類元素の精鉱粉を、適宜の高濃度の、又は濃
度数10%前後以下の従来の酸、アルカリ法による
化学処理法に於て使用される酸、アルカリに比べ
て、必要に応じ低濃度の、より好ましくは希土類
化合物を分解・還元するのに充分な量の電解質を
含有している限度において低必要濃度の無機及び
有機を含む酸、アルカリ、または中性塩電解質の
水溶液と混合させることにより、泥状、泥土状、
泥砂状、泥炭状、泥濘状、泥団子状、或いはまた
泥漿状混合又は混錬物とし、該混合又は混錬物に
高周波電力を供給することにより加熱すると共に
該混合物又は混錬物中に於て放電を発生せしめ、
前記鉱石又は精鉱粉を放電領域に介在、好ましく
は放電コラムと接触させることにより分解、還元
せしめ、必要に応じて、例えば、トリウム分離の
処理工程等を付加、経由等することがあるも
のゝ、究極的には通常水酸化希土(R(OH)3
として、或いはRCl3、又はR2(SO43のような電
解質の錯塩や複塩とする精錬処理を行なうもの
で、上記水酸化希土等への高周波電力による加
熱、及び放電処理は、種々の条件にもよるが、混
合又は混錬物の全体としての温度を高温度とする
ことも可能であるが、例えば150℃前後又はそれ
以下の低温状態での処理も可能なものであり、以
後の希土類金属化等精錬工程は、例えば前記水酸
化希土の場合塩酸を加わえて酸溶解し、塩化希土
(RCl3)を生成させ、該塩化希土を溶融塩電解し
て粗ミツシユメタルを得る等、または上記水酸化
希土や塩化希土、もしくは希土の複塩や錯塩の段
階で希土類元素の分離を予め行なつておく等の工
程を導入するが、後工程は上述のものゝ外従来公
知の各種の電解法、水素還元法、または金属還元
法等或いはさらにイオン交換樹脂に吸着させて分
離する方法等により金属化等精錬を行なうもので
ある。
The present invention has been proposed in view of the above-mentioned points. Contains an electrolyte at a lower concentration as necessary than the acid or alkali used in the chemical treatment method using the acid or alkali method, and more preferably in an amount sufficient to decompose and reduce the rare earth compound. By mixing with an aqueous solution of an acid, alkali, or neutral salt electrolyte containing inorganic and organic concentrations as low as possible, muddy, sludge-like,
A mixed or kneaded product in the form of mud and sand, peat, mud, mud lumps, or slurry is heated by supplying high-frequency power to the mixed or kneaded product, and in the mixture or kneaded product. to generate a discharge,
The ore or concentrate powder is brought into contact with a discharge region, preferably a discharge column, to decompose and reduce it, and if necessary, a treatment step such as thorium separation may be added or passed through. , ultimately usually rare earth hydroxide (R(OH) 3 )
Or, it is a refining treatment to convert electrolytes such as RCl 3 or R 2 (SO 4 ) 3 into complex salts or double salts. Depending on various conditions, it is possible to raise the overall temperature of the mixed or kneaded product, but it is also possible to process it at a low temperature of around 150°C or lower, for example. In the subsequent refining process such as rare earth metallization, for example, in the case of the rare earth hydroxide, hydrochloric acid is added and acid-dissolved to generate rare earth chloride (RCl 3 ), and the rare earth chloride is electrolyzed with molten salt to produce crude metal. However, the post-process is as described above. Refining such as metallization is carried out by various conventionally known electrolytic methods, hydrogen reduction methods, metal reduction methods, etc., or further methods such as separation by adsorption on an ion exchange resin.

図面第1図は、前記希土鉱石粉(精鉱粉)と電
解質水溶液との混合又は混錬物を加熱すると共
に、前記混合または混錬物中に於て個々局部的
に、また経時分散的に微小な高周波的放電を生ぜ
しめる高周波電力として、前記混合または混錬物
を主として高周波誘導加熱する電力(この電力と
しては、周波数50Hz〜100KHz前後の使用が可能
であるが、好ましくは通常30KHz〜100KHz程度
が用いられ、後述するように例えば40KHzの高周
波電力が用いられる)を使用する場合の実施例説
明図で、1は好ましくは少なくともその内壁面が
耐酸、耐アルカリ等耐食性で、必要に応じて或る
程度の耐圧性を有する密閉可能な処理容器で、被
処理物2の挿入設置及び取出しのための開閉扉1
a及び前記被処理物2の処理設置棚又は台1bを
有する。前記被処理物2は、即ち例えば200〜400
メツシユ前後の如きメツシユサイズの精鉱粉に所
定量の電解質及び之等を混合混錬して均一に混合
された一体状態とするに必要な量、またはそれよ
り少し多い程度の水を添加して混合、混錬し、一
種粘土状又は泥状とした混合物で、高周波誘導加
熱によつては殆んど加熱、加温されない高抵抗材
や絶縁材、例えば陶磁器や合成樹脂等から成る受
皿3に収納して台1b上に設置される。4は容器
1内に設置された、必要に応じて図示しない冷却
手段等を有する高周波誘導加熱コイルで、4aは
その高周波電力源、5は前記電力源4aからの供
給高周波の電力の大きさ等エネルギ、供給時間、
その他間歇供給等の各種の供給態様、オン・オフ
等を制御する制御装置、6は混合被処理物2の加
熱及び放電処理により発生する各種のガス、及び
ミストを適宜、又は常時無害化処理等のために排
気、回収移送する排気手段、7は処理容器1内を
処理反応の促進のため、火災その他の危険防止の
ため、または排出ガス及びミストを公害防止等の
ために処理するに当つて、その処理をし易くする
等のため、或いはまた容器1内を適宜の減圧又は
加圧、加熱又は冷却等の状態とするためにガス等
を供給して雰囲気を調整、制御する手段である。
Figure 1 of the drawing shows heating the mixture or kneading of the rare earth ore powder (recent ore powder) and electrolyte aqueous solution, and heating the mixed or kneaded product individually and locally and over time in the mixed or kneaded product. Electric power for mainly high-frequency induction heating of the mixed or kneaded material (this power can be used at a frequency of about 50 Hz to 100 KHz, but preferably usually 30 KHz to 30 KHz). This is an explanatory diagram of an example in which a high frequency power of about 100 KHz is used, and as described later, for example, a high frequency power of 40 KHz is used. 1 preferably has at least its inner wall surface corrosion resistant such as acid and alkali resistance, and if necessary. It is a sealable processing container having a certain degree of pressure resistance, and has an opening/closing door 1 for inserting, installing, and taking out objects to be processed 2.
a, and a processing installation shelf or stand 1b for the object 2 to be processed. The object to be processed 2 has, for example, 200 to 400
Add and mix the amount of water necessary to mix and knead a predetermined amount of electrolyte and the like into a mesh-sized concentrate powder, such as before and after meshing, to form a uniformly mixed, integrated state, or a slightly larger amount of water. The mixture is kneaded into a kind of clay-like or mud-like mixture, and is stored in a saucer 3 made of a high-resistance material or insulating material, such as ceramics or synthetic resin, which is hardly heated by high-frequency induction heating. and placed on the stand 1b. Reference numeral 4 denotes a high-frequency induction heating coil installed in the container 1 and having a cooling means (not shown) as required, 4a is a high-frequency power source thereof, and 5 is the magnitude of high-frequency power supplied from the power source 4a. energy, supply time,
In addition, there is a control device that controls various supply modes such as intermittent supply, on/off, etc., and 6 is a control device that detoxifies various gases and mist generated by heating and discharging the mixed workpiece 2 as appropriate or constantly. 7 is an exhaust means for exhausting, collecting and transporting the inside of the processing container 1 to promote processing reactions, to prevent fire and other dangers, or to prevent exhaust gas and mist from pollution, etc. This means adjusts and controls the atmosphere by supplying gas or the like in order to facilitate the processing, or to bring the inside of the container 1 into an appropriate state of depressurization or pressurization, heating or cooling.

なお、上記希土精鉱粉と言うと、原鉱石を採
鉱、粉砕して精鉱を得、この粉状精鉱を硅砂等の
除去のために比重選鉱し、次いで鉄鉱石粉除去の
ために電磁選鉱した後の希土の含有量が約60%前
後程度の精鉱粉を指すようであるが、本発明の処
理方法は通常このような希土精鉱粉を処理対象と
して、加熱エネルギ等として消費される高周波電
力の損失を防止するが、例えば上記比重選鉱前の
硅砂、鉄鉱等の含有があつて希土精鉱の含有割合
が少ないものに対しても、処理方法それ自体とし
て有効であるから、上記希土精鉱粉には、例え
ば、不純物の多い上記精鉱段階のもの、例えば粗
精鉱粉をも包含しているものである。
In addition, when talking about rare earth concentrate powder, raw ore is mined and crushed to obtain concentrate, this powder concentrate is subjected to specific gravity beneficiation to remove silica sand, etc., and then electromagnetic to remove iron ore powder. This seems to refer to concentrate powder with a rare earth content of about 60% after beneficiation, but the treatment method of the present invention usually treats such rare earth concentrate powder and uses heating energy etc. Although it prevents the loss of consumed high-frequency power, it is also effective as a treatment method itself, for example, for those that contain silica sand, iron ore, etc. before specific gravity beneficiation, and have a small content ratio of rare earth concentrate. Therefore, the rare earth concentrate powder includes, for example, those in the concentrate stage containing many impurities, such as coarse concentrate powder.

しかして、前記混合被処理物2は、希土精鉱粉
自体が高抵抗体乃至は絶縁体で、かつ高誘電体で
あるが、電解質と水との添加混合により例えば数
Ωcmオーダ前後の抵抗体となつており、高周波誘
導加熱の原理により加熱加温され、混合被処理物
2が約100℃前後またはそれ以上になると、混合
含有水が蒸気化し、また含有気体もガス化する所
から気泡を内部各所に於て生じて外部へ放出する
ようになり、その気泡発生により混合被処理物2
内に於てコイル4高周波電流により生ずるうず電
流が一種の分断された状態となつて、局部的に微
小又は火花放電が全体の各部に分散した状態で、
一見青白状乃至赤色状で点状に発生するようにな
り希土精鉱粉が当該発生の微小放電コラムに曝さ
れ、その高温と介在電解質の作用と相俟つて分解
還元され、その際の使用電解質の種類にもよる
が、上記電解質が例えば苛性ソーダ(NaOH)
の場合、水酸化希土(R(OH)3)を生ずること
になる。即ち混合被処理物2は水が混合、含有さ
れている所から、この水が或る程度残存している
以上、格別の高速、高エネルギ加熱をしなければ
約200℃以上と言うような高温になることはなく、
約100℃前後で、一部の精鉱粉を電解質の種類に
より化学的に酸またはアルカリ溶解または還元す
る状態、またはそれに近い状態にある所、前記微
小又は火花放電の発生によつて精鉱粉が電気的な
放電領域に介在、好ましくは微小又は火花放電の
コラムと接触することにより分解等の化学反応が
促進されるのである。
Although the rare earth concentrate powder itself is a high resistor or an insulator and a high dielectric material, the mixed object 2 has a resistance of about several Ωcm due to the addition and mixing of the electrolyte and water. It is heated using the principle of high-frequency induction heating, and when the mixture to be treated 2 reaches a temperature of around 100℃ or higher, the water contained in the mixture evaporates, and the gas contained therein also gasifies, forming bubbles. is generated in various places inside and released to the outside, and due to the generation of bubbles, the mixture to be processed 2
The eddy current generated by the high-frequency current in the coil 4 is in a kind of disconnected state, and locally minute or spark discharges are dispersed to various parts of the whole.
At first glance, rare earth concentrate powder appears in dots with a bluish-white to red shape, and is exposed to the generated micro-discharge column, where it is decomposed and reduced by the high temperature and the action of the intervening electrolyte, and is then used. Depending on the type of electrolyte, the above electrolyte may be, for example, caustic soda (NaOH).
In this case, rare earth hydroxide (R(OH) 3 ) will be produced. In other words, since the mixed workpiece 2 contains and contains water, as long as this water remains to a certain extent, it will be heated to a high temperature of approximately 200°C or higher unless it is heated at a particularly high speed and with high energy. It will never become
At around 100℃, some of the concentrate powder is chemically dissolved or reduced in acid or alkali depending on the type of electrolyte, or in a state close to it, and the concentrate powder is dissolved by the generation of the minute or spark discharge. is interposed in an electrically discharged region, preferably in contact with a column of micro or spark discharges, thereby promoting chemical reactions such as decomposition.

図面第2図は、前記高周波電力として少くとも
MHzオーダ以上好ましくは300MHz〜300GHz程度
のマイクロ波を使用して前記被処理混合物2を主
として誘電体加熱の原理により加熱すると共に微
小又は火花放電を生ぜしめて精鉱粉の分解、還元
を行なう場合の実施例説明図で、前述第1図と同
一符号を付した部分は同一物又は同一機能のもの
である。3は、例えば4弗化エチレン樹脂等の合
成樹脂やマグネシア等の陶磁器等の誘電体損の少
ない、即ちマイクロ波等によつて殆んど加熱され
ない材料で作成された混合被処理物2を収納する
受皿で、混合被処理物2への高周波照射を均一化
するために形成された台1b上の回転テーブル1
cに載置され、該テーブル1cに対向してマグネ
トロン等の高周波電力放射器8が配置され、前記
放射器8よりの放射高周波を分散均一化させる回
転羽根10が設けられている。また8aは前記高
周波電力放射器8の電源で、9はその制御装置で
あり、放射高周波の電力の大きさ等エネルギ、供
給時間、その他間歇供給等の各種の供給態様、オ
ン、オフ等を制御する。
FIG. 2 of the drawings shows a method in which the mixture to be treated 2 is heated primarily on the principle of dielectric heating using microwaves of at least MHz order or higher, preferably about 300 MHz to 300 GHz, as the high frequency power, and at the same time generates minute or spark discharge. This is an explanatory diagram of an embodiment in which concentrated ore powder is decomposed and reduced, and the parts given the same reference numerals as in FIG. 1 are the same or have the same functions. 3 houses a mixed workpiece 2 made of a material with low dielectric loss, such as a synthetic resin such as tetrafluoroethylene resin or ceramics such as magnesia, that is, a material that is hardly heated by microwaves or the like. A rotary table 1 on a stand 1b is formed to uniformize high-frequency irradiation to the mixed workpiece 2.
A high-frequency power radiator 8 such as a magnetron is disposed opposite the table 1c, and a rotating blade 10 is provided to disperse and uniformize the high-frequency waves radiated from the radiator 8. Further, 8a is a power source for the high-frequency power radiator 8, and 9 is a control device thereof, which controls the energy such as the size of the radiated high-frequency power, supply time, various supply modes such as intermittent supply, on/off, etc. do.

前記高周波電力としては、高周波1〜3GHz前
後の所謂マイクロ波帯が慣用され、マグネトロン
8よりマイクロ波を混合被処理物2に照射する
と、該混合被処理物2は主として誘電体損失によ
つて加熱、加温されると共にチヤージアツプして
電荷を保有するようになり、混合被処理物2内各
所で微小又は火花放電を生ずるようになる。
As the high frequency power, a so-called microwave band with a high frequency of around 1 to 3 GHz is commonly used, and when microwaves are irradiated from the magnetron 8 to the mixed workpiece 2, the mixed workpiece 2 is heated mainly due to dielectric loss. As it is heated, it increases in charge and comes to hold an electric charge, causing minute or spark discharges to occur at various locations within the mixed object 2.

即ち、誘電体加熱により混合被処理物2が加熱
されて約100℃前後またはそれよりも高い温度に
加温保持されると、混合含有水が蒸気化し、また
含有気体もガス化して順次に放出され、格別の高
エネルギ加熱を行なわない以上混合被処理物2は
格別高温となることなく水の蒸発を続けながら、
照射マイクロ波によりチヤージアツプして微小又
は火花放電を生じ、前述の場合と同様に精鉱粉は
分解、還元する。混合被処理物2のマイクロ波に
よる加熱及びチヤージアツプは、希土精鉱粉等が
又希土類化合物が概して高誘電率体であるため効
率良く行なわれ、微小又は火花放電も点状に局部
的に充分発生して、混合被処理物2全体の温度を
高くすることなく、局部的な放電の高温で精鉱粉
の分解、還元が行なわれる。
That is, when the mixed workpiece 2 is heated by dielectric heating and maintained at a temperature of around 100°C or higher, the water contained in the mixture is vaporized, and the gas contained therein is also gasified and sequentially released. As long as no special high-energy heating is performed, the mixed material 2 continues to evaporate water without reaching a particularly high temperature.
The irradiated microwave charges up and generates minute or spark discharge, and the concentrate powder is decomposed and reduced in the same manner as in the previous case. The heating and charge-up of the mixed workpiece 2 by microwaves is carried out efficiently because rare earth concentrate powder, etc. and rare earth compounds are generally high dielectric constant materials, and minute or spark discharges can be locally and sufficiently performed in the form of points. The concentrate powder is decomposed and reduced at the high temperature of local discharge without raising the temperature of the entire mixed object 2.

そして、このことは、前述第1図の場合も同様
であつて、混合被処理物2を全体として高温状態
としないから、粉塵、ガス及び蒸気ミスト等排ガ
ス処理は当然に必要であるが、有害で処理困難な
要処理ミストの発生が少なくて済む利点があり、
後述するように本発明のより好ましい実施例によ
れば、弗素及び弗素系のガス、燐及び燐系のガス
SOx、及び上記液ミストの発生が、仮に600℃前
後又はそれ以上の高温となつても少ない操業条件
を選定することができ、希土精鉱粉の分解、還元
量に対し排気手段6の後段に設けるガス、ミスト
処理装置を、充分小型の、又簡易なものとするこ
とができる。
This is the same in the case shown in Fig. 1 above, and since the mixed object 2 is not brought to a high temperature state as a whole, it is naturally necessary to treat exhaust gas such as dust, gas, and steam mist, but harmful It has the advantage of reducing the amount of mist that is difficult to process and requires treatment.
As described below, according to a more preferred embodiment of the present invention, fluorine and fluorine-based gases, phosphorus and phosphorus-based gases,
It is possible to select operating conditions in which the generation of SOx and the above-mentioned liquid mist is small even if the temperature is around 600℃ or higher, and the latter part of the exhaust means 6 is suitable for the amount of decomposition and reduction of rare earth concentrate powder. The gas and mist treatment device provided in the device can be made sufficiently small and simple.

即ち、電解質として苛性ソーダ(NaOH)等
のアルカリを使用すると、このアルカリにより有
害ガスの発生が或る程度防止できるから、アルカ
リ使用の場合には、高エネルギの供給により、混
合被処理物2を200〜300℃前後、又はそれ以上、
例えば1000℃前後の高温に加熱して、高速の分
解、還元を行なうようにすることもできる。
That is, when an alkali such as caustic soda (NaOH) is used as an electrolyte, the generation of harmful gases can be prevented to some extent by this alkali. ~ around 300℃ or more,
For example, high-speed decomposition and reduction can be achieved by heating to a high temperature of around 1000°C.

上記第1図の主として誘導加熱の原理により加
熱し、混合被処理物2を加温した状態で内部で局
部的に微小放電を発生させる場合、コイル4を流
れる高周波電流により生成する磁界で、混合被処
理物2にうず電流損またはヒステリシス損が誘起
される訳で、その際電流の浸透深さには限度があ
り、混合被処理物2は主として表面層部分のみが
上記うず電流損等によつて直接的に加熱されるに
すぎないから、前記混合被処理物2を構成する精
鉱粉の種類、組成、電解質の種類、水、及び之等
の混合比等によつて誘導加熱高周波電力の周波数
を選定する必要がある丈でなく、前記混合被処理
物2としては、前記電流の浸透深さを考慮して、
粉粒状、径及び厚さが10mm×15mm前後程度の円板
や楕円板状等のペレツト状、条片状、短い棒状、
または短冊状等の形状、寸法の選定が必要である
と共に、コイル4内磁束分布を考慮した配置や、
前記ペレツト状物の1段又は複数段の堆積配置等
を選定する必要がある。
When heating is mainly performed using the principle of induction heating as shown in FIG. This means that eddy current loss or hysteresis loss is induced in the workpiece 2, and in this case, there is a limit to the depth of penetration of the current, and only the surface layer of the mixed workpiece 2 is affected by the above-mentioned eddy current loss, etc. Therefore, the amount of induction heating high-frequency power used depends on the type and composition of the concentrate constituting the mixed object 2, the type of electrolyte, the water, and the mixing ratio of these. The frequency should not be selected based on the length, but considering the penetration depth of the current for the mixed treatment object 2,
Powder-like shapes, pellet-like shapes such as discs and ellipsoids with a diameter and thickness of about 10 mm x 15 mm, strip-like shapes, short rod-like shapes,
Alternatively, it is necessary to select the shape and dimensions of the rectangular shape, etc., and also consider the arrangement of the magnetic flux distribution within the coil 4.
It is necessary to select the deposition arrangement of the pellet-like material in one or more stages.

また、上記第2図の主として誘電体加熱の原理
による場合は、その加熱の態様、例えば、一対の
電極板間に混合被処理物2を挿設した状態の場合
とか各種電極を用いる場合とマイクロ波をマグネ
トロン等より混合被処理物2に空間を介して照射
した場合とで或る程度差異があるものゝ、何れの
場合も混合被処理物2を大きな塊状のまゝでは効
果的な分解、還元処理をすることができず、また
後者マイクロ波を使用する場合には、照射マイク
ロ波の浸入深さは、そのマイクロ波の波長等にも
依存するものゝ混合被処理物2の電気的及び物理
的性質等によつても異なるから、それ等を考慮し
て前記ペレツト状物の寸法、形状を選定する必要
があり、例えば、面積等広がりは、容器1や受皿
3による外は格別の制限はないものゝ、その厚さ
は数10mm以内と概して扁平状とする必要があるが
如くであり、またその扁平ペレツト状物はマグネ
トロンに対向して多層に積層配置することは避け
ることが好ましいが如くである。
In addition, in the case where the principle of dielectric heating is mainly used as shown in FIG. There is a certain difference between the case where waves are irradiated onto the mixed workpiece 2 from a magnetron or the like through a space, but in either case, if the mixed workpiece 2 remains in the form of a large lump, it will not be possible to effectively decompose the mixed workpiece 2. If reduction treatment cannot be performed and the latter uses microwaves, the penetration depth of the irradiated microwaves depends on the wavelength of the microwaves, etc. The size and shape of the pellets must be selected in consideration of these factors, as they vary depending on physical properties. However, it is necessary to generally have a flat pellet shape with a thickness of several tens of mm or less, and it is preferable to avoid arranging the flat pellet-like material in multiple layers facing the magnetron. It is like that.

次に使用電解質、又は電解液(電解質水溶液)
につき検討するに、例えば醋酸カリ
(CH3COOK)は、特公昭39−24198号公報に記載
されている如く電解放電加熱として極めて有用な
ものであるが、約45%CH3COOK水溶液を用いて
造つた希土精鉱粉の混合被処理物2に対して前述
第1図及び第2図の高周波電力による加熱放電の
分解、還元方式を適用した所、希土精鉱粉のモナ
ザイト、ゼノタイム及びバストネサイトの各一部
が還元されたが、大部分は殆んど変化がなく(但
し、例えば供給高周波電力のエネルギや処理時間
等の条件を、後述有効な電解液使用の場合とほゞ
同一の条件とした場合である。)目的とする処理
が行なえなかつた。
Next, use electrolyte or electrolyte solution (electrolyte aqueous solution)
For example, potassium acetate (CH 3 COOK) is extremely useful for electrolytic discharge heating as described in Japanese Patent Publication No. 39-24198, but using an approximately 45% CH 3 COOK aqueous solution, When the above-mentioned Fig. 1 and Fig. 2 heating discharge decomposition and reduction method using high-frequency power was applied to the mixed material 2 of rare earth concentrate powder, the rare earth concentrate powder monazite, xenotime and Although some of the bastnaesite was reduced, the majority remained almost unchanged (however, the conditions, such as the energy of the supplied high-frequency power and the processing time, were changed from the case of using an effective electrolyte as described below). ) The intended process could not be performed.

このため、供給高周波電力のエネルギを増大し
て混合被処理物2が数100℃となる加熱、放電条
件の処理とした所、分解、還元は促進されたが、
高温化に伴い有害ガスの発生を伴い、また安価で
ない醋酸カリの損耗が多く、実用化の見込みはな
いようであつた。尚、以下の記載で格別ことわり
がない場合、その希土精鉱粉は、モナザイト又は
ゼノタイムと、バストネサイトの混合物で、その
混合割合を前者4に対し後者6とした場合につき
説明するが、これは従来法では処理困難か、1種
のものに対してしか処理が及ばなかつたことに対
抗するものであるが、本発明は1種のものに対し
ても有効な方法である。
For this reason, when the energy of the supplied high-frequency power was increased and the treatment was carried out under heating and discharging conditions such that the temperature of the mixed workpiece 2 was several 100 degrees Celsius, decomposition and reduction were promoted, but
As the temperature increased, harmful gases were generated, and potassium acetate, which was not cheap, was wasted a lot, so there seemed to be no hope for its practical application. In addition, unless otherwise specified in the description below, the explanation will be based on the case where the rare earth concentrate powder is a mixture of monazite or xenotime and bastnaesite, and the mixing ratio is 4 for the former and 6 for the latter. This is to counter the fact that conventional methods are difficult to treat or can only treat one type of substance, but the present invention is also effective for treating one type of substance.

次にアンモニア(NH3)を電解質として使用
した場合は、上記醋酸カリを用いた場合よりも無
効であつたが、塩化アンモニウム(NH4Cl)を
電解質として用いた所、分解、還元が可成り促進
され、水酸化希土(R(OH)3)、及び塩化希土
(RCl3)の生成がみられたが、弗素ガス(F2)、
弗化水素ガス(HF)、塩素ガス(Cl2)、弗化アン
モニウム(NH4F)、その他、NH4HF2、PCl3
POCl等の有害ガスが発生し、他方燐酸
(H3PO4)の生成もあつたが、実用は難しいよう
である。
Next, when ammonia (NH 3 ) was used as an electrolyte, it was more effective than when potassium acetate was used, but when ammonium chloride (NH 4 Cl) was used as an electrolyte, the decomposition and reduction were significant. The formation of rare earth hydroxide (R(OH) 3 ) and rare earth chloride (RCl 3 ) was observed; however, fluorine gas (F 2 ),
Hydrogen fluoride gas (HF), chlorine gas ( Cl2 ) , ammonium fluoride ( NH4F ), others, NH4HF2 , PCl3 ,
Harmful gases such as POCl were generated, and phosphoric acid (H 3 PO 4 ) was also produced, but it seems difficult to put it into practical use.

また、食塩(NaCl)を電解質として用いた場
合は、上記塩化アンモニア(NH4Cl)を用いた
場合と同様R(OH)3及びRCl3への分解、還元が
より有効に行なわれ、弗化ナトリウム(NaF)
の生成により弗素系の有害ガスの発生が少なく、
燐酸ソーダ(Na3PO4)の生成もあつたが、Cl2
PCl3、POCl等が発生するため、之等生成物に対
する対策が実用化の妨げとなる可能性が大きいよ
うである。
In addition, when common salt (NaCl) is used as an electrolyte, the decomposition and reduction into R(OH) 3 and RCl 3 are more effective as in the case where ammonia chloride (NH 4 Cl) is used, and fluoride Sodium (NaF)
Due to the generation of fluorine-based harmful gases, the generation of
Sodium phosphate (Na 3 PO 4 ) was also produced, but Cl 2 ,
Since PCl 3 , POCl, etc. are generated, it seems highly likely that countermeasures against these products will hinder practical application.

また、硫酸(H2SO4)を電解質として用いた
場合には、希土精鉱粉は分解、還元により硫酸希
土(R2(SO43)となり燐酸(H3PO4)等の生成
もあるから有効であるが、F2、HF等の弗素系の
ガス及びSOxが生成するから、発生ガスや発生廃
棄物処理対策として安価、有効な方法を見い出さ
ないと、直ちには実用化は難しいようである。
In addition, when sulfuric acid (H 2 SO 4 ) is used as an electrolyte, rare earth concentrate powder becomes sulfuric rare earth (R 2 (SO 4 ) 3 ) through decomposition and reduction, resulting in phosphoric acid (H 3 PO 4 ), etc. It is effective because it also generates fluorine-based gases such as F 2 and HF, and SOx, so unless a cheap and effective method is found to treat the generated gas and waste, it will not be put into practical use immediately. It seems difficult.

次に炭酸ソーダ(NaCO2)を電解質として用
いることは極めて有用で、水酸化希土(R
(OH)3)の生成に燐酸ソーダ(Na3PO4)の生成
を伴い、炭酸ソーダの量を、希土精鉱粉中の希土
または弗素のモル量に対し約3倍前後の量介在さ
せるようにすることにより弗化ナトリウム
(NaF)を生成して、弗素系有害ガス、及びその
他の有害ガス及びミストの発生も殆んどないか、
少なく、従つて使用炭酸ソーダ(Na2CO3)の価
格上に問題が無ければ、即実用化も可能と思われ
る。
Next, it is extremely useful to use sodium carbonate (NaCO 2 ) as an electrolyte, and rare earth hydroxide (R
The generation of (OH) 3 ) involves the generation of sodium phosphate (Na 3 PO 4 ), and the amount of sodium carbonate is approximately three times the molar amount of rare earth or fluorine in the rare earth concentrate powder. By doing so, sodium fluoride (NaF) is generated, and there is almost no generation of fluorine-based harmful gases, other harmful gases, or mist.
Therefore, if there is no problem with the price of the sodium carbonate (Na 2 CO 3 ) used, it would be possible to put it into practical use immediately.

この場合の希土精鉱粉はモナザイトまたはゼノ
タイムとバストネサイトの単独及びそれら又は両
方の混合物の何れであつても良い。
The rare earth concentrate powder in this case may be monazite or xenotime and bastnaesite alone or a mixture of them or both.

しかして、本発明者が今迄に種々実験した電解
質として最も有用なのは苛性ソーダ(NaOH)
であつて、該苛性ソーダを用いた場合が現在判明
している最も好ましい実験例となる。
However, the most useful electrolyte that the present inventor has tested so far is caustic soda (NaOH).
The most preferred experimental example currently known is the use of caustic soda.

なお、苛性ソーダに類似の苛性カリ(KOH)
は、分解、還元等の作用上は苛性ソーダと同等で
あるが、その価格の点から苛性ソーダには及ばな
いものである。
Caustic potash (KOH), which is similar to caustic soda,
is equivalent to caustic soda in its decomposition, reduction, etc. actions, but it is not comparable to caustic soda in terms of price.

次に苛性ソーダ(NaOH)を電解質として用
いた場合の分解、還元の態様について説明する
と、約50%前後程度のNaOH水溶液に、300メツ
シユ前後に微粉砕した希土精鉱粉を重量比で約
1:2で混合して、泥状混錬物を造り、之に高周
波電力を供給して加熱し、その加熱状態で更に高
周波電力を供給して上記泥状混合物中に青色状乃
至縁青色状の微細放電が点々と、或る程度密に瞬
滅を繰り返す状態に保持して精鉱粉を放電コラム
に曝らすことにより、アルカリ分解及び又は熱分
解による還元を生ぜしめるとき、 上記精鉱粉がモナザイト、又はゼノタイム
(RPO4)の場合、 ●水酸化希土(R(OH)3)と燐酸ソーダ
(Na2PO4)が生成し、その他に格別有害ガス
等の発生はない。
Next, to explain the mode of decomposition and reduction when caustic soda (NaOH) is used as an electrolyte, rare earth concentrate powder finely pulverized to about 300 mesh is added to an approximately 50% NaOH aqueous solution at a weight ratio of approximately 1. : Mix in step 2 to make a muddy mixture, heat it by supplying high-frequency power to it, and further supply high-frequency power in the heated state to form a blue or edge-blue color in the muddy mixture. When the concentrate powder is exposed to a discharge column in a state in which fine electric discharges repeat flashing in spots and to a certain degree densely to cause reduction by alkaline decomposition and/or thermal decomposition, the above concentrate powder When it is monazite or xenotime (RPO 4 ), rare earth hydroxide (R(OH) 3 ) and sodium phosphate (Na 2 PO 4 ) are generated, and no other harmful gases are generated.

上記精鉱粉がバストネサイト(RFCO3)の場
合、 ●水酸化希土(R(OH)3)、弗化ナトリウム
(NaF)、及び炭酸ソーダ(Na2CO3)が生成す
る他は、格別有害ガスは発生しない。
When the above concentrate powder is bastnaesite (RFCO 3 ), rare earth hydroxide (R(OH) 3 ), sodium fluoride (NaF), and soda carbonate (Na 2 CO 3 ) are produced. No particularly harmful gases are generated.

上記精鉱粉がモナザイト4とバストネサイト6
の割合の混合物の場合、 ●精鉱粉が、上記モナザイトの場合と、バストネ
サイトの場合の分解、還元反応が同時に混然一
体とした状態で生じ、各鉱粉使用の場合の生成
物が全て生成する。
The above concentrate powder is monazite 4 and bastnaesite 6
In the case of a mixture with a ratio of , the decomposition and reduction reactions of the above-mentioned monazite and bastnasite occur simultaneously in a mixed state, and the products obtained when each mineral powder is used are Generate everything.

そして、上記希土精鉱粉に対する分解、還元反
応の割合は少くとも90%以上、95%前後以上の高
率に達するものと考えられる。
The rate of decomposition and reduction reactions to the rare earth concentrate powder is considered to be at least 90% or higher, reaching a high rate of around 95% or higher.

即ち、予め希土類金属(R2O3)の含有量を秤
量した精鉱粉を用い、上記加熱、放電処理後生成
水酸化希土(R(OH)3)含む沈澱物を過回収
し、100℃前後の水で水洗後、例えば100℃前後の
少くとも5%程度以上の濃度の塩酸を加わえて数
10分前後以上程度酸溶解処理し、次いで必要に応
じ、PH5.8〜6.0に調整して沈澱物(トリウム水酸
化物、イツトリウム等、希土も数%前後含んでい
る)を除去した後溶液を煮沸濃縮、さらに乾燥さ
せて得られる塩化希土(RCl3)を秤量した場合
及び上記溶液に苛性ソーダを加わえて完全に中和
し、沈澱物(水酸化希土)を過して回収し之を
乾燥させた水酸化希土(R(OH)3)を秤量した
場合、希土類金属の回収率(歩止り)は共に約92
〜93%であることから推定されるものである。
That is, using concentrate powder whose rare earth metal (R 2 O 3 ) content was weighed in advance, the precipitate containing rare earth hydroxide (R(OH) 3 ) produced after the heating and discharge treatment was over-recovered, and 100 After washing with water at around 100°C, for example, add hydrochloric acid with a concentration of at least 5% at around 100°C.
Dissolve the solution in acid for about 10 minutes or more, then adjust the pH to 5.8 to 6.0 as necessary to remove precipitates (contains about a few percent of rare earths such as thorium hydroxide and yttrium). When rare earth chloride (RCl 3 ) obtained by boiling and concentrating and further drying is weighed, caustic soda is added to the above solution to completely neutralize it, and the precipitate (rare earth hydroxide) is collected by filtration. When dried rare earth hydroxide (R(OH) 3 ) is weighed, the recovery rate (yield) of rare earth metals is approximately 92
This is estimated from the fact that it is ~93%.

次に本発明を実施例により説明すると、モナザ
イト30%、バストネサイト70%の割合から成る希
土を、酸化希土(R2O3)に概算して体積比で約
60%含有する希土精鉱粉を、99%が−200メツシ
ユとなるように粉砕し、該精鉱粉1モルに対し、
苛性ソーダ(NaOH)が約3モルの割合となる
ように、重量百分比で精鉱粉2、苛性ソーダ1、
及び水0.4の割合で秤量混合した。なお、希土精
鉱の粉砕は、上記混合に於て擂り潰すようにして
も良い。
Next, to explain the present invention using an example, rare earth consisting of 30% monazite and 70% bastnasite is roughly expressed as rare earth oxide (R 2 O 3 ) by volume.
A rare earth concentrate powder containing 60% is crushed so that 99% is -200 mesh, and for 1 mole of the concentrate powder,
So that the proportion of caustic soda (NaOH) is about 3 moles, 2 parts of concentrate powder, 1 part of caustic soda,
and water were weighed and mixed at a ratio of 0.4. Incidentally, the rare earth concentrate may be crushed by grinding during the above-mentioned mixing.

上記泥状混合物約60gを約30mmφ前後、厚さ約
6〜8mmの複数個の円板又は楕円板状として周波
数40KHzの高周波誘導加熱炉により、約
6.4Kcal/minの加熱速度で約10分間加熱及び放
電処理し、水に溶かした時の沈澱、過物を常温
又は約100℃の水で5回水洗し、強制乾燥させて
約36.5gの分解、還元物(水酸化希土)を得た。
これを濃度約35〜40%の塩酸約300mlにより約105
℃で約10分間酸溶解し、この酸溶解を2度行い、
過上澄及び沈澱物を3回水洗した水を回収した
所、沈澱残滓は約0.8gで、上記水酸化希土約
36.5gの約97.8%が塩化希土の形で回収されたこ
とになり、上記上澄及び水洗水を煮沸して固形塩
化希土が回収できた。
Approximately 60 g of the above slurry mixture was heated in a high frequency induction heating furnace at a frequency of 40 KHz into multiple discs or ellipsoids with a diameter of approximately 30 mm and a thickness of approximately 6 to 8 mm.
Heating and discharging for about 10 minutes at a heating rate of 6.4 Kcal/min. When dissolved in water, the precipitate and excess material were washed 5 times with water at room temperature or about 100°C, and forced drying to decompose about 36.5 g. , a reduced product (rare earth hydroxide) was obtained.
This is mixed with about 300 ml of hydrochloric acid with a concentration of about 35-40% to about 105
Dissolve in acid for about 10 minutes at ℃, perform this acid dissolution twice,
When the supernatant and the precipitate were washed with water three times and the water was recovered, the precipitate residue was approximately 0.8 g, which was approximately
Approximately 97.8% of the 36.5 g was recovered in the form of rare earth chloride, and solid rare earth chloride could be recovered by boiling the supernatant and washing water.

この場合、分解処理前の混錬物中の水分が少な
い所から、分解、還元時の温度は約500℃前後又
はそれ以上に達しているものと考えられるが、混
水の量を多くすると、上記温度は下るものゝ、水
の蒸発にエネルギをロスし、処理時間が長くなる
から、必ずしも有効ではない。
In this case, the temperature during decomposition and reduction is thought to have reached around 500°C or higher due to the low moisture content in the kneaded material before decomposition treatment, but if the amount of mixed water is increased, Although the above temperature is lowered, energy is lost to evaporation of water and processing time becomes longer, so it is not necessarily effective.

次に、上記と同様なペレツト状物約83gに対
し、マグネトロンより約2450MHzのマイクロ波を
約6.4Kcal/minの加熱速で照射して約15分間加
熱、放電処理した。同様に5回の水洗後、過分
離し、乾燥させて約57.5gの水酸化希土を得た。
これを約105℃の36%塩酸約400mlにより約10分間
酸溶解した所、残滓は約1.8gで、溶解率約96.9
%であつた。
Next, about 83 g of pellets similar to those described above were heated and discharged for about 15 minutes by irradiating microwaves of about 2450 MHz from a magnetron at a heating rate of about 6.4 Kcal/min. After washing with water five times in the same manner, it was separated and dried to obtain about 57.5 g of rare earth hydroxide.
When this was acid-dissolved in about 400 ml of 36% hydrochloric acid at about 105°C for about 10 minutes, the residue was about 1.8 g, and the dissolution rate was about 96.9.
It was %.

なお、上記各処理工程の水酸化希土(沈澱回収
物)に対するX線分析によれば、モナザイト及び
バストネサイトは殆んど検出されず、上記モナザ
イト及びバストネサイトは夫々ほゞ完全に分解、
還元等されており、上記の如く水酸化希土と推定
されるものである。
Furthermore, according to X-ray analysis of rare earth hydroxide (precipitate recovered material) from each of the above treatment steps, monazite and bastnaesite were hardly detected, and each of the monazite and bastnaesite was almost completely decomposed. ,
It has been reduced, etc., and is presumed to be rare earth hydroxide as described above.

そして、上記の如く、アルカリ、NaOHを電
解質として用いれば、その加熱放電処理の工程
で、混錬物が、仮令或る程度の高温になつても、
炭酸ソーダ、燐酸ソーダ及び弗化ナトリウムが生
成する外は、液ミスト以外に有害ガスの発生は殆
んどなく、またその液ミストも水の量を加減する
ことにより少なく、かつ水の量が少なければ、か
えつて処理のエネルギ効率を上げることができる
と言う利点につながる。
As mentioned above, if alkali or NaOH is used as an electrolyte, even if the kneaded material reaches a certain level of high temperature during the heating and discharging process,
Other than the generation of soda carbonate, sodium phosphate, and sodium fluoride, there is almost no generation of harmful gases other than liquid mist, and the liquid mist can be reduced by adjusting the amount of water, and as long as the amount of water is small. In other words, this leads to the advantage that the energy efficiency of processing can be increased.

また、上記の場合、供給高周波電力は、その大
部分が混合物の加熱及びその内部での放電に使用
消耗されるのみであるから、エネルギ効率が高
く、また消費薬品量も従来の硫酸法等に比べれば
極めて少なく、またモナザイトとバストネサイト
の混合精鉱粉の如き従来処理が困難であつたもの
に対しても、何等変更せずにその全部が分解、還
元処理できると言う利点がある。
In addition, in the above case, most of the supplied high-frequency power is used and consumed only for heating the mixture and discharging inside it, so energy efficiency is high and the amount of chemicals consumed is also lower than that of the conventional sulfuric acid method. It has the advantage that it is extremely small in comparison, and that it can be completely decomposed and reduced without making any changes, even if it is difficult to treat conventionally, such as mixed concentrate powder of monazite and bastnaesite.

なお、本発明方法の工業的実施に於て、例えば
連続的な適宜の処理ライン等を構成し得ることは
勿論である。
In the industrial implementation of the method of the present invention, it is of course possible to construct, for example, a continuous appropriate treatment line.

本発明は未だ研究途上であつて、例えば電解液
(電解質)として、前述の苛性ソーダよりも分解、
還元効率が高く、有害ガスの発生が少ない1種ま
たは2種以上の混合電解液が見付かる可能性があ
り、また他方例えば、本発明の方法を有用に具現
するための精鉱粉と電解液の混合工程等より、酸
溶解又はその後の適宜の工程迄の自動化処理装置
を考案することが要請されるものと思惟する。
The present invention is still under research, and for example, as an electrolyte, it can be
It is possible that one or more mixed electrolytes with high reduction efficiency and low generation of harmful gases may be found; It is believed that it is necessary to devise an automated treatment device for the mixing process and other steps including acid dissolution and subsequent appropriate steps.

以上のように本発明によれば、希土精鉱粉を簡
単な工程でエネルギ効率良く、かつ安価に分解、
還元処理することができ、また本発明によれば、
例えばバストネサイトと、モナザイト又はゼノタ
イムの混和希土精鉱粉の処理にそのまゝ適用する
ことができ、また本発明の好ましい実施の態様に
よればさらに処理効率が高いだけでなく、処理操
作、操業稼動に伴なつて発生する有害気体や液の
量を極めて少なくすることができる等産業上有用
な発明である。
As described above, according to the present invention, rare earth concentrate powder can be decomposed in a simple process with high energy efficiency and at low cost.
According to the present invention,
For example, it can be directly applied to the treatment of mixed rare earth concentrate powder of bastnaesite and monazite or xenotime, and according to a preferred embodiment of the present invention, not only is the treatment efficiency higher, but also the treatment operation This is an industrially useful invention that can extremely reduce the amount of harmful gases and liquids generated during operation.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図及び第2図は、夫々本発明処理方法
の異なる実施例の説明図である。 1は処理容器、2は混合被処理物、3は受皿、
4は加熱コイル、5,9は加熱制御装置、6は排
気手段、7は雰囲気調整手段、8はマグネトロ
ン。
FIGS. 1 and 2 are explanatory diagrams of different embodiments of the treatment method of the present invention, respectively. 1 is a processing container, 2 is a mixed processing object, 3 is a saucer,
4 is a heating coil, 5 and 9 are heating control devices, 6 is an exhaust means, 7 is an atmosphere adjustment means, and 8 is a magnetron.

Claims (1)

【特許請求の範囲】 1 希土精鉱粉に電解質水溶液からなる電解液を
添加混合して混練し、該混錬物に高周波電力を供
給して加熱すると共に、混錬物内に於て放電を発
生せしめ、前記電解液と接触状態にある前記精鉱
粉を分解・還元することを特徴とする希土類精鉱
の処理方法。 2 前記の高周波電力が、高周波誘導加熱であつ
て周波数30KHz〜100KHzの高周波であり、前記
混錬物が内部に配置される加熱コイルに供給され
ることを特徴とする特許請求の範囲第1項に記載
の希土類精鉱の処理方法。 3 前記の高周波電力が、マイクロ波加熱であつ
て、周波数が少なくともMHzオーダ以上、300M
Hz〜300GHzの高周波であり、前記の混錬物に照
射供給するものであることを特徴とする特許請求
の範囲第1項に記載の希土類精鉱の処理方法。 4 前記の電解質が苛性ソーダ(NaOH)を含
むアルカリであることを特徴とする特許請求の範
囲第1項、第2項又は第3項の何れか一に記載の
希土類精鉱の処理方法。 5 前記の電解質水溶液からなる電解液が、夫々
別個の電解質と水であつて、該電解質と水と希土
精鉱粉とを夫々所定量混合して前記混錬物を得る
ことを特徴とする特許請求の範囲第1項、第2項
又は第3項の何れか一に記載の希土類精鉱の処理
方法。 6 前記の電解液の添加、混合量が、混合精鉱粉
中の希土化合物を分解・還元するのに充分な量の
前記電解質を含み、且つ前記の混錬物が汚泥状以
上の含水状態とならないように含水量が調整され
ていることを特徴とする前記特許請求の範囲第1
項、第2項、第3項、第4項又は第5項の何れか
一に記載の希土類精鉱の処理方法。 7 前記の希土精鉱粉が、モナザイト又はゼノタ
イムとバストネサイトとの混合精鉱粉であること
を特徴とする特許請求の範囲第1項、第2項、第
3項、第4項、第5項又は第6項の何れか一に記
載の希土類精鉱の処理方法。 8 前記の希土精鉱粉が−100〜−200メツシユの
粉末であることを特徴とする特許請求の範囲第1
項、第2項、第3項、第4項、第5項、第6項又
は第7項の何れか一に記載の希土類精鉱の処理方
法。 9 前記の混錬物に対する加熱が、前記供給高周
波電力の大きさ、又は供給時間の制御により150
℃前後以下の温度に保持制御されるものであるこ
とを特徴とする特許請求の範囲第1項、第2項、
第3項、第4項、第5項、第6項、第7項又は第
8項の何れか一に記載の希土類精鉱の処理方法。 10 前記の混錬物が、円板、楕円板状の如きペ
レツト状として高周波電力による加熱処理に供さ
れることを特徴とする特許請求の範囲第1項、第
2項、第3項、第4項、第5項、第6項又は第7
項の何れか一に記載の希土類精鉱の処理方法。
[Scope of Claims] 1. Adding and mixing an electrolytic solution consisting of an aqueous electrolyte solution to rare earth concentrate powder, kneading the mixture, supplying high-frequency power to the kneaded product to heat it, and generating electric discharge in the kneaded product. A method for processing rare earth concentrate, characterized in that the concentrate powder in contact with the electrolytic solution is decomposed and reduced. 2. Claim 1, wherein the high-frequency power is high-frequency induction heating with a frequency of 30 KHz to 100 KHz, and is supplied to a heating coil in which the kneaded material is placed. The method for processing rare earth concentrates described in . 3. The above-mentioned high frequency power is microwave heating, the frequency is at least on the order of MHz, and the frequency is 300M
2. The method for treating rare earth concentrate according to claim 1, wherein the kneaded material is irradiated with a high frequency of Hz to 300 GHz. 4. The method for treating rare earth concentrate according to any one of claims 1, 2, and 3, wherein the electrolyte is an alkali containing caustic soda (NaOH). 5. The electrolytic solution consisting of the electrolyte aqueous solution is characterized in that it is a separate electrolyte and water, and the kneaded product is obtained by mixing predetermined amounts of the electrolyte, water, and rare earth concentrate powder, respectively. A method for processing rare earth concentrate according to any one of claims 1, 2, and 3. 6. The amount of the electrolyte added and mixed contains a sufficient amount of the electrolyte to decompose and reduce the rare earth compound in the mixed concentrate powder, and the kneaded product is in a water-containing state of sludge-like or higher. Claim 1, characterized in that the water content is adjusted so as not to cause
The method for treating rare earth concentrate according to any one of Items 1, 2, 3, 4, and 5. 7. Claims 1, 2, 3, and 4, characterized in that the rare earth concentrate powder is a mixed concentrate powder of monazite or xenotime and bastnasite, A method for processing rare earth concentrate according to any one of paragraphs 5 and 6. 8. Claim 1, wherein the rare earth concentrate powder is -100 to -200 mesh powder.
The method for treating rare earth concentrate according to any one of Items 1, 2, 3, 4, 5, 6, or 7. 9 Heating of the kneaded material is controlled by controlling the magnitude of the supplied high-frequency power or the supply time.
Claims 1 and 2, characterized in that the temperature is maintained and controlled at around ℃ or below.
The method for processing rare earth concentrate according to any one of paragraphs 3, 4, 5, 6, 7, or 8. 10 Claims 1, 2, 3 and 3, characterized in that the kneaded material is subjected to heat treatment using high frequency power in the form of pellets such as discs and ellipsoids. Section 4, Section 5, Section 6 or Section 7
A method for processing the rare earth concentrate described in any one of the paragraphs.
JP56104800A 1981-07-03 1981-07-03 Treatment of concentrate of rare earth metal Granted JPS586947A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56104800A JPS586947A (en) 1981-07-03 1981-07-03 Treatment of concentrate of rare earth metal
GB08219010A GB2102402B (en) 1981-07-03 1982-07-01 Method of and apparatus for treating a rare-earth mineral or concentrate
DE19823224856 DE3224856A1 (en) 1981-07-03 1982-07-02 METHOD AND DEVICE FOR TREATING A RARE EARTH MINERAL OR CONCENTRATE
FR8211695A FR2508931B1 (en) 1981-07-03 1982-07-02 METHOD AND DEVICE FOR TREATING A RARE EARTH ORE OR CONCENTRATE
IT48750/82A IT1148195B (en) 1981-07-03 1982-07-02 METHOD AND EQUIPMENT FOR THE TREATMENT OF A MINERAL OR A RARE LAND CONCENTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104800A JPS586947A (en) 1981-07-03 1981-07-03 Treatment of concentrate of rare earth metal

Publications (2)

Publication Number Publication Date
JPS586947A JPS586947A (en) 1983-01-14
JPH0120214B2 true JPH0120214B2 (en) 1989-04-14

Family

ID=14390508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104800A Granted JPS586947A (en) 1981-07-03 1981-07-03 Treatment of concentrate of rare earth metal

Country Status (5)

Country Link
JP (1) JPS586947A (en)
DE (1) DE3224856A1 (en)
FR (1) FR2508931B1 (en)
GB (1) GB2102402B (en)
IT (1) IT1148195B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122175A (en) * 1983-12-05 1985-06-29 Kogyosha Tsuushinkiki Seisakusho:Kk Braille cell
FR2587036A1 (en) * 1985-09-10 1987-03-13 Rhone Poulenc Spec Chim PROCESS FOR TREATING RARE EARTH ORES
FR2623792B1 (en) * 1987-11-27 1991-02-15 Rhone Poulenc Chimie PROCESS FOR SEPARATING THORIUM AND RARE EARTHS FROM A FLUORIDE CONCENTRATE THEREOF
BR8707200A (en) * 1987-12-23 1989-08-15 Pirelli Brasil SUMMARY OF SUPERCONDUCTORS FROM XENOTIMA
DE4217220C1 (en) * 1992-05-23 1993-06-03 Lpw-Anlagen Gmbh, 4040 Neuss, De Electrochemical surface treatment - with a separate precipitation zone screened from a microwave heating zone
DE4203646C1 (en) * 1992-02-08 1993-05-06 Lpw-Anlagen Gmbh, 4040 Neuss, De Bath for electrochemical deposition of metal (alloys)
EP0728038B1 (en) * 1993-11-11 1998-07-08 LAUTENSCHLÄGER, Werner Device for initiating and/or furthering chemical or physical processes in a material, especially sample material
FR2727328A1 (en) * 1994-11-25 1996-05-31 Rhone Poulenc Chimie Oxidn. or thermo-hydrolysis of chemical element esp. rare earths by microwave heating
FR2739576B1 (en) * 1995-10-09 1997-12-12 Electricite De France GAS PHASE CATALYTIC REACTOR
KR101058567B1 (en) 2009-11-25 2011-08-23 한국지질자원연구원 Rare Earth Extraction Method in Monazite
KR101245276B1 (en) * 2010-03-12 2013-03-19 주식회사 엘지화학 Method for recycling Cerium oxide abrasive
RU2576978C1 (en) * 2014-10-08 2016-03-10 ЭкоЛайв Текнолоджис Лимитед Method of processing of iron-containing monazite concentrates
RU2578869C1 (en) * 2014-12-10 2016-03-27 Юрий Валерьевич Рязанцев Method of processing monazite concentrate
RU2620229C1 (en) * 2016-03-15 2017-05-23 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Method of explosion of monactives concentrate
RU2633859C1 (en) * 2016-12-06 2017-10-18 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Method for processing monazite
RU2638719C1 (en) * 2016-12-09 2017-12-15 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Method of processing hydroxide cake produced at alkaline dissection of monazite concentrate
JP6502400B2 (en) * 2017-02-08 2019-04-17 オリコン株式会社 Method of reducing scandium fluoride using microwave
RU2667932C1 (en) * 2017-08-29 2018-09-25 Владимир Леонидович Софронов Method of processing monazite raw materials
CN112657456B (en) * 2021-01-14 2022-07-15 福建紫金矿冶测试技术有限公司 Detection equipment for washing rare earth hydroxide
CN113073195A (en) * 2021-03-19 2021-07-06 四川师范大学 Microwave chemical method for completely extracting fluorine and rare earth in bastnaesite concentrate
WO2024089526A1 (en) * 2022-10-27 2024-05-02 The Warb Trust (No.1 Trust 13337/99) Process and plant for the decomposition of a rare earth-bearing mineral

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767138A (en) * 1980-06-11 1982-04-23 Kiyatou Research Corp Collection of metal from ore

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE626822C (en) * 1929-02-12 1936-03-03 Maximilian Heinrich Kraemer Dr Ironless induction furnace for heating, melting or metallurgical treatment of metals, metal oxides, aggregates or slag, in which the bath content consists of layers of different electrical conductivity
US2056764A (en) * 1934-01-03 1936-10-06 William E Beatty Metal separation
CH208788A (en) * 1935-01-12 1940-02-29 Nihon Koshuhajukogyo Kabushiki Process for the production of metals by reducing ores with the aid of currents of high frequency.
US3619128A (en) * 1968-12-05 1971-11-09 Stauffer Chemical Co Method for processing rare earth fluorocarbonate ores

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767138A (en) * 1980-06-11 1982-04-23 Kiyatou Research Corp Collection of metal from ore

Also Published As

Publication number Publication date
JPS586947A (en) 1983-01-14
GB2102402B (en) 1985-03-06
GB2102402A (en) 1983-02-02
FR2508931B1 (en) 1988-05-06
FR2508931A1 (en) 1983-01-07
DE3224856C2 (en) 1988-09-22
IT1148195B (en) 1986-11-26
IT8248750A0 (en) 1982-07-02
DE3224856A1 (en) 1983-01-27

Similar Documents

Publication Publication Date Title
JPH0120214B2 (en)
Lambert et al. Innovative application of microwave treatment for recovering of rare earth elements from phosphogypsum
US4505787A (en) Process for production of a carbide by-product with microwave energy and aluminum by electrolysis
US20090013822A1 (en) Microwave treatment of minerals
CA3202960A1 (en) Recovery of metals from materials containing lithium and iron
Nie et al. Defluorination of spent pot lining from aluminum electrolysis using acidic iron-containing solution
Ma et al. A cleaner approach for recovering Al and Ti from coal fly ash via microwave-assisted baking, leaching, and precipitation
KR20160027348A (en) Method and apparatus for extracting lithium from coal ashes
Huang et al. Decomposition mechanism of a mixed rare earth concentrate with sodium hydroxide in the microwave heating process
JP3360827B2 (en) Method and apparatus for treating and utilizing waste by converting waste to non-polluting and reusable materials
Lie et al. Recovery of Y and Eu from waste CRT phosphor using closed-vessel microwave leaching
JP2024073553A (en) Beryllium solution manufacturing method, beryllium manufacturing method, beryllium hydroxide manufacturing method, beryllium oxide manufacturing method, solution manufacturing device, beryllium manufacturing system, and beryllium
Meng et al. Thermal decomposition of Bayan Obo mixed rare earth concentrate under inert atmosphere
CN112456529A (en) Method for preparing alumina powder production raw material by microwave treatment of aluminum ash
Wang et al. Synergistic effect of microwave irradiation and CaF 2 on vanadium leaching
JPWO2021039876A5 (en)
JPS6214019B2 (en)
Can et al. Microwave assisted calcination of colemanite powders
US1392044A (en) Process of recovering an element capable of forming a haloid from ores, minerals, &c., containing the same
JPH0249250B2 (en)
Shukla et al. Comparison of processing routes for recovery of rare earth elements from discarded fluorescent lamp phosphors
CN105439343B (en) A kind of soda acid changing rejected material to useful resource treatment process
JPS58167417A (en) Treating method for rare earth concentrate
JP4544984B2 (en) Hydrogen generation method
CN108704239B (en) Realgar tailing slag stabilization treatment method