JPH01201972A - Luminescent element driving circuit - Google Patents

Luminescent element driving circuit

Info

Publication number
JPH01201972A
JPH01201972A JP63026063A JP2606388A JPH01201972A JP H01201972 A JPH01201972 A JP H01201972A JP 63026063 A JP63026063 A JP 63026063A JP 2606388 A JP2606388 A JP 2606388A JP H01201972 A JPH01201972 A JP H01201972A
Authority
JP
Japan
Prior art keywords
fet
light emitting
emitting element
modulation signal
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63026063A
Other languages
Japanese (ja)
Inventor
Kuniaki Motojima
邦明 本島
Tadayoshi Kitayama
北山 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63026063A priority Critical patent/JPH01201972A/en
Publication of JPH01201972A publication Critical patent/JPH01201972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To shorten the rise and fall time of light output by arranging a driving circuit by using FET, a parallel circuit of a resistor and a capacitor, and a three-terminal switch. CONSTITUTION:A modulation signal 23 is input to a gate input terminal 21 of a FET 15, and a reverse modulation signal 26 is input to a control signal input terminal 22. A FET 15 performs a saturation switching operation by a source potential VS of the FET 15 supplied from high-level VH and low-level VL of a modulation signal 23 and a negative power supply 11 being VL< VS-Vth, VH>VS (where Vth: threshold voltage of FET 15), and a waveform 25 of a resistance value between the drain and source of the FET 15 can be obtained. Th FET 15 is a majority carrier device, and the switching of resistance between the drain and source is made abruptly. A three-terminal switch 18 operates in such a way that when a reverse modulation signal 26 is high, conduction is made between the terminals 19, 20, and when low, conduction therebetween is cut. This makes it possible to shorten the rise and fall time of light output even when a luminescent element has a high impedance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ディジタル光通信における発光素子駆動回
路、特に光出力波形の立上がり、立下がり時間の短縮化
を行うことのできる発光素子駆動回路に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a light emitting element driving circuit in digital optical communication, and particularly to a light emitting element driving circuit that can shorten the rise and fall times of an optical output waveform. It is something.

(従来の技術) 第4図は、例えば昭和62年電子情報通信学会創立70
周年記念総合全国大会2397.’125M b/s伝
送用光送受信器J、10−275頁に示されている従来
の発光素子駆動回路を示すもので、図中、(1)はノア
ゲート、(2)は第1のトランジスタ、(3)は第2の
トランジスタ、(4)は第3のトランジスタ、(5)は
第4のトランジスタ、(6)は第1の定電流源、(7)
は第2の定電流源、(8)は結合コンデンサ、(9)は
抵抗、(10)は発光素子、(11)は負電源である。
(Prior art) Figure 4 shows, for example, the 70th anniversary of the founding of the Institute of Electronics, Information and Communication Engineers in 1988.
Anniversary Comprehensive National Convention 2397. '125M b/s Transmission Optical Transmitter/Receiver J, page 10-275 shows a conventional light emitting element drive circuit, in which (1) is a NOR gate, (2) is a first transistor, (3) is the second transistor, (4) is the third transistor, (5) is the fourth transistor, (6) is the first constant current source, (7)
is a second constant current source, (8) is a coupling capacitor, (9) is a resistor, (10) is a light emitting element, and (11) is a negative power supply.

第5図は、第4図に示された発光素子駆動回路の各部波
形図てあり、図中、(12)は第1のトランジスタ(2
)のコレクタ電流波形、(13)は総合コンデンサ(8
)を流れる電流波形、(14)は発光素子(10)の駆
動電流波形である。
FIG. 5 is a waveform diagram of each part of the light emitting device drive circuit shown in FIG.
), (13) is the collector current waveform of the overall capacitor (8
), and (14) is the drive current waveform of the light emitting element (10).

従来の発光素子駆動回路は上記のように構成され、変調
信号はノアゲート(1)に人力され、正相・逆相の変調
信号に変換された後、第1のトランジスタ(2)、第3
のトランジスタ(4)およひ第2のトランジスタ(3)
、M4のトランジスタ(5)のベースに入力される。第
1のトランジスタ(2)、第2のトランジスタ(3)お
よび第1の定電流源(6)は電流切換回路を構成し、第
1のトランジスタ(2)のコレクタ電流波形(12)か
得られる。
A conventional light emitting element drive circuit is configured as described above, and a modulation signal is inputted to the NOR gate (1) and converted into a positive phase/reverse phase modulation signal, and then the first transistor (2), the third transistor
transistor (4) and second transistor (3)
, M4 is input to the base of the transistor (5). The first transistor (2), the second transistor (3), and the first constant current source (6) constitute a current switching circuit, and the collector current waveform (12) of the first transistor (2) can be obtained. .

また第3のトランジスタ(4)、第4のトランジスタ(
5)および第2の定電流源(7)は電流切換回路を構成
し、抵抗(9)と結合コンデンサ(8)との微分特性に
より、結合コンデンサ(8)を流れる電流波形(13)
が得られる。さらに、発光素子(1o)には、第1のト
ランジスタ(2)のコレクタ電流波形(12)と結合コ
ンデンサ(8)を流れる電流波形(13)との和とし、
て駆動電流波形(14)か流れる。結合コンデンサ(8
)を流れる電流波形(13)は、発光素子(10)の光
出力の立上がり時に、定常状態より大きな電流を流すこ
とにより、立上がり時間を短縮し、光出力の立上がり時
に発光素子(10)に電流を供給して発光素子(10)
の蓄積電荷を吸収し、光出力の立上がり時間を短縮する
効果を有する。発光素子(10)の光出力の立下がり時
にも、同様の理由により光出力の立下がり時間を短縮す
る効果を有している。
In addition, the third transistor (4) and the fourth transistor (
5) and the second constant current source (7) constitute a current switching circuit, and the current waveform (13) flowing through the coupling capacitor (8) is determined by the differential characteristics of the resistor (9) and the coupling capacitor (8).
is obtained. Furthermore, in the light emitting element (1o), the sum of the collector current waveform (12) of the first transistor (2) and the current waveform (13) flowing through the coupling capacitor (8),
The drive current waveform (14) flows. Coupling capacitor (8
) The current waveform (13) flowing through the light emitting element (10) shortens the rise time by flowing a larger current than the steady state when the light output of the light emitting element (10) rises, and the current waveform (13) flows through the light emitting element (10) when the light output rises. Light emitting element (10) by supplying
It has the effect of absorbing the accumulated charge of , and shortening the rise time of optical output. Also when the light output of the light emitting element (10) falls, it has the effect of shortening the fall time of the light output for the same reason.

(発明か解決しようとする課題) 上記のような従来の発光素子駆動回路ては、抵抗(9)
と結合コンデンサ(8)との微分特性により発生する電
(嵐を光出力の立上がり時と立下がり時とにおいて加え
ることにより、光出力波形の立上がり時間、立下がり時
間の短縮化を行なっているが、抵抗(9)と結合コンデ
ンサ(8)との微分特性は、発光素子(10)のインピ
ータンスが充分小さい場合にしか理想的な動作かできな
い。
(Problem to be solved by the invention) In the conventional light emitting element drive circuit as described above, the resistor (9)
The rise time and fall time of the optical output waveform are shortened by adding the electric current (storm) generated by the differential characteristics of the optical output waveform and the coupling capacitor (8) at the rise and fall of the optical output. The differential characteristics of the resistor (9) and the coupling capacitor (8) allow ideal operation only when the impedance of the light emitting element (10) is sufficiently small.

ところが実際の光出力の立上がり時、立下がり時には、
発光素子(lO)のインピーダンスが大きいため、結合
コンデンサ(8)に流れる電流波形(13)のピーク値
を充分大きくすることがてきず、光出力の立上がり、立
下がり時間の短縮効果が不充分であるという課題かあっ
た。
However, when the actual optical output rises and falls,
Since the impedance of the light emitting element (lO) is large, it is not possible to sufficiently increase the peak value of the current waveform (13) flowing through the coupling capacitor (8), and the effect of shortening the rise and fall times of the optical output is insufficient. There was a certain issue.

この発明は、かかる課題を解決するためになされたもの
で、発光素子のインピータンスが大きい場合でも、光出
力の立上がり、立下がり時間を充分短縮することがてき
る発光素子駆動回路を得ることを目的とする。
This invention was made to solve this problem, and aims to provide a light emitting element drive circuit that can sufficiently shorten the rise and fall times of optical output even when the impedance of the light emitting element is large. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る発光素子駆動回路は、ゲートに変調信号
か人力される電界効果トランジスタ(以下FET)と、
このFETのドレインと発光素子のカソードとの間に接
続された抵抗・コンデンサの並列回路と、第1の端子が
発光素子のカソードと上記並列回路との間に接続される
とともに、第2の端子か上記発生素子のアノード電位以
上の任意の電位を有する電源に接続され、上記変調信号
又はその反転信号が制御信号として入力される3端子ス
イッチとを設けるようにしたものである。
The light emitting device drive circuit according to the present invention includes a field effect transistor (hereinafter referred to as FET) whose gate receives a modulation signal manually;
A parallel circuit of a resistor/capacitor is connected between the drain of the FET and the cathode of the light emitting element, a first terminal is connected between the cathode of the light emitting element and the parallel circuit, and a second terminal is connected between the cathode of the light emitting element and the parallel circuit. and a three-terminal switch connected to a power supply having an arbitrary potential higher than the anode potential of the generating element, and into which the modulation signal or its inverted signal is input as a control signal.

(作用) この発明においては、FETのドレインと発光素子のカ
ソードとの間に接続される抵抗・コンデンサの並列回路
により、光出力の立上がり時に発光素子駆動電流にサグ
電流を発生させて光出力波形の立上がり時間を短縮し、
光出力の立下がり時には、制御信号により3端子スイッ
チの第1の端子と第2の端子との間を導通状態とし、発
光素子の蓄積電荷を放電させることにより光出力波形の
立下がり時間を短縮する。
(Function) In this invention, a parallel circuit of a resistor and a capacitor connected between the drain of the FET and the cathode of the light emitting element generates a sag current in the light emitting element drive current at the rise of the optical output, thereby shaping the optical output waveform. Shorten the rise time of
When the optical output falls, the control signal brings the first and second terminals of the three-terminal switch into a conductive state and discharges the accumulated charge in the light emitting element, thereby shortening the falling time of the optical output waveform. do.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示すもので、図中、第4
図と同一符号は同−又は相当部分を示す。(15)はF
ET 、(16)は抵抗、(17)はこの抵抗(16)
とともに並列回路を構成するコンデンサ、(18)は3
端子スイッチ、(19)はこの3端子スイッチ(18)
の第1の端子、(20)は3端子スイッチ(18)の第
2の端子、(21)は上記FET (15)のゲート入
力端子、(22)は上記3端子スイッチ(18)の制御
信号入力端子である。
FIG. 1 shows an embodiment of the present invention.
The same reference numerals as in the figures indicate the same or corresponding parts. (15) is F
ET, (16) is the resistance, (17) is this resistance (16)
The capacitor that forms a parallel circuit with (18) is 3
Terminal switch, (19) is this 3-terminal switch (18)
(20) is the second terminal of the three-terminal switch (18), (21) is the gate input terminal of the FET (15), and (22) is the control signal of the three-terminal switch (18). This is an input terminal.

第2図は、第1図に示した発光素子駆動回路の各部波形
図であり、図中、(23)は上記ゲート入力端子(21
)に入力される変調信号、(24)は上記FET(15
)のソース電位、(25)はFET (15)のドレイ
ン・ソース間抵抗値の波形、(26)は上記制御信号入
力端子(22)に制御信号として人力される反転変調信
号、(27)は発光素子(10)の駆動電流波形である
FIG. 2 is a waveform diagram of each part of the light emitting element drive circuit shown in FIG. 1, in which (23) is the gate input terminal (21
), the modulation signal (24) is input to the FET (15
), (25) is the waveform of the drain-source resistance value of FET (15), (26) is the inverted modulation signal input as a control signal to the control signal input terminal (22), and (27) is the waveform of the drain-source resistance value of FET (15). It is a drive current waveform of a light emitting element (10).

上記のように構成された発光素子駆動回路において、変
調信号(23)は、FET (15)のゲート入力端子
(21)に人力され、また反転変調信号(26)は、制
御信号入力端子(22)に人力される。変調信号(23
)の高レベルvHと低レベルvLおよび負電源(11)
から供給されるFET (15)のソース電位vsは、
以下に示す関係式を満たす。
In the light emitting element drive circuit configured as described above, the modulation signal (23) is input to the gate input terminal (21) of the FET (15), and the inverted modulation signal (26) is input to the control signal input terminal (22). ) is done manually. Modulation signal (23
) high level vH, low level vL and negative power supply (11)
The source potential vs of FET (15) supplied from
The relational expression shown below is satisfied.

VL< VS  Vth              
 ・= (1)vll>v、            
   ・・・(2)但し、Vth:FET(15)閾値
電圧上記(1)式、(2)式より、FET (15)は
飽和スイッチング動作を行ない、FET (15)のド
レイン・ソース間抵抗は変調信号(23)が高レベルv
Hのときは数Ω、低レベルV、のときは数百Ωとなり、
第2図に示すようなFET (Is)のドレイン・ソー
ス間抵抗値の波形(25)か得られる。FET (15
)は多数キャリアデバイスであり、ドレイン・ソース間
抵抗のスイッチは急峻に行なわれる。
VL< VS Vth
・= (1) vll>v,
...(2) However, Vth: FET (15) threshold voltage From the above equations (1) and (2), FET (15) performs saturation switching operation, and the drain-source resistance of FET (15) is The modulation signal (23) is at a high level v
When it is H, it is several ohms, and when it is low level V, it is several hundred ohms.
A waveform (25) of the drain-source resistance value of the FET (Is) as shown in FIG. 2 is obtained. FET (15
) is a majority carrier device, and the drain-source resistance switches rapidly.

3端子スイッチ(18)は、反転変調信号(26)か高
レベルのとき第1の端子(19)と第2の端子(20)
とが導通、反転変調信号(26)が低レベルのとき第1
の端子(19)と第2の端子(20)とが遮断状態とな
るよう動作する。
The three-terminal switch (18) switches between the first terminal (19) and the second terminal (20) when the inverted modulation signal (26) is at a high level.
is conductive, and when the inverted modulation signal (26) is at a low level, the first
The terminal (19) and the second terminal (20) are operated to be in a disconnected state.

変調信号(23)が高レベルvHの期間T□、T3(第
2図参照)には、FET (15)のドレイン・ソース
間抵抗は非常に小さくなり、FET (15)のドレイ
ンにはソース電位V8が発生し、3端子スイッチ(18
)は遮断状態であるので、抵抗(16)とコンデンサ(
17)と   ゛の並列回路および発光素子(10)に
のみ電流が流れる。抵抗(16)とコンデンサ(17)
との並列回路のインピータンスは、高域通過特性を有す
るので、発光素子(10)の駆動電流波形(27)の立
上がり時にはピーキングが発生し、発光素子(10)の
光出力の立上がり時間を短縮する。
During the period T□, T3 (see Figure 2) when the modulation signal (23) is at a high level vH, the drain-source resistance of the FET (15) becomes extremely small, and the drain of the FET (15) has a source potential. V8 is generated and the 3-terminal switch (18
) is in the cut-off state, so the resistor (16) and capacitor (
Current flows only through the parallel circuit of 17) and 2 and the light emitting element (10). Resistor (16) and capacitor (17)
Since the impedance of the parallel circuit with the light-emitting element (10) has a high-pass characteristic, peaking occurs at the rise of the drive current waveform (27) of the light-emitting element (10), shortening the rise time of the optical output of the light-emitting element (10). do.

変調信号(23)か低しヘル覧の期間T2.T4  (
第2図参照)には、FET (15)のドレイン・ソー
ス間抵抗は数百Ωとなり、3端子スイッチ(18)は導
通状態となるため、抵抗(16)とコンデンサ(17)
との並列回路およびFET (15)のドレイン・ソー
ス間にはほとんど電流は漬れず、発光素子(10)と3
端子スイッチ(18)の経路を通じて発光素子(10)
の蓄積電荷か放電される。発光素子(10)の駆動電流
波形(27)の立下がり時には、消光する側にサグ電流
が流れることになり、発光素子(10)の光出力の立下
がり時間が短縮される。
The modulation signal (23) is low during the period T2. T4 (
(see Figure 2), the resistance between the drain and source of the FET (15) is several hundred Ω, and the 3-terminal switch (18) is in a conductive state, so the resistor (16) and capacitor (17)
There is almost no current flowing between the parallel circuit between the light emitting element (10) and the drain and source of the FET (15).
Light emitting element (10) through the path of terminal switch (18)
The accumulated charge is discharged. When the driving current waveform (27) of the light emitting element (10) falls, a sag current flows to the side where light is extinguished, and the fall time of the optical output of the light emitting element (10) is shortened.

しかして、発光素子(10)の立上がりは、抵抗(16
)とコンデンサ(17)との並列回路の高域通過特性に
より高速化され、また発光素子(10)の立下がりは、
3端子スイッチ(18)で発光素子(10)の蓄積電荷
を放電することにより高速化される。
Therefore, the rise of the light emitting element (10) is caused by the resistance (16
) and the capacitor (17) in parallel circuit, the speed is increased, and the falling edge of the light emitting element (10) is
The speed is increased by discharging the accumulated charge of the light emitting element (10) with the three-terminal switch (18).

また、従来の発光素子駆動回路で用いられていた電流切
換回路は、変調信号のパターンによらず常時発光素子駆
動電流のピーク値と同じ電流が消費されるが、この実施
例の発光素子駆動回路では、発光素子(10)か発光状
態にあるときのみ電流か消費されるので、大幅な低消費
電力化が可能となる。
In addition, the current switching circuit used in the conventional light emitting element drive circuit always consumes the same current as the peak value of the light emitting element drive current regardless of the modulation signal pattern, but the light emitting element drive circuit of this embodiment consumes the same current as the peak value of the light emitting element drive current. Since current is consumed only when the light emitting element (10) is in the light emitting state, it is possible to significantly reduce power consumption.

第3図はこの発明の他の実施例を示すものて、上記実施
例における3端子スイッチ(18)をFET(28)で
構成するようにしたものである。すなわち、反転変調信
号(26)が制御信号として入力される制御信号入力端
子(22)には、FET (28)のゲートか接続され
、また3端子スイッチ(18)の第1の端子(19)に
はFET (28)のソースが接続され、さらに3端子
スイッチ(18)の第2の端子(20)には、FET(
28)のドレインが接続されている。
FIG. 3 shows another embodiment of the present invention, in which the three-terminal switch (18) in the above embodiment is constructed with an FET (28). That is, the control signal input terminal (22) to which the inverted modulation signal (26) is input as a control signal is connected to the gate of the FET (28), and is also connected to the first terminal (19) of the three-terminal switch (18). The source of the FET (28) is connected to the FET (28), and the second terminal (20) of the three-terminal switch (18) is connected to the FET (28).
28) is connected to the drain.

以上の構成において、反転変調信号(26)の高レベル
■°、、低しヘルv′、は、以下の関係式を満たす。
In the above configuration, the high level ■°, and the low level v' of the inverted modulation signal (26) satisfy the following relational expression.

V’H= O(GNDレベル)      ・・・(3
)Vs min  v’、 > Vth       
   −(4)但し、VSmln:発光素子(10)の
カソード電位の最小値 vthFET(28)ノ闇値電圧 上記(4)式は、発光素子(10)の光出力オン時にF
ET (28)がオフ状態にあり、発光素子(10)の
駆動電流がすべて発光素子(10)に流れるための条件
式ところで、GaAs系、Inp系発光素子においては
、VSmi。は−16〜−2,0(V)程度であり、反
転変調信号(26)の振幅は2〜3(v)程度必要とな
る。上記(3)式、(4)式より、FET (28)は
飽和スイッチング動作を行ない、反転変調信号(26)
が高レベルV′□のとき数Ω、低レベルv′、のとき数
百Ωとなり、はぼ理想的な3端子スイッチとして動作す
る。発光素子(10)の光出力の立下がり時間は、発光
素子(10)の接合容量CtlとFET (28)のオ
ン抵抗γDSONとで決定され、オン抵抗γDSONは
、上記のとおり数Ωてあり、充分高速化が可能となる。
V'H = O (GND level) ... (3
)Vs min v', > Vth
-(4) However, VSmln: Minimum value of the cathode potential of the light emitting element (10) vthFET (28) dark value voltage The above equation (4) indicates that when the light output of the light emitting element (10) is on
ET (28) is in the off state and all the drive current of the light emitting element (10) flows to the light emitting element (10).By the way, in GaAs-based and Inp-based light emitting elements, VSmi. is approximately -16 to -2.0 (V), and the amplitude of the inverted modulation signal (26) is required to be approximately 2 to 3 (V). From equations (3) and (4) above, FET (28) performs saturation switching operation, and the inverted modulation signal (26)
When the voltage is at a high level V'□, it is several ohms, and when it is a low level v', it is several hundred ohms, and it operates as an ideal three-terminal switch. The fall time of the optical output of the light emitting element (10) is determined by the junction capacitance Ctl of the light emitting element (10) and the on-resistance γDSON of the FET (28), and the on-resistance γDSON is several Ω as described above. Sufficient speed-up is possible.

また、FETとしてGaAsMESFETを用いること
により、FETのドレイン・ソース間抵抗値の波形(2
5)の立上がり、立下がり時間は300 (P 5ec
)程度となり、IGb/s程度の変調か可能となり、高
速化にも適している。
In addition, by using a GaAs MESFET as the FET, the waveform of the resistance value between the drain and source of the FET (2
5) rise and fall times are 300 (P 5ec
), which enables modulation of the order of IGb/s and is suitable for high-speed operation.

なお、上記両実施例では、3端子スイッチ(18)の第
2の端子(20)を発光素子(10)のアノードと同電
位のGNDレベルに接続する場合を示したが、発光素子
(lO)のアノード電位以上の任意の電位に接続しても
同様の効果が期待てきる。
In both of the above embodiments, the second terminal (20) of the three-terminal switch (18) is connected to the GND level, which has the same potential as the anode of the light emitting element (10). A similar effect can be expected even if connected to any potential higher than the anode potential of .

また、上記両実施例では、制御信号として発光素子(1
0)の変調信号の反転信号を用いる3端子スイッチ(1
8)について示したが、変調信号と同相の信号を制御信
号として用いるタイプの3端子スイッチを用いても同様
の効果が得られる。
In both of the above embodiments, the light emitting element (1
A three-terminal switch (1) that uses the inverted signal of the modulation signal of
Although 8) was shown above, the same effect can be obtained by using a three-terminal switch of the type that uses a signal in phase with the modulation signal as a control signal.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、FETと、抵抗・コン
デンサの並列回路と、3端子スイッチとで駆動回路を構
成するようにしているので、発光素子のインピーダンス
が大きい場合でも、光出力の立上がり、立下がり時間を
充分短縮することができ、また大幅な低消費電力化を図
ることができる等の効果がある。
As explained above, in this invention, the drive circuit is configured with an FET, a parallel circuit of a resistor/capacitor, and a three-terminal switch, so even if the impedance of the light emitting element is large, the rise and fall of the optical output There are effects such as the fall time can be sufficiently shortened and power consumption can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る発光素子駆動回路を
示す回路図、第2図は第1図に示す回路の各部波形図、
第3図はこの発明の他の実施例を示す第1図相当図、第
4図は従来の発光素子駆動回路を示す回路図、第5図は
第4図に示す発光素子駆動回路の各部波形図である。 (10)・・・発光素子、(15)、(28)・・・F
ET 、(1B)・・・抵抗、(17)・・・コンデン
サ、(18)・・・3端子スイッチ、(19)・・・第
1の端子、(20)・・・第2の端子、(21)・・・
ゲート入力端子、(22)・・・制御信号入力端子。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a circuit diagram showing a light emitting element driving circuit according to an embodiment of the present invention, FIG. 2 is a waveform diagram of each part of the circuit shown in FIG. 1,
3 is a diagram corresponding to FIG. 1 showing another embodiment of the present invention, FIG. 4 is a circuit diagram showing a conventional light emitting element driving circuit, and FIG. 5 is a waveform of each part of the light emitting element driving circuit shown in FIG. 4. It is a diagram. (10)...Light emitting element, (15), (28)...F
ET, (1B)...resistor, (17)...capacitor, (18)...3-terminal switch, (19)...first terminal, (20)...second terminal, (21)...
Gate input terminal, (22)...control signal input terminal. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  ゲートに変調信号が入力される電界効果トランジスタ
と、このFETのドレインと発光素子のカソードとの間
に接続された抵抗・コンデンサの並列回路と、第1の端
子が発光素子のカソードと上記並列回路との間に接続さ
れるとともに、第2の端子が上記発光素子のアノード電
位以上の任意の電位を有する電源に接続され、上記変調
信号又はその反転信号が制御信号として入力される3端
子スイッチとを具備することを特徴とする発光素子駆動
回路。
A field effect transistor whose gate receives a modulation signal, a parallel circuit of a resistor/capacitor connected between the drain of this FET and the cathode of the light emitting element, and a first terminal connected to the cathode of the light emitting element and the above parallel circuit. a three-terminal switch, the second terminal of which is connected to a power supply having an arbitrary potential higher than the anode potential of the light emitting element, and into which the modulation signal or its inverted signal is input as a control signal; A light emitting element drive circuit comprising:
JP63026063A 1988-02-06 1988-02-06 Luminescent element driving circuit Pending JPH01201972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026063A JPH01201972A (en) 1988-02-06 1988-02-06 Luminescent element driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026063A JPH01201972A (en) 1988-02-06 1988-02-06 Luminescent element driving circuit

Publications (1)

Publication Number Publication Date
JPH01201972A true JPH01201972A (en) 1989-08-14

Family

ID=12183225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026063A Pending JPH01201972A (en) 1988-02-06 1988-02-06 Luminescent element driving circuit

Country Status (1)

Country Link
JP (1) JPH01201972A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298774A (en) * 1988-05-27 1989-12-01 Nec Corp Drive circuit for light emitting deode
JPH04233776A (en) * 1990-08-06 1992-08-21 American Teleph & Telegr Co <Att> Led driving circuit
JPH05308158A (en) * 1992-04-30 1993-11-19 Mitsubishi Electric Corp Transmitting circuit
JPH06296042A (en) * 1993-04-05 1994-10-21 Murata Mach Ltd High-speed on/off circuit for light-emitting diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298774A (en) * 1988-05-27 1989-12-01 Nec Corp Drive circuit for light emitting deode
JPH04233776A (en) * 1990-08-06 1992-08-21 American Teleph & Telegr Co <Att> Led driving circuit
JPH05308158A (en) * 1992-04-30 1993-11-19 Mitsubishi Electric Corp Transmitting circuit
JPH06296042A (en) * 1993-04-05 1994-10-21 Murata Mach Ltd High-speed on/off circuit for light-emitting diode

Similar Documents

Publication Publication Date Title
US4885486A (en) Darlington amplifier with high speed turnoff
EP0441965A1 (en) Light-emitting diode drive circuit
US4723312A (en) Light emitting diode driver circuit
JP2013026924A (en) Gate drive circuit
JPH0137053B2 (en)
JPH0154890B2 (en)
JPH01201972A (en) Luminescent element driving circuit
US4125814A (en) High-power switching amplifier
JP2737444B2 (en) High-speed logic circuit
JPS62256531A (en) Digital logic driving circuit
US5408136A (en) Circuit for providing fast logic transitions
JPH05335917A (en) Transfer gate and dynamic frequency divider circuit using the same
JP2004241505A (en) E/o conversion circuit
US20050231258A1 (en) Static flip-flop circuit
JPS6118231A (en) Driving circuit of light emitting element
JPH057144A (en) Light emitting element drive circuit
KR890004480B1 (en) Radiation device driving circuit
US20040264526A1 (en) Electrical circuit for a directly modulated semiconductor radiation source
JP6310139B1 (en) Photocoupler output circuit and photocoupler
KR100257637B1 (en) Differential amplifier with limited output current
JPH039393Y2 (en)
JP2694808B2 (en) Solid state relay
JP2771163B2 (en) LED drive circuit
JPH1093143A (en) Led drive circuit
JP2743874B2 (en) Solid state relay