JPH01200594A - Film type el element and its manufacture - Google Patents

Film type el element and its manufacture

Info

Publication number
JPH01200594A
JPH01200594A JP63026218A JP2621888A JPH01200594A JP H01200594 A JPH01200594 A JP H01200594A JP 63026218 A JP63026218 A JP 63026218A JP 2621888 A JP2621888 A JP 2621888A JP H01200594 A JPH01200594 A JP H01200594A
Authority
JP
Japan
Prior art keywords
light emitting
emitting layer
layer
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63026218A
Other languages
Japanese (ja)
Inventor
Kosuke Asai
孝祐 浅井
Masaichiro Matsushita
松下 雅一郎
Akira Shintani
新谷 昭
Hideki Watanabe
英樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63026218A priority Critical patent/JPH01200594A/en
Publication of JPH01200594A publication Critical patent/JPH01200594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To provide a film type EL element with high brightness to be driven by low voltage, by furnishing mutually facing electrodes in the parallel direction to lamination of a base board, wherein a mono-crystal light emitting layer on the base board is interposed. CONSTITUTION:A light emitting layer 12 of ZnS:TmF3 is epi formed on a GaP base plate 11, and a resist mask having a fine window with a micro-gap is applied. A magnetic field and high-frequency electric power are applied under vacuum by the use of Cl2/SF6 gas to make etching, and the pattern of striped light emitting layer 12 is formed in trapezoidal form having an upper bottom of 0.3mum and a lower bottom of 0.6mum. After treatment at 500 deg.C for 1hr in H2S at 1Torr, a Ta2O5 film 13 is formed in Ar with Ta as target by means of RF sputter method. Resist 14 is applied to the upper bottom, and an ITO film 15 is formed in Ar/O2 with In-Sn alloy as target by means of RF sputter method, and as a fine process, the ITO film, on the trapezoidal upper bottom is lifted off. Impression of a voltage between electrode 15 will actuate light emission of the layer 12.

Description

【発明の詳細な説明】 C産業上の利用分野) 本発明は、基板上に少なくとも、発光体層と電極とを積
層してなる薄膜EL素子及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application) The present invention relates to a thin film EL device having at least a light emitting layer and an electrode laminated on a substrate, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第5図は、従来の薄膜EL素子の構成を模式的に示した
断面図であって、ガラス等の非晶質基板1上に透明電極
2、第1絶縁体層3、発光体層4、第2絶縁体層5及び
背面電極6をこの順序にて積層した構造を有する。
FIG. 5 is a cross-sectional view schematically showing the structure of a conventional thin film EL element, in which a transparent electrode 2, a first insulator layer 3, a light emitting layer 4, It has a structure in which the second insulator layer 5 and the back electrode 6 are laminated in this order.

このような構成の薄膜EL素子は、透明電極2と背面電
極6との間に電圧を印加して発光体層4を発光させるが
、その輝度は発光体N4の結晶性に関連が深い。即ち、
発光の中心となる不純物以外の不純物が少なく、また発
光体の母体結晶に格子欠陥等が少なく結晶性の良い発光
体層の方が輝度が高く、発光に必要な電圧も低く抑えら
れる。
In the thin film EL element having such a configuration, a voltage is applied between the transparent electrode 2 and the back electrode 6 to cause the light emitting layer 4 to emit light, and the brightness thereof is closely related to the crystallinity of the light emitting material N4. That is,
A light-emitting layer that contains fewer impurities other than the impurity that is the center of light emission and has fewer lattice defects in the host crystal of the light-emitting body and has good crystallinity has higher brightness and can suppress the voltage required for light emission.

従って、分子線蒸着法(MBD法)または有機金属化学
気相成長法(MOCVD法)等を用い、比較的結晶性の
良い発光体層を得ている。
Therefore, a light emitter layer with relatively good crystallinity is obtained by using a molecular beam deposition method (MBD method) or a metal organic chemical vapor deposition method (MOCVD method).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記薄膜EL素子の製造プロセスでは、非晶
質絶縁体上に発光体層を形成するため、MBD法、MO
CVD法等を用いて多結晶の発光体層の結晶性向上を図
っても、発光体層には結晶粒界が多数化じており、単結
晶薄膜のように結晶性の良いものは得られない。
By the way, in the manufacturing process of the thin film EL element, in order to form a light emitter layer on an amorphous insulator, MBD method, MO
Even if attempts are made to improve the crystallinity of a polycrystalline light emitter layer using CVD methods, etc., there are many crystal grain boundaries in the light emitter layer, and a product with good crystallinity like a single crystal thin film cannot be obtained. do not have.

即ち、多結晶の発光体層の結晶性を良くするために基板
温度を上げるか、または発光体層形成後に熱処理を施す
ことが考えられるが、高温では非晶質絶縁体層及び透明
電極が変性するため、処理温度には限度があり、輝度の
向上が困難であるという課題があった。
That is, in order to improve the crystallinity of the polycrystalline light emitting layer, it is possible to raise the substrate temperature or to perform heat treatment after forming the light emitting layer, but at high temperatures the amorphous insulator layer and transparent electrode are denatured. Therefore, there is a limit to the processing temperature, making it difficult to improve brightness.

また、絶縁体層を2層有する二重絶縁構造であり、さら
に発光体層の結晶性が悪いため、比較的高い駆動電圧を
必要とするという課題があった。
Furthermore, since the device has a double insulation structure including two insulator layers and the crystallinity of the light emitting layer is poor, there is a problem that a relatively high driving voltage is required.

本発明はこのような課題を解決するためになされたもの
であって、輝度が高く低電圧にて駆動し得る薄膜EL素
子及びその製造方法の提供を目的とする。
The present invention was made to solve these problems, and aims to provide a thin film EL element that has high brightness and can be driven at low voltage, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る薄膜EL素子は、基板に、少なくとも発光
体層と、該発光体層を介して対向する2つの電極とを積
層した薄膜EL素子において、単結晶体からなる発光体
層と、該発光体層を介して、基板の積層面の平行方向に
互いに対向する・2つの電極とを備えたことを特徴とす
る。
A thin film EL device according to the present invention is a thin film EL device in which at least a light emitting layer and two electrodes facing each other with the light emitting layer interposed in between are laminated on a substrate. It is characterized by comprising two electrodes facing each other in a direction parallel to the laminated surfaces of the substrates with the light emitting layer interposed therebetween.

また、本発明に係る薄膜EL素子の製造方法は、単結晶
基板に、発光体層をエピタキシャル成長させ、該発光体
層をエツチングして、縞状またはマトリックス状に単結
晶発光体層を形成し、該単結晶発光体層の対向する2つ
の側面に絶縁体層を蒸着形成し、絶縁体層を蒸着形成し
た2つの側面にそれぞれ電極を蒸着形成することを特徴
とする。
Further, the method for manufacturing a thin film EL device according to the present invention includes epitaxially growing a light emitting layer on a single crystal substrate, etching the light emitting layer to form a single crystal light emitting layer in a striped or matrix shape, The present invention is characterized in that an insulating layer is deposited on two opposing side surfaces of the single crystal light emitting layer, and electrodes are deposited on each of the two side surfaces on which the insulating layer is deposited.

さらに、本発明に係る薄膜EL素子の他の製造方法は、
溝を形成した非晶質基板に発光体層をエピタキシャル成
長させ、該発光体層をエツチングして、該発光体層の対
向する2つの側面に絶縁体層を蒸着形成し、絶縁体層を
蒸着形成したこれら側面にそれぞれ電極を蒸着形成する
ことを特徴とする。
Furthermore, another method for manufacturing a thin film EL device according to the present invention is as follows:
A light emitting layer is epitaxially grown on an amorphous substrate in which a groove is formed, the light emitting layer is etched, an insulating layer is formed on two opposing sides of the light emitting layer, and an insulating layer is formed by vapor deposition. It is characterized in that electrodes are formed on each of these side surfaces by vapor deposition.

〔作用〕[Effect]

本発明に係る薄膜EL素子の製造方法は、単結晶基板に
、発光体層をエピタキシャル成長させ、該発光体層をエ
ツチングして、縞状またはマトリックス状に単結晶発光
体層を形成し、該単結晶発光体層の対向する2つの側面
に絶縁体層を蒸着形成し、絶縁体層を蒸着形成した2つ
の側面にそれぞれ電極を蒸着形成し、また、本発明に係
る薄膜EL素子の他の製造方法は、溝を形成した非晶質
基板に発光体層をエピタキシャル成長させ、該発光体層
をエツチングして、該発光体層の対向する2つの側面に
絶縁体層を蒸着形成し、絶縁体層を蒸着形成したこれら
側面にそれぞれ電極を蒸着形成し、発光体層を介して基
板に平行方向に対向する2つの電極間に電圧が印加され
ると、発光体層が発光する。
The method for manufacturing a thin film EL device according to the present invention includes epitaxially growing a light emitting layer on a single crystal substrate, etching the light emitting layer to form a single crystal light emitting layer in a striped or matrix shape, and An insulator layer is formed by vapor deposition on two opposing side surfaces of the crystalline luminescent layer, and electrodes are formed by vapor deposition on each of the two side surfaces on which the insulator layer is vapor-deposited, and another method of manufacturing a thin film EL device according to the present invention The method involves epitaxially growing a light emitting layer on an amorphous substrate with grooves formed therein, etching the light emitting layer, and depositing an insulator layer on two opposing sides of the light emitting layer. Electrodes are formed on these side surfaces by vapor deposition, respectively, and when a voltage is applied between the two electrodes facing parallel to the substrate via the light emitting layer, the light emitting layer emits light.

〔実施例〕〔Example〕

以下、本発明をその1実施例を示す図面に基づき詳述す
る。第1図は、本発明に係る薄膜EL素子の構成を模式
的に示す断面図であって、図中7は、GaP等からなる
単結晶基板である。単結晶基板7上には断面形状が台形
の単結晶からなる発光体層8が縞状に形成され、この発
光体層8の断面形状に沿って、Ta205 M!’から
なる絶縁体層9が積層され、この絶縁体層9を介して前
記発光体層8の台形断面の両側面それぞれにITO膜か
らなる透明電極10が形成されている。これらの透明電
極10゜10間に電圧を印加すると、発光体層8が発光
し、その光は単結晶基板7と反対方向である絶縁体層9
の方向から取り出される。
Hereinafter, the present invention will be explained in detail based on the drawings showing one embodiment thereof. FIG. 1 is a sectional view schematically showing the structure of a thin film EL device according to the present invention, and 7 in the figure is a single crystal substrate made of GaP or the like. A light emitting layer 8 made of a single crystal having a trapezoidal cross section is formed in a striped manner on the single crystal substrate 7, and along the cross section of the light emitting layer 8, Ta205M! A transparent electrode 10 made of an ITO film is formed on each side of the trapezoidal cross section of the light emitting layer 8 via the insulating layer 9. When a voltage is applied between these transparent electrodes 10° and 10, the luminescent layer 8 emits light, and the light is transmitted to the insulating layer 9 in the opposite direction to the single crystal substrate 7.
taken out from the direction.

次に、本発明に係る薄膜EL素子として、例えば青色E
L素子の製造方法につき説明する。第3図は、素子の製
造工程を示した図であって、分子線エピタキシー法によ
り2エン角のGaP単結晶基板11上にZnS : T
mF 3 (Ts 1 molχ)をエピタキシャル成
長させる。そのGaP単結晶基板11を、〜10−1゜
Torr中にて650℃で1時間サーマルクリーニング
し、Zn、  S、及びTmF3の蒸発源を用いて基板
温度370℃、成長速度3人/secで厚さ1.0pm
のZnS:TmF3発光体層12をエピタキシャル成長
させる(第3図(a))。
Next, as a thin film EL element according to the present invention, for example, a blue E
The method for manufacturing the L element will be explained. FIG. 3 is a diagram showing the manufacturing process of the device, in which ZnS:T is deposited on a GaP single-crystal substrate 11 with a 2-en angle by molecular beam epitaxy.
mF 3 (Ts 1 molχ) is epitaxially grown. The GaP single crystal substrate 11 was thermally cleaned at 650° C. for 1 hour in ~10 −1° Torr, and then heated at a substrate temperature of 370° C. and a growth rate of 3 persons/sec using evaporation sources of Zn, S, and TmF3. Thickness 1.0pm
A ZnS:TmF3 emitter layer 12 is epitaxially grown (FIG. 3(a)).

続いて、ZnS : TmF 3発光体層12上にレジ
ストを1μm塗布し、レジスト露光時の焦点を若干オー
バーにして、このレジストに幅0.3μ−の溝を〜1.
0μ閘間隔で作製する(第3図中))。
Subsequently, a resist of 1 .mu.m thick is coated on the ZnS:TmF3 phosphor layer 12, and a groove with a width of 0.3 .mu.m is formed in the resist by slightly overfocusing the resist during exposure.
(Figure 3)).

さらに、ECRエツチング装置により、断面形状が上底
0.3μm、下底0.6μmの台形をなした縞状のパタ
ーンからなる発光体層12をエツチング形成する(第3
図(C))。エツチングの条件は、マイクロ波パワー8
00W、マイクロ波周波数2.45 GHz、 Mi場
875 Gauss、エツチングガスCI2/SF6χ
1.圧力15Torrである。
Furthermore, using an ECR etching device, a light emitter layer 12 is etched to form a striped pattern having a trapezoidal cross-sectional shape with an upper base of 0.3 μm and a lower base of 0.6 μm (third etching process).
Figure (C)). The etching conditions are microwave power 8
00W, microwave frequency 2.45 GHz, Mi field 875 Gauss, etching gas CI2/SF6χ
1. The pressure was 15 Torr.

次に、ZnS:TmF3発光体層をlI23ガスI T
orr中にて500℃で1時間熱処理し、この発光体層
12に、Ta金属をターゲットとして用いたRFスパッ
タリング法により、入射パワー1kw、ガス圧比Ar1
02yllガス圧1 +wTorrにて、厚さ0.3μ
mのTa205躾からなる絶縁体層13を薄着形成する
(第3図(d))。
Next, the ZnS:TmF3 emitter layer was heated with lI23 gas IT
The luminescent layer 12 was heat-treated at 500° C. for 1 hour in a 300° C.
02yll gas pressure 1 +wTorr, thickness 0.3μ
Then, an insulator layer 13 made of Ta205 with a thickness of 100 mm is thinly formed (FIG. 3(d)).

このようにして断面形状が台形の発光体層12の形状に
沿って絶縁体層13が形成された台形断面の上底部分に
厚さ1μmのレジスト14を形成しく第3図(el) 
、このレジスト14を含む絶縁体層13上に、In−3
n合金をターゲットとして用いたRFスパッタリング法
により、入射パワー1 kw、ガス圧比Ar102夕1
.ガス圧1 mTorrにて、厚さ0.2.17111
のrT。
In this way, a resist 14 having a thickness of 1 μm is formed at the upper bottom portion of the trapezoidal cross section where the insulator layer 13 is formed along the shape of the light emitter layer 12 having a trapezoidal cross-sectional shape.
, In-3 is deposited on the insulator layer 13 including the resist 14.
By RF sputtering method using n-alloy as a target, the incident power was 1 kW and the gas pressure ratio Ar was 102 cm.
.. At gas pressure 1 mTorr, thickness 0.2.17111
rT.

膜15を蒸着形成する(第3図(f))。A film 15 is formed by vapor deposition (FIG. 3(f)).

さらに、発光体層12の台形断面の上底部分に蒸着形成
されたITO膜15のみをリフトオフにより除去し、縞
上に形成された発光体層12の台形断面の両側面にのみ
透明電極15を形成する(第3図(梢)。
Furthermore, only the ITO film 15 deposited on the upper bottom portion of the trapezoidal cross section of the light emitting layer 12 is removed by lift-off, and the transparent electrodes 15 are formed only on both sides of the trapezoidal cross section of the light emitting layer 12 formed on the stripes. form (Figure 3 (treetop).

第4図は、以上のように形成された青色EL素子の輝度
−電圧特性を示したものであって、図中点線は従来のE
L素子、実線は本発明に係るEL素子の特性を示す。図
からも明らかなように、本発明に係るEL素子は、輝度
が従来の5〜10倍増加し、駆動電圧が20〜40%以
上減少した。
FIG. 4 shows the brightness-voltage characteristics of the blue EL element formed as described above, and the dotted line in the figure shows the conventional E
The solid line in the L element indicates the characteristics of the EL element according to the present invention. As is clear from the figure, in the EL element according to the present invention, the luminance increased 5 to 10 times that of the conventional device, and the driving voltage decreased by 20 to 40% or more.

なお、本実施例では、発光体層を縞状に形成する場合に
つき詳述したが、発光面積を大きくするために発光体層
をマトリックス状に形成してもよい。
In this embodiment, the case in which the light emitting layer is formed in a striped pattern has been described in detail, but the light emitting layer may be formed in a matrix shape in order to increase the light emitting area.

また、本発明に係る薄膜EL素子の製造方法として、幅
0.5 μm、深さ0.5μm1間隔0.5 μmの溝
を形成したガラス基板上に、適切な温度を選んで、Zn
S:TmF3をエピタキシャル成長させた場合であって
も、得られる素子特性は前述の第1実施伊1と同様に改
善されている。なお、その場合には基板側にも光が取り
出せる。
In addition, as a method for manufacturing a thin film EL device according to the present invention, Zn is deposited on a glass substrate on which grooves are formed with a width of 0.5 μm, a depth of 0.5 μm, and an interval of 0.5 μm.
Even when S:TmF3 is epitaxially grown, the obtained device characteristics are improved in the same way as in the first embodiment 1 described above. In this case, light can also be extracted from the substrate side.

〔発明の効果〕〔Effect of the invention〕

本発明に係る薄膜EL素子及びその製造方法は、基板上
にまず単結晶の発光体層を形成するため、発光体層形成
時の基板加熱等の熱処理プロセスによる薄膜EL素子の
他の層の劣化を回避するとともに、輝度が高く、駆動電
圧の低い薄膜EL素子を提供するという優れた効果を奏
する。
In the thin film EL device and the manufacturing method thereof according to the present invention, since a single crystal light emitting layer is first formed on a substrate, other layers of the thin film EL device are deteriorated due to a heat treatment process such as substrate heating during formation of the light emitting layer. This has the excellent effect of avoiding the above problems and providing a thin film EL element with high brightness and low driving voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る薄膜EL素子の構造を示す模式的
断面図、第2図はその斜視図、第3図はその製造過程を
示す図、第4図は従来素子との輝度−電圧特性の比較図
、第5図は従来素子の構造を示す模式的断面図である。 7・・・単結晶基板 8・・・発光体N 9・・・絶縁
体層10・・・電極 11・・・GaP単結晶基板 1
2・・・発光体層13・・・絶縁体層 15・・・IT
O膜特 許 出願人 住友金属工業株式会社代理人 弁
理士 河  野  登  夫ど 第    2    図 印加電圧 (■) 軍     4     図 采     5     図 (a) (b) (C) 甫     3 (e) (f) (g) 図
FIG. 1 is a schematic cross-sectional view showing the structure of a thin film EL device according to the present invention, FIG. 2 is a perspective view thereof, FIG. 3 is a diagram showing the manufacturing process, and FIG. 4 is a diagram showing the luminance vs. voltage of a conventional device. A characteristic comparison diagram, FIG. 5, is a schematic cross-sectional view showing the structure of a conventional element. 7...Single crystal substrate 8...Light emitter N 9...Insulator layer 10...Electrode 11...GaP single crystal substrate 1
2... Luminous layer 13... Insulator layer 15... IT
O membrane patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono Figure 2 Applied voltage (■) Military 4 Figure 5 Figures (a) (b) (C) Ho 3 (e) (f ) (g) Figure

Claims (4)

【特許請求の範囲】[Claims] 1. 基板に、少なくとも発光体層と、該発光体層を介
して対向する2つの電極とを積層した薄膜EL素子にお
いて、  単結晶体からなる発光体層と、  該発光体層を介して、基板の積層面の平行方向に互い
に対向する2つの電極と  を備えたことを特徴とする薄膜EL素子。
1. In a thin film EL element in which at least a light emitting layer and two electrodes facing each other are laminated on a substrate, the light emitting layer made of a single crystal and the light emitting layer of the substrate are laminated through the light emitting layer. A thin film EL device comprising: two electrodes facing each other in a direction parallel to the laminated surfaces.
2. 請求項1記載の発光体層を基板上に複数組配した
薄膜EL素子。
2. A thin film EL device comprising a plurality of sets of light emitting layers according to claim 1 disposed on a substrate.
3. 請求項1または2記載の薄膜EL素子の製造方法
において、単結晶基板に、発光体層をエピタキシャル成
長させ、該発光体層をエッチングして、縞状またはマト
リックス状に単結晶発光体層を形成し、該単結晶発光体
層の対向する2つの側面に絶縁体層を蒸着形成し、絶縁
体層を蒸着形成した2つの側面にそれぞれ電極を蒸着形
成することを特徴とする薄膜EL素子の製造方法。
3. 3. The method for manufacturing a thin film EL device according to claim 1, wherein a light emitting layer is epitaxially grown on a single crystal substrate, and the light emitting layer is etched to form a single crystal light emitting layer in a striped or matrix shape. , a method for producing a thin film EL device, characterized in that an insulating layer is formed by vapor deposition on two opposing side surfaces of the single crystal light emitting layer, and electrodes are formed by vapor deposition on each of the two side surfaces on which the insulating layer is formed by vapor deposition. .
4. 請求項1または2記載の薄膜EL素子の製造方法
において、溝を形成した非晶質基板に発光体層をエピタ
キシャル成長させ、該発光体層をエッチングして、該発
光体層の対向する2つの側面に絶縁体層を蒸着形成し、
絶縁体層を蒸着形成したこれら側面にそれぞれ電極を蒸
着形成することを特徴とする薄膜EL素子の製造方法。
4. 3. The method of manufacturing a thin film EL device according to claim 1, wherein a light emitting layer is epitaxially grown on an amorphous substrate in which a groove is formed, and the light emitting layer is etched to form two opposing side surfaces of the light emitting layer. An insulator layer is deposited on the
A method for manufacturing a thin film EL device, characterized in that electrodes are formed by vapor deposition on each of these side surfaces on which an insulating layer is formed by vapor deposition.
JP63026218A 1988-02-05 1988-02-05 Film type el element and its manufacture Pending JPH01200594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026218A JPH01200594A (en) 1988-02-05 1988-02-05 Film type el element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026218A JPH01200594A (en) 1988-02-05 1988-02-05 Film type el element and its manufacture

Publications (1)

Publication Number Publication Date
JPH01200594A true JPH01200594A (en) 1989-08-11

Family

ID=12187262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026218A Pending JPH01200594A (en) 1988-02-05 1988-02-05 Film type el element and its manufacture

Country Status (1)

Country Link
JP (1) JPH01200594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888410A (en) * 1996-04-01 1999-03-30 Denso Corporation Dry etching method and manufacturing method of manufacturing EL element using same
JP2009004314A (en) * 2007-06-25 2009-01-08 Panasonic Electric Works Co Ltd Inorganic electroluminescent element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888410A (en) * 1996-04-01 1999-03-30 Denso Corporation Dry etching method and manufacturing method of manufacturing EL element using same
JP2009004314A (en) * 2007-06-25 2009-01-08 Panasonic Electric Works Co Ltd Inorganic electroluminescent element

Similar Documents

Publication Publication Date Title
JPH10298738A (en) Shadow mask and vapor depositing method
US4737684A (en) Thin film EL element having a crystal-orientable ZnO sublayer for a light-emitting layer
JPH01200594A (en) Film type el element and its manufacture
JPH054797B2 (en)
KR910008076B1 (en) Manufacture method for el device
US20040170755A1 (en) Electroluminescent device and method of manufacturing the same
JP3198655B2 (en) Composite Josephson junction device and method of manufacturing the same
JPH046279B2 (en)
JPH08162272A (en) El element and manufacture thereof
JPH03141584A (en) Electroluminescent element and its manufacture
JP3976892B2 (en) Thin film EL device
JPS62113386A (en) Thin film el device and manufacture of the same
JPH046278B2 (en)
JPS61253797A (en) Manufacture of electroluminescence element
JP2905657B2 (en) Method for manufacturing electroluminescent element
JPH0290493A (en) Alternating current drive type thin film el element
JPH07282980A (en) Thin film electroluminescence(el) element
JP2002245871A (en) Transparent conductive substrate
JPH02262295A (en) Thin film el element
JPH0632300B2 (en) Method for manufacturing EL element
JPH03141583A (en) Manufacture of electroluminescent element
JPH02213090A (en) Thin film el panel and manufacture thereof
JPS61253794A (en) Manufacture of light emitting element
KR960030746A (en) Blue light emitting diode (ELD) and its manufacturing method
JPH05114484A (en) Manufacture of thin film electroluminescent element