JPH01201479A - Diamond coated hydrogen embrittlement metal and its production - Google Patents
Diamond coated hydrogen embrittlement metal and its productionInfo
- Publication number
- JPH01201479A JPH01201479A JP25228588A JP25228588A JPH01201479A JP H01201479 A JPH01201479 A JP H01201479A JP 25228588 A JP25228588 A JP 25228588A JP 25228588 A JP25228588 A JP 25228588A JP H01201479 A JPH01201479 A JP H01201479A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- metal
- gas
- embrittle
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 38
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 35
- 239000002184 metal Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title abstract description 15
- 229910052739 hydrogen Inorganic materials 0.000 title abstract description 13
- 239000001257 hydrogen Substances 0.000 title abstract description 13
- 239000007789 gas Substances 0.000 claims abstract description 24
- 230000005684 electric field Effects 0.000 claims abstract description 6
- 239000011261 inert gas Substances 0.000 claims abstract description 4
- 239000011737 fluorine Substances 0.000 claims abstract description 3
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 3
- 239000010409 thin film Substances 0.000 claims description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 20
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 239000012808 vapor phase Substances 0.000 abstract description 5
- 239000010453 quartz Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 abstract 2
- 230000005284 excitation Effects 0.000 abstract 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 abstract 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 1
- 239000000460 chlorine Substances 0.000 abstract 1
- 229910052801 chlorine Inorganic materials 0.000 abstract 1
- 239000008246 gaseous mixture Substances 0.000 abstract 1
- 239000001301 oxygen Substances 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 150000004678 hydrides Chemical class 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- -1 titanium hydride Chemical compound 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分骨〕
本発明は、表面をダイヤモンド薄膜で被覆した水素脆性
金属及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a hydrogen-embrittle metal whose surface is coated with a diamond thin film and a method for manufacturing the same.
ダイヤモンドは、従来高温高圧の熱力学的安定状態から
合成されていたが、最近では化学気相合成法により低圧
もしくは常圧で基材上に薄膜状のダイヤモンドが合成さ
れるようになった。Diamond has traditionally been synthesized in a thermodynamically stable state under high temperature and high pressure, but recently diamond in the form of a thin film has been synthesized on a substrate at low pressure or normal pressure using chemical vapor phase synthesis.
かかる化学気相合成法(所謂CVD法)では、炭化水素
と水素の混合ガスを使用し、例えばマイクロ波無極放電
(特開昭58−110494号公報)、水素プラズマ(
特開昭58−135117号公報)及びマイクロ波プラ
ズマ(特開昭59−30398号公報)等により上記混
合ガスを励起して、基板上にダイヤモンド薄膜を形成す
るものである。又、最近では、炭素源としてアルコール
等を用いたり、直流バイアスの印加により成膜速度を高
める方法(特開昭59−3!r092号公報)等も提案
されている。上記いずれの方法においても、結晶性のよ
いダイヤモンド薄膜を形成する条件は、無定形遊離炭素
などの析出を防ぐため炭化水素を10倍以上の水素で希
釈した混合ガスを用い、基板温度は700〜1ooo
Cとされている。Such chemical vapor phase synthesis method (so-called CVD method) uses a mixed gas of hydrocarbon and hydrogen, such as microwave non-polar discharge (Japanese Patent Application Laid-open No. 110494/1983), hydrogen plasma (
A diamond thin film is formed on the substrate by exciting the above-mentioned mixed gas using JP-A-58-135117) or microwave plasma (JP-A-59-30398). Recently, methods have also been proposed in which the rate of film formation is increased by using alcohol or the like as a carbon source or by applying a direct current bias (Japanese Unexamined Patent Publication No. 59-3!r092). In any of the above methods, the conditions for forming a diamond thin film with good crystallinity are to use a mixed gas in which hydrocarbons are diluted with 10 times or more hydrogen in order to prevent precipitation of amorphous free carbon, etc., and the substrate temperature is 700 to 700℃. 1ooo
It is said to be C.
このようにして金属やセラミックスの表面に結晶性のよ
いダイヤモンド薄膜を形成することによって、耐摩耗性
を向上させたり、摩擦係数を下げたりすることが出来る
ので、ダイヤモンド被覆材、r。By forming a diamond thin film with good crystallinity on the surface of metals and ceramics in this way, wear resistance can be improved and the coefficient of friction can be lowered.
料は切削工具、メカニカルシール、スピーカー用振勅板
、集積回路基板などの用途に利用されつつある。Materials are being used in applications such as cutting tools, mechanical seals, speaker plates, and integrated circuit boards.
しかしながら、チタンやジルコニウム、又はその合金、
及びニッケルクロム鋼などの強靭鋼などには上記の方法
によりダイヤモンド薄膜を形成することは出来なかった
。チタンやジルコニウム、又はその合金は比強度が高く
、航空及び宇宙工学材料等として、又強靭鋼は構造用材
料や工具材料として一般に使用されている。ところが、
これらの金属は水素脆性金属と称され化学的に非常に活
性であるため、炭化水素と水素を原料とした還元性雰囲
気で行なわれる従来のCVD法では、プラズマ中の炭素
や水素と反応して不安定で脆い炭化チタンのような炭化
物や水素化チタン等の水素化物が形成される。However, titanium, zirconium, or their alloys,
It has not been possible to form a diamond thin film on tough steels such as nickel-chromium steel and the like using the above method. Titanium, zirconium, or their alloys have high specific strength and are commonly used as aeronautical and space engineering materials, and strong steels are generally used as structural materials and tool materials. However,
These metals are called hydrogen-embrittle metals and are very chemically active, so in the conventional CVD method, which is performed in a reducing atmosphere using hydrocarbons and hydrogen as raw materials, they react with carbon and hydrogen in the plasma. Unstable and brittle carbides such as titanium carbide and hydrides such as titanium hydride are formed.
このため、従来のCVD法により水素脆性金属表面に結
晶性のよいダイヤモンド薄膜を被覆しようとしても、炭
化物や水素化物の生成により水素脆性金属の特性や形状
自体が損なわれ、且つ密着性のよいダイヤモンド薄膜が
形成できなかった。For this reason, even if an attempt is made to coat the surface of a hydrogen-embrittle metal with a diamond thin film with good crystallinity using the conventional CVD method, the properties and shape of the hydrogen-embrittle metal itself will be damaged due to the formation of carbides and hydrides, and the diamond film with good adhesion will be damaged. A thin film could not be formed.
又、水素脆性金属の基材が厚さ5朋以下の場合や長時間
プラズマにさらされた場合には、炭化物や水素化物の生
成が激しく、逐には基材自体が破損に至ることもあった
。In addition, if the base material of hydrogen-embrittle metal is less than 5 mm thick or exposed to plasma for a long time, carbides and hydrides will be generated violently, and the base material itself may be damaged. Ta.
上記の如く、炭化水素と水素の混合ガスを用いる従来の
化学気相合成法では、水素脆性金属が炭化物や水素化物
を生成してしまうので、水素脆性金属を密着性のよいダ
イヤモンド薄膜で被覆することは不可能であった。As mentioned above, in the conventional chemical vapor phase synthesis method using a mixed gas of hydrocarbon and hydrogen, the hydrogen-brittle metal generates carbides and hydrides, so the hydrogen-brittle metal is coated with a diamond thin film with good adhesion. That was impossible.
本発明はかかる従来の事情に鑑み、表面に密着性のよい
ダイヤモンド薄膜を直接形成した水素脆性金属を提供す
ることを目的とする。In view of such conventional circumstances, an object of the present invention is to provide a hydrogen-embrittle metal on which a diamond thin film with good adhesion is directly formed.
上記目的を達成するため、本発明のダイヤモンド薄膜被
覆水素脆性金属の製造方法においては、炭素含有ガスと
、不活性ガス、酸素ガス、フッ素ガス、塩素ガス及び水
蒸気の少なくとも一種とからなる混合ガスを用い、10
〜760 torrの圧力で、直流又は交流の電界によ
って生成させたプラズマにより前記混合ガスを励起分解
し、水素脆性金属の表面に直接ダイヤモンド薄膜を形成
することを特徴とする。In order to achieve the above object, in the method for producing a diamond thin film-coated hydrogen brittle metal of the present invention, a mixed gas consisting of a carbon-containing gas and at least one of inert gas, oxygen gas, fluorine gas, chlorine gas, and water vapor is used. used, 10
The method is characterized in that the mixed gas is excited and decomposed by plasma generated by a DC or AC electric field at a pressure of ~760 torr to form a diamond thin film directly on the surface of the hydrogen-embrittle metal.
従って、上記方法により得られる本発明のダイヤモンド
薄膜被覆水素脆性金属は、水素脆性金属と、水素脆性金
属の表面に中間層を介在させず直接形成された密着性の
よいダイヤモンド薄膜とからなるものである。Therefore, the hydrogen-embrittle metal coated with a diamond thin film of the present invention obtained by the above method consists of a hydrogen-embrittle metal and a diamond thin film with good adhesion that is directly formed on the surface of the hydrogen-embrittle metal without intervening an intermediate layer. be.
尚、本発明において水素脆性金属とは水素を吸収ないし
反応して脆くなる金属であり、代表的にはチタン及びジ
ルコニウム、若しくは5型組%以上のチタン又はジルコ
ニウムを含有する合金、及びニッケル、クロム、モリブ
デンを各々5重量%以下含有する強靭鋼である。In the present invention, hydrogen-embrittle metals are metals that become brittle by absorbing or reacting with hydrogen, and typically include titanium and zirconium, or alloys containing 5% or more of titanium or zirconium, and nickel and chromium. , is a strong steel containing 5% by weight or less of molybdenum.
本発明方法で用いる炭素含有ガスとしては、メタン、エ
タン、エチレン等の炭化水素、エタノール等のアルコー
ル、若しくは一酸化炭素などがあり、これらはプラズマ
反応領域にガス状で供給される限り、その供給源が液体
や固体であっても良いことは勿論である。Examples of the carbon-containing gas used in the method of the present invention include hydrocarbons such as methane, ethane, and ethylene, alcohols such as ethanol, and carbon monoxide. Of course, the source may be liquid or solid.
本発明においては、水素ガスを使用せず、代りに不活性
ガス(HeSNeSAr、 Krq Xe)か又はエツ
チングガス(酸素ガス、フッ素ガス、塩素ガス、水蒸気
)若しくはそれらの混合ガスを使用し、水素ガスを用い
た場合よりも高い圧力で活性度の高いプラズマを生成さ
せるので、水素脆性金属表面に結晶性のよいダイヤモン
ド薄膜を高速で成長させることが出来る。又、水素ガス
を使用しないので、水素脆性金属の脆化又は特性の低下
、若しくは形状の変化がなく、化合物層その他の中間層
を介在させず直接その表面に密着性のよいダイヤモンド
薄膜を形成することが出来る。In the present invention, hydrogen gas is not used, but instead an inert gas (HeSNeSAr, Krq Since highly active plasma is generated at a higher pressure than when using hydrogen embrittlement, a thin diamond film with good crystallinity can be grown at high speed on the surface of a hydrogen-embrittle metal. In addition, since hydrogen gas is not used, there is no embrittlement, deterioration of properties, or change in shape of the hydrogen-embrittle metal, and a diamond thin film with good adhesion is formed directly on the surface without intervening a compound layer or other intermediate layer. I can do it.
ダイヤモンド薄膜の形成に用いる化学気相合成法は、直
流又は交流の電界により放電を起してプラズマを生成さ
せ、原料ガスを分解励起する方法(例えばマイクロ波C
VD法、RFプラズマCvD法、DCプラズマcvD法
等)であれば良く、他の方法では結晶性及び密着性のよ
いダイヤモンド薄膜が得られない。又、圧力は10〜7
60 torr 。The chemical vapor phase synthesis method used to form diamond thin films is a method in which a discharge is caused by a DC or AC electric field to generate plasma, and a raw material gas is decomposed and excited (e.g. by microwave C).
VD method, RF plasma CVD method, DC plasma CVD method, etc.) may be used; other methods cannot provide a diamond thin film with good crystallinity and adhesion. Also, the pressure is 10-7
60 torr.
好ましくは30〜500 torrとする。圧力が10
torr未満では均一で高密度のプラズマが安定して得
られない為結晶性のよいダイヤモンド薄膜を形成できす
、逆に760 torrを超えるとプラズマを安定して
生成することは困難である。Preferably it is 30 to 500 torr. pressure is 10
If it is less than 760 torr, it is not possible to stably obtain a uniform, high-density plasma, so a diamond thin film with good crystallinity cannot be formed.On the other hand, if it exceeds 760 torr, it is difficult to stably generate plasma.
図面に示すマイクロ波プラズマOVD装置を用いて、水
素脆性金属表面にダイヤモンド薄膜を形成した。即ち、
石英管2からなる反応室内に水素脆性金属としてT1の
基材1(30朋×30詣×1m)を配置し、真空排気口
3から内部を排気した後、ガス導入口4からArガスを
200 cc/mlnで導入し、マグネトロン5から導
波管6を通してマイクロ波を照射し、1 torrでプ
ラズマ8を発生させた。ここでガス導入口4から更に0
1−1 ガスを2 cc/minで導入し、プランジ
ャー7で圧力を500 torrに調整しながらマイク
ロ波電力を600 Wに上昇させ、基材温度880Cで
15分間の気相反応を行なった。A diamond thin film was formed on the surface of a hydrogen-embrittle metal using the microwave plasma OVD apparatus shown in the drawing. That is,
A T1 base material 1 (30 mm x 30 mm x 1 m) as a hydrogen-brittle metal is placed in a reaction chamber made of a quartz tube 2, and after evacuating the inside from the vacuum exhaust port 3, Ar gas is injected into the reaction chamber from the gas inlet port 4 at 200 m. cc/mln, microwaves were irradiated from the magnetron 5 through the waveguide 6, and plasma 8 was generated at 1 torr. Here, further 0 from gas inlet 4
1-1 Gas was introduced at 2 cc/min, the microwave power was increased to 600 W while adjusting the pressure to 500 torr with plunger 7, and a gas phase reaction was performed at a substrate temperature of 880 C for 15 minutes.
得られた試料点1のT1基材1上には膜厚1μmの薄膜
が形成され、この薄膜をX線回折及びRHFED (高
速電子線回折)により調べると、結晶性のダイヤモンド
であることが確認できた。電子線回折により測定した上
記ダイヤモンド薄膜の面間隔を第1表に示した。A thin film with a thickness of 1 μm was formed on the T1 base material 1 of the obtained sample point 1, and when this thin film was examined by X-ray diffraction and RHFED (high-speed electron diffraction), it was confirmed that it was crystalline diamond. did it. Table 1 shows the interplanar spacing of the diamond thin film measured by electron beam diffraction.
次に、上記実施例(試料点1)と同様にして、但し基材
や導入ガスの種類、圧力等の反応条件を変化させ、試料
点2〜19を得た。これらの試料で得られた薄膜の評価
、薄膜の剥離や基材変形の有無、及び用いた反応条件そ
の他を、前記の試料点1と併せて下記第2表に要約して
示した。Next, sample points 2 to 19 were obtained in the same manner as in the above example (sample point 1), except that the reaction conditions such as the base material, the type of introduced gas, and the pressure were changed. The evaluation of the thin films obtained with these samples, the presence or absence of peeling of the thin film or deformation of the base material, the reaction conditions used, and others are summarized in Table 2 below, together with the sample point 1 described above.
第2表から、水素ガスを用いない本発明例の試料屋1〜
9では基材表面に密着性の良いダイヤモンド薄膜を形成
できるが、水素ガスを混合した比較例の試料&11〜1
9では主に炭化物の生成によりダイヤモンド薄膜が得ら
れないか、若しくは得られても密着性が極めて低いこと
が判る。又、水素ガスを用いなくても圧力が10 to
rr未満では、試料應10の如くダイヤモンドが生成さ
れない。From Table 2, sample shops 1 to 1 of examples of the present invention that do not use hydrogen gas
9 can form a diamond thin film with good adhesion on the substrate surface, but comparative samples &11 to 1 in which hydrogen gas was mixed
It can be seen that in Sample No. 9, either a diamond thin film could not be obtained, or even if it was obtained, the adhesion was extremely low, mainly due to the formation of carbides. Also, the pressure can be reduced to 10 to even without using hydrogen gas.
If it is less than rr, no diamond will be produced as in sample No. 10.
尚、マイクロ波プラズマCvD法以外の直流又は交流の
電界により生成させたプラズマを用いるCVD法でも、
上記と同様の効果が得られた。In addition, even in CVD methods using plasma generated by a direct current or alternating current electric field other than the microwave plasma CVD method,
The same effect as above was obtained.
本発明によれば、炭化物や水素化物の生成がないので水
素脆性金属の特性や形状を損なうことがなく、水素脆性
金属の表面に直接結晶性の良いダイヤモンド薄膜を密着
性よく形成できる。特に、水素脆性金属の厚さが5闘以
下、例えばQ、2朋程度であっても、ダイヤモンド薄膜
で被覆することが可能である。According to the present invention, since there is no generation of carbides or hydrides, the properties and shape of the hydrogen-embrittle metal are not impaired, and a diamond thin film with good crystallinity can be directly formed on the surface of the hydrogen-embrittle metal with good adhesion. In particular, even if the thickness of the hydrogen-embrittle metal is less than 5 mm, for example about 2 mm, it is possible to coat it with a diamond thin film.
従って、本発明のダイヤモンド被覆水素脆性金属は、表
面のダイヤモンドの特性と内部の水素脆性金属の特性と
を兼ね備え、航空機材料、宇宙工学材料、原子カニ学材
料、切削工具材料、メカニカルシールのような耐摩耗特
性を要する材料、音−6響用スピーカーの振動板のよう
な高比弾性を要する材料、集積回路基板のような低誘電
率を要する材料などとして利用できる。Therefore, the diamond-coated hydrogen-brittle metal of the present invention combines the properties of diamond on the surface and the properties of hydrogen-brittle metal inside, and is suitable for use in aircraft materials, space engineering materials, atomic science materials, cutting tool materials, mechanical seals, etc. It can be used as a material that requires wear resistance, a material that requires high specific elasticity such as the diaphragm of a 6-sound speaker, and a material that requires a low dielectric constant such as an integrated circuit board.
図面はマイクロ波プラズマCvD装置を示す概略図であ
る。
1・・基材 2・・石英管
3・・真空排気口 4・・ガス導入口5・・マグネ
トロン 6・・導波管
7・・プランジャー
出願人 住友電気工業株式会社
同 山 本 正′斤に
一5−リ
・、シー7The drawing is a schematic diagram showing a microwave plasma CvD apparatus. 1. Base material 2. Quartz tube 3. Vacuum exhaust port 4. Gas inlet 5. Magnetron 6. Waveguide 7. Plunger Applicant Sumitomo Electric Industries, Ltd. Tadashi Yamamoto Nii 5-ri, Sea 7
Claims (1)
介在させずに直接形成された密着性の良いダイヤモンド
薄膜とからなることを特徴とするダイヤモンド被覆水素
脆性金属。(2)炭素含有ガスと、不活性ガス、酸素ガ
ス、フッ素ガス、塩素ガス及び水蒸気の少なくとも一種
とからなる混合ガスを用い、10〜760to−rrの
圧力で、直流又は交流の電界によつて生成させたプラズ
マにより前記混合ガスを励起分解し、水素脆性金属の表
面に直接ダイヤモンド薄膜を形成することを特徴とする
、ダイヤモンド被覆水素脆性金属の製造方法。(1) A diamond-coated hydrogen-embrittle metal comprising a hydrogen-embrittle metal and a diamond thin film with good adhesion formed directly on the surface of the hydrogen-embrittle metal without intervening an intermediate layer. (2) Using a mixed gas consisting of a carbon-containing gas and at least one of inert gas, oxygen gas, fluorine gas, chlorine gas, and water vapor, at a pressure of 10 to 760 torr, and by a direct current or alternating current electric field. 1. A method for producing a diamond-coated hydrogen-embrittle metal, characterized in that the mixed gas is excited and decomposed by the generated plasma to form a diamond thin film directly on the surface of the hydrogen-embrittle metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63252285A JPH0649945B2 (en) | 1987-10-14 | 1988-10-06 | Diamond-coated hydrogen-brittle metal and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-258570 | 1987-10-14 | ||
JP25857087 | 1987-10-14 | ||
JP63252285A JPH0649945B2 (en) | 1987-10-14 | 1988-10-06 | Diamond-coated hydrogen-brittle metal and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01201479A true JPH01201479A (en) | 1989-08-14 |
JPH0649945B2 JPH0649945B2 (en) | 1994-06-29 |
Family
ID=26540639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63252285A Expired - Fee Related JPH0649945B2 (en) | 1987-10-14 | 1988-10-06 | Diamond-coated hydrogen-brittle metal and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649945B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991018128A1 (en) * | 1990-05-24 | 1991-11-28 | Houston Area Research Center | Halogen-assisted chemical vapor deposition of diamond |
WO1992019791A1 (en) * | 1991-05-07 | 1992-11-12 | Houston Advanced Research Center | Halogen-assisted chemical vapor deposition of diamond |
US5198263A (en) * | 1991-03-15 | 1993-03-30 | The United States Of America As Represented By The United States Department Of Energy | High rate chemical vapor deposition of carbon films using fluorinated gases |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62167855A (en) * | 1986-01-21 | 1987-07-24 | Nippon Kokan Kk <Nkk> | Unrefined steel for hot forging having superior fatigue resistance |
-
1988
- 1988-10-06 JP JP63252285A patent/JPH0649945B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62167855A (en) * | 1986-01-21 | 1987-07-24 | Nippon Kokan Kk <Nkk> | Unrefined steel for hot forging having superior fatigue resistance |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991018128A1 (en) * | 1990-05-24 | 1991-11-28 | Houston Area Research Center | Halogen-assisted chemical vapor deposition of diamond |
US5071677A (en) * | 1990-05-24 | 1991-12-10 | Houston Advanced Research Center | Halogen-assisted chemical vapor deposition of diamond |
US5316795A (en) * | 1990-05-24 | 1994-05-31 | Houston Advanced Research Center | Halogen-assisted chemical vapor deposition of diamond |
US5198263A (en) * | 1991-03-15 | 1993-03-30 | The United States Of America As Represented By The United States Department Of Energy | High rate chemical vapor deposition of carbon films using fluorinated gases |
WO1992019791A1 (en) * | 1991-05-07 | 1992-11-12 | Houston Advanced Research Center | Halogen-assisted chemical vapor deposition of diamond |
Also Published As
Publication number | Publication date |
---|---|
JPH0649945B2 (en) | 1994-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940009659B1 (en) | Polycrystalline diamond tool and method of producting polycrystalline diamond tool | |
EP0376694B1 (en) | A process for the vapor phase synthesis of diamond and highly crystalline diamond | |
EP0413834B1 (en) | Diamond-covered member and process for producing the same | |
US5275798A (en) | Method for producing diamond films | |
JPS63153275A (en) | Diamond coated alumina | |
US5478513A (en) | CVD diamond growth on hydride-forming metal substrates | |
EP0437830B1 (en) | CVD diamond coated annulus components and method of their fabrication | |
EP0371145B1 (en) | Process for vapor-phase synthesis of diamond | |
JPH01201479A (en) | Diamond coated hydrogen embrittlement metal and its production | |
US4869929A (en) | Process for preparing sic protective films on metallic or metal impregnated substrates | |
US5445887A (en) | Diamond coated microcomposite sintered body | |
Raghuram et al. | Structure and microhardness relationships in Ti, Zr and Hf-3Zr carbide deposits synthesized by activated reactive evaporation | |
JP2689269B2 (en) | Diamond and its vapor phase synthesis method | |
JPH0361369A (en) | Manufacture of diamond like carbon film | |
JPH0774449B2 (en) | Method for producing diamond-coated hydrogen-brittle metal | |
JPS6333570A (en) | Diamond coated cutting tool | |
JPS63140084A (en) | Hard carbon coated parts | |
JP2892199B2 (en) | Manufacturing method of high density carbon material | |
JPH04223807A (en) | Polycrystal diamond tool and manufacture thereof | |
JPS63129099A (en) | Production of diamond thin film or diamondlike thin film | |
JPH02239191A (en) | Multilayer diamond film and its production | |
JPH01290592A (en) | Method for synthesizing diamond | |
JPH0255297A (en) | Method for synthesizing diamond | |
JPS62113797A (en) | Diamond film | |
JPH07300394A (en) | Diamond and its vapor-phase synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |