JPS6118231A - Driving circuit of light emitting element - Google Patents

Driving circuit of light emitting element

Info

Publication number
JPS6118231A
JPS6118231A JP59138395A JP13839584A JPS6118231A JP S6118231 A JPS6118231 A JP S6118231A JP 59138395 A JP59138395 A JP 59138395A JP 13839584 A JP13839584 A JP 13839584A JP S6118231 A JPS6118231 A JP S6118231A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
fet5
resistor
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138395A
Other languages
Japanese (ja)
Inventor
Mitsuaki Nishie
光昭 西江
Hisashi Takada
高田 寿士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59138395A priority Critical patent/JPS6118231A/en
Publication of JPS6118231A publication Critical patent/JPS6118231A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Abstract

PURPOSE:To attain high-speed response of a light emitting element and to reduce current consumption by connecting an FET in parallel with the light emitting element to bring the FET to the pinch-off state at the lighting of the light emitting element and the FET to the operating state at the extinction of the light emitting element. CONSTITUTION:An anode of a light emitting diode PD2 and a drain of the FET5 are connected to a positive power supply terminal 1, a cathode of the PD2 is connected to the source of the FET5 and a resistor 6, a gate of the FET5 and a collector of a transistor (Tr)3 is connected respectively to the other end of the resistor 6. When the Tr3 is turned on, a current flows to the PD2 and the resistor 6, the PD2 is lighted, the FET5 is brought into the pinch-off state by a voltage drop across the resistor 6 and no current flows to the FET5. When the Tr3 is turned off and the PD2 is extinguished, the source and gate of the FET5 reach the equi-potential, the FET5 is operative, the electric charge stored in the capacity of the PD2 is discharged through the FET5 and high-speed response is attained.

Description

【発明の詳細な説明】 (イ)利用分野 この発明は発光素子を駆動する発光素子駆動回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Application This invention relates to a light emitting element drive circuit for driving a light emitting element.

(ロ)従来技術 パルス符号変調(PCM)方式等のパルス形式による光
通信の分野においては、半導体レーザ又は発光ダイオー
ドが発光素子(発光源)として広く用いられている。し
かしながら、これら発行素子を高速に駆動する場合には
、駆動周波数が高くなるほど、その発光波形に歪みを生
じて、駆動電流波形に追従しなくなる傾向がある。
(B) Prior Art In the field of pulse-based optical communications such as pulse code modulation (PCM), semiconductor lasers or light emitting diodes are widely used as light emitting elements (light emitting sources). However, when these light emitting elements are driven at high speed, the higher the drive frequency becomes, the more distortion occurs in the light emission waveform, which tends to become less able to follow the drive current waveform.

第3図は従来の発光素子駆動回路の回路構成図を示し、
同図中、電流源1の正端子には発光ダイオード2のアノ
ードが接続されている。発光ダイオード2のカソードに
はnpn形のトランジスタ3のコレクタが接続され、そ
のエミッタは接地されている。トランジスタ3は発光ダ
イオード2を駆動するもので、そのベースには信号が入
力される。
FIG. 3 shows a circuit configuration diagram of a conventional light emitting element drive circuit,
In the figure, the anode of a light emitting diode 2 is connected to the positive terminal of a current source 1. A collector of an npn transistor 3 is connected to the cathode of the light emitting diode 2, and its emitter is grounded. The transistor 3 drives the light emitting diode 2, and a signal is input to its base.

第4図は第3図の発光素子駆動回路の波形図を示し、同
図囚はトランジスタ30ベースに入力する入力信号波形
を示している。トランジスタ3のベースに第4図囚の信
号が入力すると、信号がゝ1“の状態ではトランジスタ
3がON状態となり電流源と、して動作し、発光ダイオ
ード2には、正電源端子1から第4図ω)に示すように
駆動電流が流れる。この駆動電流によって発光ダイオー
ド2は第4図(C)に示す積分波形の発光出力を得る。
FIG. 4 shows a waveform diagram of the light emitting element drive circuit of FIG. When the signal shown in Figure 4 is input to the base of the transistor 3, when the signal is 1, the transistor 3 is turned on and operates as a current source. A drive current flows as shown in FIG. 4 (ω). Due to this drive current, the light emitting diode 2 obtains a light emission output with an integral waveform shown in FIG. 4(C).

この理由は、発光ダイオードは容量性の負荷であるため
、その光出力波形は第4図の)の駆動電流波形の積分波
形となるためである。このため、発光ダイオードを高速
動作させることは困難である。
The reason for this is that since the light emitting diode is a capacitive load, its optical output waveform becomes an integral waveform of the drive current waveform shown in FIG. 4). Therefore, it is difficult to operate the light emitting diode at high speed.

前述の問題を解決するため、第5図のように構成された
発光素子駆動回路が知られている。
In order to solve the above-mentioned problem, a light emitting element driving circuit configured as shown in FIG. 5 is known.

この回路は、発光ダイオード2に並列に抵抗4を接続し
て発光ダイオード2の光出力波形を改善し、高速動作を
可能にしようとしている。
This circuit connects a resistor 4 in parallel to the light emitting diode 2 to improve the optical output waveform of the light emitting diode 2 and to enable high-speed operation.

(ハ)発明が解決しようとする問題点 第5図の発光素子駆動回路においては、発光ダイオード
2の発光時に抵抗4に電流が流れ、このため発光ダイオ
ード2に流れる電流と、抵抗4に流れる電流との和を電
流源として作用子るトランジスタ3から供給する必要が
あり、電流源の使用効率が悪い欠点があった。さらに、
前記抵抗4はその値が低いほど発光ダイオード2が発光
から消光への遷移が速くなり、高速動作が可能となるも
のの、発光時に抵抗4に流れる電流が非常に大きくなり
、その値は自ずと制限される。例えば、発光ダイオード
2の立上り時間が抵抗4を接続しない状態において4.
6ナノ秒とすると、60オームの抵抗4を並列に接続す
ると2ナノ秒となり、”速度は2.・6倍に増大する。
(c) Problems to be Solved by the Invention In the light emitting device drive circuit shown in FIG. It is necessary to supply the sum from the transistor 3 acting as a current source, which has the disadvantage that the efficiency of using the current source is poor. moreover,
The lower the value of the resistor 4, the faster the light emitting diode 2 transitions from light emission to extinction, enabling high-speed operation. However, the current flowing through the resistor 4 during light emission becomes very large, and its value is naturally limited. Ru. For example, if the rise time of the light emitting diode 2 is 4.
If it is 6 nanoseconds, connecting a 60 ohm resistor 4 in parallel will take 2 nanoseconds, increasing the speed by a factor of 2.6.

しかしながら、消費電流に関しては、発光ダイオード2
に抵抗4を接続しない場合には60’mAであるものの
、60オームの抵抗4を接続した場合には発光ダイオー
ド2の順方向電圧を1.4Vとすると抵抗4に流れる電
流は1.4M÷30(Q)中47 (mA)となり、発
光タイオード2の60mAと合わせて107mA  と
なって約1,8倍に増加する。このため、消費電流増加
に伴ない駆動トランジスタの許容電力容量を大きくする
などの強化が必要になることに加え、発熱量の増加によ
る温度上昇のため発光ダイオード20発光出力の減少、
信頼性の低下などの問題が生じていた。
However, regarding current consumption, the light emitting diode 2
If the resistor 4 is not connected to the resistor 4, the current is 60'mA, but if the 60 ohm resistor 4 is connected and the forward voltage of the light emitting diode 2 is 1.4V, the current flowing through the resistor 4 is 1.4M÷ 47 (mA) out of 30 (Q), and when combined with 60 mA of light emitting diode 2, it becomes 107 mA, which is an increase of about 1.8 times. For this reason, in addition to the need to strengthen the drive transistor by increasing the allowable power capacity due to the increase in current consumption, the light emitting output of the light emitting diode 20 will decrease due to the temperature rise due to the increase in heat generation.
Problems such as decreased reliability were occurring.

この発明の目的は、発光素子の高速応答が可能であると
共に消費電流を少なくできる発光素子駆動回路を提供す
ることである。
An object of the present invention is to provide a light-emitting element drive circuit that enables high-speed response of a light-emitting element and reduces current consumption.

に)問題点を解決するための手段 前記問題点を解決するため、発光素子と抵抗と電流源と
を直列に接続し、前記発光素子に並列に電界効果トラン
ジスタを接続すると共にそのゲートを前記抵抗と前記電
流源との間に接続して構成してなるものである。第1図
にその構成を示す。
2) Means for solving the problem In order to solve the above problem, a light emitting element, a resistor and a current source are connected in series, a field effect transistor is connected in parallel to the light emitting element, and its gate is connected to the resistor. and the current source. Figure 1 shows its configuration.

(ホ)作 用 第1図かられかるように、発光ダイオードの発光時には
駆動電流が大きくなり、抵抗6に電圧が発生し、これに
よりゲート・ソース間電圧は下り、電界効果トランジス
タをピンチオフ状態に保ってそれに流れる電流を減少さ
せる。一方、発光ダイオードの消光時には駆動電流は零
状態にあるのでゲート・ソース間電圧はほぼ零となり、
電界効果トランジスタには一般的にID5Sとして定義
される一定の電流が流れ、この結果、発光ダイオードの
容量成分に蓄積された電荷が即時に放電される。
(E) Function As can be seen from Figure 1, when the light emitting diode emits light, the drive current increases and a voltage is generated across the resistor 6, which lowers the gate-source voltage and puts the field effect transistor in a pinch-off state. and reduce the current flowing through it. On the other hand, when the light emitting diode is turned off, the drive current is in a zero state, so the gate-source voltage becomes almost zero.
A constant current, generally defined as ID5S, flows through the field effect transistor, resulting in an immediate discharge of the charge stored in the capacitive component of the light emitting diode.

(へ)実施例 以下、この発明の一実施例につき第1図および第2図に
基づいて説明する。第1図囚はこの発明の発光素子駆動
回路を示し、第3図の回路と同一部分は同一符号を付し
て説明は省略する。
(F) Example Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2. FIG. 1 shows a light emitting element driving circuit of the present invention, and the same parts as those in the circuit of FIG.

第1図囚において、電界効果トランジスタ5のドレイン
は発光ダイオード3のアノード及び正電源端子1に接続
され、そのソースは発光ダイオード3のカソードに接続
されている。さらに、電界効果トランジスタ5のソース
と発光ダイオード2のカソードには抵抗6の一端が接続
され、その他端は電界効果トランジスタ5のゲートとト
ランジスタ3のコレクタに接続されている。    。
In FIG. 1, the drain of the field effect transistor 5 is connected to the anode of the light emitting diode 3 and the positive power supply terminal 1, and the source thereof is connected to the cathode of the light emitting diode 3. Further, one end of a resistor 6 is connected to the source of the field effect transistor 5 and the cathode of the light emitting diode 2, and the other end is connected to the gate of the field effect transistor 5 and the collector of the transistor 3. .

第2図は電界効果トランジスタ5のゲートとソース間の
電圧、即ちゲート電圧VGと電界効果トランジスタ5の
ソース・ドレイン間に流れる電流工との関係を示す図で
ある。第2図から明らかなようにゲート電圧を逆方向に
増加していくと電界効果トランジスタ5はピンチオフ状
態となり、電流工は流れなくなる。このときの電圧をピ
ンチオフ電圧Vpo  と呼ぶ。
FIG. 2 is a diagram showing the relationship between the voltage between the gate and source of the field effect transistor 5, that is, the gate voltage VG, and the current flowing between the source and drain of the field effect transistor 5. As is clear from FIG. 2, when the gate voltage is increased in the opposite direction, the field effect transistor 5 becomes in a pinch-off state, and the current no longer flows. The voltage at this time is called a pinch-off voltage Vpo.

トランジスタ3のON時、即ち発光ダイオード30発光
時には正電源端子1より駆動電流が発光ダイオード2.
抵抗6およびトランジスタ3を介して流れる。この駆動
電流が抵抗6を流れることによる電圧降下の結果、電界
トランジスタ5のゲート電圧は下り、電界効果トランジ
スタはピンチオフ状態又はそれに近い高インピーダンス
状態になる。この状態では、第2図に示すように電界効
果トランジスタ5に流れる電流Iが零又はこれに近い状
態となり、無駄な消費電流を無くして電流源を効率的に
動作させる。
When the transistor 3 is ON, that is, when the light emitting diode 30 emits light, the drive current is applied from the positive power supply terminal 1 to the light emitting diode 2.
Flows through resistor 6 and transistor 3. As a result of the voltage drop caused by this drive current flowing through the resistor 6, the gate voltage of the field effect transistor 5 decreases, and the field effect transistor enters a pinch-off state or a high impedance state close to it. In this state, as shown in FIG. 2, the current I flowing through the field effect transistor 5 is zero or close to zero, eliminating unnecessary current consumption and operating the current source efficiently.

トランジスタ3のOFF時、即ち発光ダイオード3の消
光時には、抵抗6を流れる駆動電流は零又は零に近い状
態にあるので、電界効果トランジスタ5のゲート電圧は
ソース電圧とほぼ等しくなり、この結果、第2図に示す
ように電界効果トランジスタ5にはID5Sに相当する
一定の電流が流れることになる。第1図の)は第1図面
の消光時の等何回路を示したもので、同図矢印で示すよ
うに、発光ダイオード2の容量成分に蓄積された電荷が
電界効果トランジスタ5を介して放電され、この結果、
発光から消光への遷移が高速に行なわれる。なお、第3
図において、例えば60オームの抵抗4を並列に接続し
た場合には、発光ダイオード2の発光から消光への遷移
の瞬間には発光ダイオード2には1.6vの電圧が印加
されているから47mAの電流で蓄積電荷が放電される
。これと同様の消光効果を得るためには、電界効果トラ
ンジスタ5′)電流ID5Sが47mAのものを選べば
良い。
When the transistor 3 is off, that is, when the light emitting diode 3 is turned off, the drive current flowing through the resistor 6 is zero or close to zero, so the gate voltage of the field effect transistor 5 becomes almost equal to the source voltage, and as a result, the As shown in FIG. 2, a constant current corresponding to ID5S flows through the field effect transistor 5. ) in FIG. 1 shows the circuit at the time of extinction in FIG. and as a result,
The transition from emission to quenching occurs rapidly. In addition, the third
In the figure, for example, when a 60 ohm resistor 4 is connected in parallel, a voltage of 1.6 V is applied to the light emitting diode 2 at the moment of transition from light emission to extinction, so a voltage of 47 mA is applied to the light emitting diode 2. The current discharges the accumulated charge. In order to obtain a similar quenching effect, a field effect transistor 5') with a current ID5S of 47 mA should be selected.

第1図(5)において、抵抗6の値をRとすると、Rと
発光ダイオード2の駆動電流II)によって電界効果ト
ランジスタ50発光時のゲート電圧vGが定まり、 VG = RX  Ip    となる。
In FIG. 1(5), when the value of the resistor 6 is R, the gate voltage vG when the field effect transistor 50 emits light is determined by R and the drive current II of the light emitting diode 2, and VG = RX Ip.

そこで、上式のゲート電圧VGをピンチオフ電圧VPO
になる様に設計すれば、発光ダイオード2の発光時に電
界効果トランジスタ5の電流は流れず電流使用の効率が
良い。通常の電界効果トランジスタの場合はVPO=−
1,5’V  %度であり、駆動電流IDを60mAと
すると、R−25Ωで上記の条件となる。
Therefore, the gate voltage VG in the above equation is converted to the pinch-off voltage VPO.
If designed so that the light emitting diode 2 emits light, no current flows through the field effect transistor 5, resulting in good current usage efficiency. In the case of a normal field effect transistor, VPO=-
If the current is 1.5'V% and the drive current ID is 60mA, then the above conditions are met with R-25Ω.

前記電界効果トランジスタ5に替えてトラン′ ジスタ
な使用すると、トランジスタはスイッチング動作をさせ
ると過剰蓄積ベース電荷の影響により動作速度が遅くな
り、このため、発光ダイオードを高速化するという本来
の目的が失なわれる。これに対し、電界効果トランジス
タは上述の現象はなく、高速でスイッチングできるため
、良好な特性が得られる。
If a transistor is used in place of the field effect transistor 5, the operating speed of the transistor will be slowed down due to the influence of excessive accumulated base charge when the transistor performs a switching operation, thus defeating the original purpose of increasing the speed of the light emitting diode. be called. On the other hand, field effect transistors do not suffer from the above-mentioned phenomenon and can be switched at high speed, so that good characteristics can be obtained.

なお、前記実施例においては発光素子として発光ダイオ
ード2を使用した構成としたが、これに限らず半導体レ
ーザを使用しても同様の改善が得られる。
In the above embodiment, the light emitting diode 2 is used as the light emitting element, but the present invention is not limited to this, and the same improvement can be obtained even if a semiconductor laser is used.

(ト)効 果 この発明は、消費電流を増すことな(、発光素子の立下
り時間を短縮して光出力波形の歪みを改善することがで
きる。この結果、入力信号に高速応答でき、パルス形式
の光通信システムに好適に利用できる。
(G) Effects This invention can improve the distortion of the optical output waveform by shortening the fall time of the light emitting element without increasing the current consumption.As a result, it is possible to respond quickly to input signals and to This type of optical communication system can be suitably used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示し、第1図(5)は回
路構成図、第1図の)は消光時の放電回路図、第2図は
電界効果トランジスタのゲート電圧−電流特性図、第3
図は従来の発光素子駆動回路の回路構成図、第4図は第
3図の回路の各部波形図、第5図は従来の発光素子駆動
回路の他の回路構成図である。 1・・・正電源端子、2・・・発光ダイオード、3・・
・トランジスタ、5・・・電界効果トランジスタ、6・
・・抵抗。 特許出願人 住友電気工業株式会社 (外5名) 毛1図 CA)                  (B)L
2図 A 派3凹 纂47 阜5図
Fig. 1 shows an embodiment of the present invention, Fig. 1 (5) is a circuit configuration diagram, ) in Fig. 1 is a discharge circuit diagram during extinction, and Fig. 2 is a gate voltage-current characteristic of a field effect transistor. Figure, 3rd
4 is a circuit diagram of a conventional light emitting element drive circuit, FIG. 4 is a waveform diagram of each part of the circuit of FIG. 3, and FIG. 5 is a circuit diagram of another conventional light emitting element drive circuit. 1... Positive power supply terminal, 2... Light emitting diode, 3...
・Transistor, 5... Field effect transistor, 6・
··resistance. Patent applicant: Sumitomo Electric Industries, Ltd. (5 others)
Figure 2 A School 3 Concave 47 Figure 5

Claims (1)

【特許請求の範囲】 発光素子と抵抗と電流源とを直列に接続し、前記発光素
子に並列に電界効果トランジスタを並列に接続すると共
にそのゲートを前記抵抗と前記電流源との間に接続して
構成され、 前記発光素子の発光時には前記電界効果トランジスタが
ピンチオフ状態に、前記発光素子の消光時には前記電界
効果トランジスタが能動状態へ制御されることを特徴と
する発光素子駆動回路。
[Claims] A light emitting element, a resistor, and a current source are connected in series, a field effect transistor is connected in parallel to the light emitting element, and its gate is connected between the resistor and the current source. A light-emitting element driving circuit, characterized in that the field-effect transistor is controlled to be in a pinch-off state when the light-emitting element emits light, and the field-effect transistor is controlled to be in an active state when the light-emitting element is extinguished.
JP59138395A 1984-07-04 1984-07-04 Driving circuit of light emitting element Pending JPS6118231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138395A JPS6118231A (en) 1984-07-04 1984-07-04 Driving circuit of light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138395A JPS6118231A (en) 1984-07-04 1984-07-04 Driving circuit of light emitting element

Publications (1)

Publication Number Publication Date
JPS6118231A true JPS6118231A (en) 1986-01-27

Family

ID=15220941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138395A Pending JPS6118231A (en) 1984-07-04 1984-07-04 Driving circuit of light emitting element

Country Status (1)

Country Link
JP (1) JPS6118231A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520428U (en) * 1991-08-19 1993-03-12 東亜電子工業株式会社 Coin timer control device
US5478381A (en) * 1993-10-05 1995-12-26 Hitachi Maxell, Ltd. Ink composition
EP0719654A1 (en) 1994-12-28 1996-07-03 Hitachi Maxell Ltd. Ink composition, printed matter, and thermal transfer recording medium
US5569531A (en) * 1993-10-05 1996-10-29 Hitachi Maxell, Ltd. Ink ribbon
US5932139A (en) * 1994-03-17 1999-08-03 Hitachi Maxell, Ltd. Fluorescent substance, fluorescent composition, fluorescent mark carrier and optical reader thereof
WO2006077909A1 (en) * 2005-01-20 2006-07-27 Rohm Co., Ltd Constant current circuit, light emitting apparatus and power supply apparatus using that constant current circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520428U (en) * 1991-08-19 1993-03-12 東亜電子工業株式会社 Coin timer control device
US5569531A (en) * 1993-10-05 1996-10-29 Hitachi Maxell, Ltd. Ink ribbon
US5478381A (en) * 1993-10-05 1995-12-26 Hitachi Maxell, Ltd. Ink composition
US6303929B1 (en) 1994-03-17 2001-10-16 Hitachi Maxell, Ltd. Fluorescent substance, fluorescent composition, fluorescent mark carrier and optical reader therefor
US5932139A (en) * 1994-03-17 1999-08-03 Hitachi Maxell, Ltd. Fluorescent substance, fluorescent composition, fluorescent mark carrier and optical reader thereof
US6436314B1 (en) 1994-03-17 2002-08-20 Hitachi Maxell, Ltd. Particulate fluorescent substance
US6458294B2 (en) 1994-03-17 2002-10-01 Hitachi Maxell, Ltd. Fluorescent ink compositions
US6471887B2 (en) 1994-03-17 2002-10-29 Hitachi Maxell, Ltd. Neodymium, ytterbium and/or erbium containing organic fluorescent compositions
US6688789B2 (en) 1994-03-17 2004-02-10 Hitachi Maxell, Ltd. Fluorescent substance, fluorescent composition, fluorescent mark carrier and optical reader therefor
US5766324A (en) * 1994-12-28 1998-06-16 Hitachi Maxell, Ltd. Ink composition, printed matter, and thermal transfer recording medium
EP0719654A1 (en) 1994-12-28 1996-07-03 Hitachi Maxell Ltd. Ink composition, printed matter, and thermal transfer recording medium
WO2006077909A1 (en) * 2005-01-20 2006-07-27 Rohm Co., Ltd Constant current circuit, light emitting apparatus and power supply apparatus using that constant current circuit
JP2006202043A (en) * 2005-01-20 2006-08-03 Rohm Co Ltd Constant current circuit, power apparatus using it, and light emitting device
US7915883B2 (en) 2005-01-20 2011-03-29 Rohm Co., Ltd. Constant current circuit, light emitting apparatus and power supply apparatus using that constant current circuit

Similar Documents

Publication Publication Date Title
JP4017960B2 (en) Driving circuit
US5315606A (en) Laser diode driving circuit
WO1991000621A1 (en) Light-emitting diode drive circuit
JPH11121852A (en) Light emitting device drive circuit
JPS6159885A (en) Drive circuit of light emitting diode
JPH0137053B2 (en)
US4864193A (en) Luminous element and driving circuit
JPS6118231A (en) Driving circuit of light emitting element
JPH0621540A (en) Light emitting element driving circuit
US7224709B2 (en) Electrical circuit for a directly modulated semiconductor radiation source
JP3488088B2 (en) Light emitting diode drive circuit
US7098877B2 (en) Driver circuit
JPS5860828A (en) Mos-fet driving circuit
JP3543266B2 (en) Optical coupling device and solid state relay including the same
JPH01298774A (en) Drive circuit for light emitting deode
JPH01201972A (en) Luminescent element driving circuit
KR890004481B1 (en) Radiation device driving circuit
KR890004480B1 (en) Radiation device driving circuit
JP2771163B2 (en) LED drive circuit
JPS62269417A (en) Drive circuit for circuit element having diode characteristic
KR960002352Y1 (en) Driving circuit for laser diode
JPH02103984A (en) Semiconductor-laser driving circuit
JPH0327579A (en) Light emitting diode drive circuit
JPH0590642A (en) Light emitting diode drive circuit
JPH04207711A (en) Driving circuit for semiconductor light emitting element