JPH01198846A - Successive decoder - Google Patents

Successive decoder

Info

Publication number
JPH01198846A
JPH01198846A JP63264822A JP26482288A JPH01198846A JP H01198846 A JPH01198846 A JP H01198846A JP 63264822 A JP63264822 A JP 63264822A JP 26482288 A JP26482288 A JP 26482288A JP H01198846 A JPH01198846 A JP H01198846A
Authority
JP
Japan
Prior art keywords
received signal
decoding
storage means
written
demodulation reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63264822A
Other languages
Japanese (ja)
Other versions
JPH0683185B2 (en
Inventor
Toshiharu Yagi
八木 敏晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63264822A priority Critical patent/JPH0683185B2/en
Publication of JPH01198846A publication Critical patent/JPH01198846A/en
Publication of JPH0683185B2 publication Critical patent/JPH0683185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PURPOSE:To remove the discrepancy of a demodulation reference phase within a short time by reducing the number of a buffer address after a first reset and executing a second reset and onward when the reduced buffer overflows. CONSTITUTION:When the buffer 2 of a reception signal overflows due to the discrepancy of the demodulation reference phase and a control circuit 44 executes the first reset to remove this discrepancy, a decoding processing part 4 reduces the number of the address of the buffer 2 of the reception signal thereafter and repeats the reset by the overflow of the reduced buffer. Thus, the discrepancy of the demodulation reference phase can be removed within a short time and the number of the reception signals to be abandoned in resetting is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は逐次復号装置に関し、特に直交変調方式の伝送
路で伝送された畳込み符号を誤り訂正復号する逐次復号
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a successive decoding device, and more particularly to a successive decoding device that performs error correction decoding of convolutional codes transmitted through an orthogonal modulation transmission path.

〔従来の技術〕[Conventional technology]

データの伝送誤りを検出して訂正するために、データを
いくつかの情報シンボルに区切り、誤り訂正符号器で畳
込み符号化して符号シンボルにし、伝送された符号シン
ボルを誤り訂正復号器(以下復号器という)でファンア
ルゴリズムを用いて逐次復号することが行なわれている
In order to detect and correct data transmission errors, the data is divided into several information symbols, convolutionally encoded into code symbols by an error correction encoder, and the transmitted code symbols are passed to an error correction decoder (hereinafter referred to as decoding). Sequential decoding is performed using the fan algorithm in

かかる誤り訂正符号器は、状態保持回路と関数発生回路
とを備えている。状態保持回路は、例えばシフトレジス
タで構成され、内部状態を保持し、情報シンボルの入力
によって内部状態を変更する。関数発生器は内部状態を
入力して符号シンボルを発生する。
Such an error correction encoder includes a state holding circuit and a function generation circuit. The state holding circuit is composed of, for example, a shift register, holds an internal state, and changes the internal state by inputting an information symbol. A function generator receives internal states and generates code symbols.

復号器が1符号シンボルに対応して受取る受信信号(の
硬判定)は、伝送誤りにより、送られた符号シンボルと
は必ずしも一致しない。
The received signal (hard decision) received by the decoder corresponding to one code symbol does not necessarily match the transmitted code symbol due to transmission errors.

復号器は、符号シンボル単位に復号を進めるとすると、
対応する誤り訂正符号器と同一の機能を有する回路(以
下符号器複製という)をもっており、1符号シンボルに
対応する受信信号を受取るごとに、可能なすべての情報
シンボルを符号器複製にそれぞれ入力したときの符号器
複製が出力する符号シンボルのそれぞれを受取った受信
信号と比較し、受信信号に最も近い符号シンボルを与え
る情報シンボルを送られた情報シンボルであると推定す
る。近さの尺度として、ファン尤度の呼ばれる尤度が用
いられる。ファンアルゴリズムでは、基本的には、ファ
ン尤度の累積尤度が最も大きくなる情報シンボル列を送
られた情報シンボル列であると判定していく。
Assuming that the decoder proceeds with decoding coded symbol by symbol,
It has a circuit (hereinafter referred to as an encoder replica) that has the same function as the corresponding error correction encoder, and inputs all possible information symbols to each encoder replica each time a received signal corresponding to one code symbol is received. Each of the code symbols output by the encoder replica at the time is compared with the received received signal and the information symbol that gives the code symbol closest to the received signal is estimated to be the information symbol that was sent. A likelihood called the Fan likelihood is used as a measure of closeness. The fan algorithm basically determines that the information symbol string with the largest cumulative fan likelihood is the sent information symbol string.

もっとも、伝送誤りが多発すると、間違った情報シンボ
ルを送られた情報シンボルであると判定する可能性があ
る。−旦誤った判定をすると、それ以後の符号器複製の
内部状態が誤り訂正符号器の内部状態と食違い、それ以
後はファン尤度の大きな情報シンボルを見付けようとし
ても見付けられなくなるので過去において誤った判定し
た゛ことが検出できる。誤った判定したことを検出する
と、符号器複製の内部状態を過去の状態に戻した後、過
去において選んだ情報シンボルの次にファン尤度の大き
な情報シンボルを送られた情報シンボルであると判定し
て復号をやり直す。ファン尤度が次に大きな情報シンボ
ルを見付けようとしても既に探索済みで見付けることが
できなければ、もう一つ過去の状態に戻って同様な操作
を行なう。このように試行諸誤を繰返して復号を行い、
−旦出力した復号結果を後で変更する可能性があるので
、復号器は、入力した受信信号のバッファおよび復号結
果のバッファを必要とする。
However, if transmission errors occur frequently, there is a possibility that an incorrect information symbol will be determined to be the information symbol that was sent. - Once an incorrect decision is made, the internal state of the encoder copy will be different from the internal state of the error correction encoder, and from then on, even if you try to find an information symbol with a large fan likelihood, you will not be able to find it. It is possible to detect erroneous judgments. When an incorrect determination is detected, the internal state of the encoder replica is returned to the past state, and then it is determined that the information symbol that was sent was the information symbol with the next largest fan likelihood after the information symbol selected in the past. and try decrypting again. Even if an attempt is made to find the information symbol with the next highest fan likelihood, if it cannot be found because it has already been searched, the process returns to the previous state and performs the same operation. In this way, decryption is performed by repeating trial and error,
- Since the decoding result once output may be changed later, the decoder requires a buffer for the input received signal and a buffer for the decoding result.

以上説明したファンアルゴリズムは、米国人ファン(R
,M、 F a n o)が考案したもので、IEEE
  Transactions on  inform
ationTheory、IT−9(1963) (米
)P、64−74に記載されている。また、上記のよう
な誤り訂正符号器および復号器は、例えば米国人ジョー
9・デヒット・フォーニイeジュニア(GeorgeD
avid Forney、Jr、)の米国特許第3,6
65,396に記載されている回路で実現できる。
The fan algorithm explained above is based on American fans (R
, M., Fano), and was published by IEEE
Transactions on information
ation Theory, IT-9 (1963) (US) P, 64-74. Further, the error correction encoder and decoder as described above are developed by, for example, American Joe 9 DeHitt Forney e Jr. (George D.
avid Forney, Jr.) U.S. Patent Nos. 3 and 6
65,396.

さて、ディジタルマイクロ波通信システムのように搬送
波帯でのスペクトル幅の制限が厳しい伝送システムでは
、4相位相変調、16値直交振幅変調などの直交変調方
式を用いることが多い。
Now, in transmission systems such as digital microwave communication systems where the spectrum width in the carrier band is severely limited, quadrature modulation methods such as quadrature phase modulation and 16-value quadrature amplitude modulation are often used.

直交変調方式を用いる伝送システムで符号シンボルを伝
送する場合、符号シンボルを構成する各ビットを2分し
、それぞれのビット群T、、T、を直交変調信号の各直
交成分に対応させる。直交変調信号の復調には周知の4
相位相不確性があり、復調器の基準搬送波の位相(復調
基準位相)が変調器の搬送波の位相と90度おきに食違
って、伝送誤りがなくとも復調器の出力する2つのビッ
ト群の(の硬判定)R,、R,がビット群T、、TQと
一致しないことがある。(R,、R,)は(T、。
When a code symbol is transmitted in a transmission system using an orthogonal modulation method, each bit constituting the code symbol is divided into two, and each bit group T, , T, is made to correspond to each orthogonal component of the orthogonal modulation signal. The well-known method 4 is used to demodulate orthogonal modulation signals.
There is phase phase uncertainty, and the phase of the reference carrier wave of the demodulator (demodulation reference phase) differs from the phase of the carrier wave of the modulator every 90 degrees, so that even if there is no transmission error, the two bit groups output from the demodulator (Hard decision of) R, , R, may not match the bit group T, , TQ. (R,,R,) is (T,.

T、)または(下:、T、)またはC−1■)または(
T9.T、)のいずれかとなる。そのため、(R,、R
,)が(’r、、’r、)に一致しないときそのことを
検出し、復調基準位相を90度おきに回転するのと等価
な論理操作を行う位相転換回路を用いてR,、RqをT
、、T、に一致させる必要がある。R,、R,がT、、
Tqに一致していなければ、受信信号(の硬判定)であ
る(R,、R,)はきわめて大きい確率で誤りを含み、
復号器において復号が進まず受信信号のバッファがオー
バーフa −するので、不一致を検出できる。
T,) or (bottom:,T,) or C-1 ■) or (
T9. T, ). Therefore, (R,,R
,) does not match ('r,,'r,), it is detected and R,,Rq T
, ,T, must match. R,,R,is T,,
If it does not match Tq, the received signal (hard decision) (R,,R,) contains an error with a very high probability,
Since decoding does not progress in the decoder and the buffer of the received signal overflows, a mismatch can be detected.

位相転換回路を備え直交変調方式の伝送路で伝送された
畳込み符号を復号する従来の逐次復号装置は、受信信号
のバッファがオーバーフローするごとに位相転換回路で
試行錯誤的に論理操作を行う。このような試行錯誤を最
大3回繰返せば、必ず復調基準位相の食違いを除去でき
る。なお、復調基準位相の食違いによりオーバーフロー
した際にバッファに蓄えられている受信信号は全部捨て
る必要がある。
A conventional sequential decoding device that includes a phase shift circuit and decodes convolutional codes transmitted through an orthogonal modulation transmission path uses the phase shift circuit to perform logical operations on a trial-and-error basis each time a received signal buffer overflows. If such trial and error is repeated up to three times, the discrepancy in the demodulation reference phase can be definitely removed. Note that when an overflow occurs due to a discrepancy in the demodulation reference phase, all received signals stored in the buffer must be discarded.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明したように従来の逐次復号装置は、復調基準位
相の食違いを除去するまでに受信信号のバッファのオー
バーフローを最大3回繰返す必要があり、そのための時
間が長く、この間誤りを発生するという欠点がある。
As explained above, in the conventional sequential decoding device, it is necessary to repeat the buffer overflow of the received signal up to three times before removing the discrepancy in the demodulation reference phase, which takes a long time and causes errors during this time. There are drawbacks.

本発明の目的は、短時間で復調基準位相の食違いを除去
できる逐次復号装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a successive decoding device that can remove demodulation reference phase discrepancies in a short time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の逐次復号装置は、畳込み符号の符号シンボルで
直交変調した変調信号を伝送し復調して得た第1の受信
信号を、制御信号に制御されて、4相位相不確定性によ
る復調基準位相の食違いを除去すべく試行錯誤的に論理
操作し、論理操作結果を第2の受信信号として出力する
復調基準位相転換手段と、あらかじめ定めた第1の数の
前記第2の受信信号を記憶し得る受信信号記憶手段と、
前記第2の受信信号の復号結果を前記あらかじめ定めた
第1の数だけ記憶し得る復号結果記憶手段と、前記第2
の受信信号を前記受信信号記憶手段に順次書込むと同時
に前記復号結果記憶手段から既に書込まれている前記復
号結果を順次読出し外部へ出力し、前記受信信号記憶手
段から読出した一つの前記第2の受信信号の復号が完了
すると前記復号結果を前記復号結果記憶手段に書込むと
同時に前記受信信号記憶手段から今複合が完了した前記
第2の受信信号の次に書込まれている前記第2の受信信
号を読出して復号を試み、以前の復号に誤りの可能性が
あるとして復号な後退させるときは前記受信信号記憶手
段から直前に読出した前記第2の受信信号の前に書込ま
れている前記第2の受信信号を読出すと同時に今読出す
前記第2の受信信号を以前に復号完了したとき前記復号
結果記憶手段に書込んだ前記復号結果を読出して復号を
やり直し、前記受信信号記憶手段に書込まれている最も
古い前記第2の受信信号の復号ができないまでに復号が
遅れ前記復調基準位相転換手段の論理操作に間違いがあ
ると判断すると、前記制御信号により前記復調基準位相
転換手段を制御して前記論理操作をやり直し、その後に
前記受信信号記憶手段に新しく書込まれる前記第2の受
信信号を読出して復号な試みるリセット動作を行い、こ
のリセット動作後復号の完了した前記第2の受信信号の
数があらかじめ定めた第2の数に達するまでに復号が進
まずしかも前記受信信号記憶手段に書込んだ最新の前記
第2の受信信号によりあらかじめ定めた前記第1の数未
満の第3の数だけ前に書込んだ前記第2の受信信号を読
出して復号な試みるまでに復号が遅れ前記復調基準位相
転換手段の論理操作に間違いがあると判断するごとに前
記リセット動作を繰返す逐次復号処理手段とを備えて構
成される。
The successive decoding device of the present invention transmits and demodulates a modulated signal that has been orthogonally modulated using code symbols of a convolutional code, and demodulates a first received signal obtained by demodulating it using four-phase phase uncertainty under the control of a control signal. demodulation reference phase conversion means for performing a logical operation on a trial-and-error basis to remove a discrepancy in the reference phase and outputting the result of the logical operation as a second received signal; and a predetermined first number of said second received signals. received signal storage means capable of storing;
a decoding result storage means capable of storing the first number of decoding results of the second received signal;
At the same time, the decoding results already written are sequentially read out from the decoding result storage means and outputted to the outside, and one of the received signals read from the received signal storage means is sequentially written to the received signal storage means. When the decoding of the second received signal is completed, the decoding result is written into the decoding result storage means, and at the same time, the second received signal written next to the second received signal whose decoding has just been completed is written from the received signal storage means. If the second received signal is read out and attempted to be decoded, and the previous decoding is considered to be erroneous and the decoding is to be performed backwards, the second received signal is written before the second received signal read immediately before from the received signal storage means. At the same time as reading out the second received signal that is currently being read out, the decoding result that was written in the decoding result storage means when the decoding of the second received signal that is currently being read out is read out and the decoding is redone; If the decoding is delayed until the oldest second received signal written in the signal storage means cannot be decoded, and it is determined that there is an error in the logical operation of the demodulation reference phase shift means, the control signal causes the demodulation reference to be changed. The phase conversion means is controlled to redo the logic operation, and then a reset operation is performed to read out the second received signal newly written in the received signal storage means and attempt to decode it, and after this reset operation, the decoding is completed. The decoding does not proceed until the number of the second received signals reaches a predetermined second number, and the first decoding signal is The reset is performed each time it is determined that there is a mistake in the logic operation of the demodulation reference phase changing means because decoding is delayed until the second received signal written a third number earlier than the third number is read out and an attempt is made to decode it. and a sequential decoding processing means that repeats the operation.

〔実施例〕〔Example〕

以下実施例を示す図面を参照して本発明について詳細に
説明する。
The present invention will be described in detail below with reference to drawings showing embodiments.

第1図は、本発明の逐次復号装置の一実施例を示すブロ
ック図である。
FIG. 1 is a block diagram showing an embodiment of a sequential decoding device of the present invention.

第1図に示す実施例は、符号化率が3/4であり1符号
シンボルが4ビツトからなる畳込み符号シンボルが16
値直交振幅変調方式の伝送システムで伝送され、受端の
復調器(図示せず)が出力する硬判定であるそれぞれ2
ビット並列の受信信号D Pi I D qlを復号す
る逐次復号装置である。1対の受信信号D pl + 
D mlからなる並列4ビツトの受信信号が1符号シン
ボルに対応する。
In the embodiment shown in FIG. 1, the coding rate is 3/4 and the number of convolutional code symbols, each code symbol consisting of 4 bits, is 16.
Each of the two hard-decision signals is transmitted by a value-orthogonal amplitude modulation transmission system, and is output by a demodulator (not shown) at the receiving end.
This is a sequential decoding device that decodes a bit-parallel received signal D Pi I D ql. A pair of received signals D pl +
A parallel 4-bit received signal consisting of Dml corresponds to one code symbol.

1は位相転換回路であり、制御信号B1に制御されて、
受信信号D el l D qlをそのまま受信信号D
 p2 r D @2として出力するか、または、復調
器の復調基準位相が90度、180度もしくは270度
回転したのと等価に受信信号D 、、、 D、、を論理
操作し受信信号D p! r D qlとして出力する
。2は受信信号のバッファ用のRAMであり、4ビツト
×nワードの記憶容量をもつ。3は復号結果のバッファ
用のRAMであり、3ビツト×nワードの記憶容量をも
つ。4は復号処理部であり、RAM2に書込まれた受信
信号を読出して逐次復号し、復号結果をROM3に書込
む。復号処理部4はカウンタ41および42.セレクタ
43.制御回路44、ならびに復号回路45により構成
されている。カウンタ41は計数出力が最大値(n−1
)から0に戻るカウンタであり、計数出力であるアドレ
ス信号A1および制御信号B5出力する。カウンタ42
も同様なカウンタであり、アドレス信号A2および制御
信号B7を出力する。セレクタ43は、制御信号B6の
制御によりアドレス信号A1またはA2のいずれか一方
を選択し、RAM2.3へ出力する。制御回路44は、
制御信号B1によって位相転換回路1の論理操作を制御
し、また、セレクタ43の出力と制御信号B2゜B3と
によってRAM2.3の書込みおよび読出しを制御する
。復号回路45は、制御信号B4に従って受信信号の復
号処理を行う。なお、カウンタ41に入力するクロック
信号OLは受信信号り、1゜Dl、(ならびにD−2,
D−2)と同期したクロックである。
1 is a phase switching circuit, which is controlled by a control signal B1,
Received signal D el l D ql as received signal D
p2 r D @2, or logically manipulate the received signal D , , D, , so that the demodulation reference phase of the demodulator is rotated by 90 degrees, 180 degrees, or 270 degrees, and the received signal D p ! Output as r D ql. 2 is a RAM for buffering received signals, and has a storage capacity of 4 bits×n words. 3 is a RAM for buffering the decoding results, and has a storage capacity of 3 bits×n words. 4 is a decoding processing unit, which reads out the received signal written in the RAM 2, sequentially decodes it, and writes the decoding result into the ROM 3; The decoding processing unit 4 has counters 41 and 42 . Selector 43. It is composed of a control circuit 44 and a decoding circuit 45. The counter 41 has a count output of the maximum value (n-1
) and returns to 0, and outputs an address signal A1 and a control signal B5, which are count outputs. counter 42
is a similar counter and outputs an address signal A2 and a control signal B7. Selector 43 selects either address signal A1 or A2 under the control of control signal B6 and outputs it to RAM 2.3. The control circuit 44 is
The control signal B1 controls the logical operation of the phase shift circuit 1, and the output of the selector 43 and control signals B2 and B3 control the writing and reading of the RAM 2.3. The decoding circuit 45 performs decoding processing on the received signal according to the control signal B4. Note that the clock signal OL input to the counter 41 is equal to the received signal, 1°Dl, (as well as D-2,
This is a clock synchronized with D-2).

位相転換さhた受信信号が入力されるとカウンタ41は
、クロック信号CLを計数してアドレス信号A1が一つ
増大する。このとき、制御回路44は、カウンタ41か
らの制御信号B5に応答し、制御信号B2.B3および
B6を出力する。
When the phase-shifted received signal is input, the counter 41 counts the clock signal CL and increases the address signal A1 by one. At this time, the control circuit 44 responds to the control signal B5 from the counter 41 and outputs the control signal B2. Output B3 and B6.

セレクタ43はこの制御信号B6に応答しアドレス信号
A1を出力する。RAM2は制御信号B2に応答し、ア
ドレスA1に受信信号D p2 p D qlを書込み
、RAM3は制御信号B3に応答し、アドレスA1に書
込まれている復号結果Eを読出して外部へ出力する。
Selector 43 outputs address signal A1 in response to control signal B6. The RAM 2 responds to the control signal B2 and writes the received signal D p2 p D ql to the address A1, and the RAM 3 responds to the control signal B3 and reads out the decoding result E written to the address A1 and outputs it to the outside.

一方、アドレス信号A2は復号回路45が現在復号して
いる受信信号が書込まれているRAM2のアドレスを示
している。復号回路45は、直前にRAMIから読み出
した受信信号D1の復号が完了すると復号終了を知らせ
る制御信号B4を出力する。制御回路44は、制御信号
B4に応答し、制御信号B2.B3.B6およびB7を
出力する。
On the other hand, the address signal A2 indicates the address of the RAM 2 in which the received signal currently being decoded by the decoding circuit 45 is written. When the decoding circuit 45 completes the decoding of the received signal D1 read from the RAMI immediately before, the decoding circuit 45 outputs a control signal B4 notifying the completion of decoding. Control circuit 44 responds to control signal B4 and outputs control signals B2 . B3. Output B6 and B7.

セレクタ43は制御信号B6に応答してアドレス信号A
2の出力する。復号結果D2は、制御信号B3の制御に
よりRAM3のアドレスA2に書込まれる。カウンタ4
2は、制御回路44よりの制御信号B7に応答し、アド
レス信号A2を一つ増大する。そしてカウンタ43は、
制御信号B6に応答し、直前に1コ増大されたアドレス
A2を出力する。さらに復号回路45は、制御信号B2
の制御によりRAM2の一つ増大したアドレスA2から
次の受信信号を新しく読出し、この受信信号の復号を行
う。復号の処理周期はクロック信号CLの周期より十分
短いので、復号が順調に進むとアドレスA2がアドレス
A1に追付き、RAM2に書込んだ最新の受信信号の復
号なするようになってそれ以上読出すべき受信信号がな
くなるので、アドレス信号A2の値がアドレス信号A1
の値に等しくなると制御回路44は、制御信号B4を出
力する。そして、復号回路45は、制御信号B4に応答
し、復号処理を一時停止する。復号な後退させるとき、
制御回路44は、制御信号B2゜B3.B6及びB7を
出力する。カウンタ42は、制御信号B7に応答し、ア
ドレス信号A2を一つ減少させる。セレクタ43は、制
御信号B6に応答し、直前に減少したアドレスA2を出
力する。
The selector 43 selects the address signal A in response to the control signal B6.
Output 2. The decoding result D2 is written to the address A2 of the RAM 3 under the control of the control signal B3. counter 4
2 increases address signal A2 by one in response to control signal B7 from control circuit 44. And the counter 43 is
In response to the control signal B6, it outputs the address A2 which was recently incremented by one. Furthermore, the decoding circuit 45 receives the control signal B2
Under the control of , the next received signal is newly read out from the address A2 increased by one in the RAM 2, and this received signal is decoded. Since the decoding processing cycle is sufficiently shorter than the cycle of the clock signal CL, if the decoding progresses smoothly, address A2 will catch up with address A1, and the latest received signal written to RAM2 will be decoded and no further reading will be possible. Since there is no more received signal to output, the value of address signal A2 becomes address signal A1.
When the value becomes equal to the value, the control circuit 44 outputs the control signal B4. Then, the decoding circuit 45 temporarily stops the decoding process in response to the control signal B4. When decrypting backwards,
The control circuit 44 receives control signals B2°B3. Output B6 and B7. Counter 42 decrements address signal A2 by one in response to control signal B7. The selector 43 responds to the control signal B6 and outputs the address A2 that was decreased immediately before.

復号回路45は、制御信号B2.B3に応答し、RAM
2.3のアドレスA2から(以前に復号したことのある
)受信信号、復号結果を読出して復号をやり直す。この
ようにして復号回路45は、受信信号を逐次復号してい
く。
The decoding circuit 45 receives the control signal B2. In response to B3, RAM
The received signal (previously decoded) and the decoded result are read from address A2 of 2.3 and the decoding is performed again. In this way, the decoding circuit 45 sequentially decodes the received signals.

直前にRAM2から読み出した受信信号(RAM2にお
けるアドレスは、A2)のすぐ前に書き込まれている受
信信号(アドレスは、A2−1)が新しく入力した受信
信号(この書き込みアドレスは、AI)によって書き直
されるまでに、いいかえれば、A2−1=AIになるま
でに、復号が遅れると、次に新しく入力する受信信号に
よって復号が完了していない受信信号が書き直されてし
まうことになる。その為、制御回路44は、A2−1=
AIになったとき、RAM2がオーバーフローしたと判
定する。制御回路44は、オーバーフローの発生により
、復調器の復調基準位置が食違っていると判断した場合
、制御信号B1よおびB7を出力する。位相転換回路l
は、制御信号B1に応答し今までの受信信号D N r
 D 41と受信信号D p2 + D Q2との相対
位相関係を90度度進るように論理操作をリセットする
。例えば、今まで受信信号D p2* D <2が受信
信号D PI # D (lと等しかったとすると、今
後は復調基準位相を90度度進るのと等価な論理操作を
させ、今まで復調基準位相を270度進約6のと等価な
論理操作をしていたとすると、今後は受信信号D pi
 * D qlをそのまま受信信号D pt * D 
<2として出力させる。この論理操作のやり直しの後、
カウンタ42は、制御信号B7に応答し、アドレス信号
A2の値をアドレス信号A1の値にリセットする。復号
回路45は、新しくRAM2へ書込まれた受信信号を読
出して復号を再開する。
The received signal (address is A2-1) written immediately before the received signal (address in RAM2 is A2) read from RAM2 just before is rewritten by the newly input received signal (this write address is AI). In other words, if the decoding is delayed until A2-1=AI, the received signal that has not been decoded will be rewritten by the next newly input received signal. Therefore, the control circuit 44 controls A2-1=
When it becomes AI, it is determined that RAM2 has overflowed. When the control circuit 44 determines that the demodulation reference positions of the demodulators are misaligned due to the occurrence of overflow, it outputs control signals B1 and B7. phase switching circuit l
is the previously received signal D N r in response to the control signal B1.
The logic operation is reset so that the relative phase relationship between D 41 and the received signal D p2 + D Q2 advances by 90 degrees. For example, if up until now the received signal D p2 * D < 2 was equal to the received signal D PI # D Assuming that the phase is subjected to a logical operation equivalent to 270 degrees and about 6, from now on, the received signal D pi
* D ql is received signal D pt * D
Output as <2. After redoing this logical operation,
Counter 42 responds to control signal B7 and resets the value of address signal A2 to the value of address signal A1. The decoding circuit 45 reads out the received signal newly written to the RAM 2 and restarts decoding.

位相転換回路1の論理操作およびアドレス信号A2の上
記のリセットを行った後、アドレス信号A2がアドレス
信号A1より値n1だけ小さくなるまでに復号が遅れる
と、制御回路44は、復調基準位相にまだ食違いがある
と判断して上記のリセットを再度行う。このようにして
最大3回のリセットを繰返せば、必ず復調基準位相の食
違いを除去できる。復調基準位相の食違いが除去されれ
ば復号は進むはずであるから、リセット後に復号の完了
した受信信号の数を計数し、この計数値が値n2に達す
ると制御回路44は、復調基準位相の食違いは除去され
たと判断し、以降はRAM2がオーバーフローするまで
リセットは行わない。
After performing the logical operation of the phase switching circuit 1 and the above-described resetting of the address signal A2, if decoding is delayed until the address signal A2 becomes smaller than the address signal A1 by the value n1, the control circuit 44 determines that the demodulation reference phase is still at the demodulation reference phase. Determine that there is a discrepancy and perform the above reset again. By repeating the reset a maximum of three times in this manner, the discrepancy in the demodulation reference phase can be definitely removed. Since decoding should proceed if the discrepancy in the demodulation reference phase is removed, the number of received signals for which decoding has been completed is counted after reset, and when this count reaches the value n2, the control circuit 44 changes the demodulation reference phase It is determined that the discrepancy has been removed, and no reset is performed thereafter until RAM2 overflows.

復調基準位相が食違っていれば復号は急速に遅れるので
、値n2を適当に設定することによって、値n1をRA
M2のアドレスの個数nより相当に小さく設定しても最
初のリセット後の復調基準位相の食違いを正確に検出で
きる。
If the demodulation reference phases are different, decoding will be delayed rapidly, so by setting the value n2 appropriately, the value n1 can be changed to RA
Even if it is set considerably smaller than the number n of addresses in M2, a discrepancy in the demodulation reference phase after the first reset can be accurately detected.

2回目以降のリセットは、最初のリセットの後RAM2
のアドレスの個数を(n++1)個に縮小し、この縮小
したRAM2がオーバーフローしたらリセットするのと
等価である。
For the second and subsequent resets, after the first reset, RAM2
This is equivalent to reducing the number of addresses in (n++1) and resetting the reduced RAM 2 when it overflows.

以上、第1図に示す実施例の動作について説明した。The operation of the embodiment shown in FIG. 1 has been described above.

第1図に示す実施例を、例えば2ビツトの軟判定用に変
更するとしたら、復号処理部4を2ビット軟判定用のも
のに変更し、入力する受信信号り、1゜D、lもそれぞ
れ4ビット並列になるから、それに伴って位相転換回路
1の処理ビット数とRAM2の1アドレス当りのビット
数を変更すればよい。
If the embodiment shown in FIG. 1 is changed to, for example, a 2-bit soft decision, the decoding processing section 4 is changed to one for a 2-bit soft decision, and the input received signals, 1°D, and l are respectively Since 4 bits are parallelized, the number of processing bits of the phase shift circuit 1 and the number of bits per address of the RAM 2 can be changed accordingly.

また、4ビツトの符号シンボルを4相位相変調方式の伝
送システムで伝送するとすれば、1符号シンボルの4ビ
ツトが変調信号の2タイムスロツトに亘って伝送される
ので、位相転換回路1のビット数を変更し、2タイムス
ロツトの受信信号を並列にする直列変換器を位相転換回
路1とRAM2との間に付加する必要がある。この直列
並列変換器は、受信信号の列に符号同期して1符号シン
ボルに対応する2タイムスロツトの受信信号を直列並列
変換する必要があり、この符号同期も、復調基準位相の
食違いの除去と同様に、復号処理部によって試行錯誤的
に行われる。この試行錯誤の間違いもRAM2のオーバ
ーフローによって検出することが多く、この場合は、R
AM2のオーバーフローに対し、復調基準位相の食違い
の除去のためのリセットを行うか、符号同期のとり直し
のための動作をするかを別途きめる必要がある。
Furthermore, if a 4-bit code symbol is transmitted using a transmission system using a 4-phase phase modulation method, the 4 bits of 1 code symbol are transmitted over 2 time slots of the modulated signal, so the number of bits in phase shift circuit 1 is It is necessary to add a serial converter between the phase shift circuit 1 and the RAM 2 to parallelize the received signals of the two time slots. This serial-to-parallel converter needs to perform serial-to-parallel conversion of the received signals of two time slots corresponding to one code symbol by code-synchronizing the received signal sequence, and this code synchronization also involves removing the discrepancy in the demodulation reference phase. Similarly, the decoding processing section performs the process by trial and error. This trial-and-error error is often detected by an overflow of RAM2, and in this case, R
In response to AM2 overflow, it is necessary to separately decide whether to perform a reset to remove the discrepancy in the demodulation reference phase or to perform an operation to reestablish code synchronization.

第1図に示す実施例は、RAM2については1符号シン
ボル単位で、RAM3については1情報シンボル単位で
、書込み、読出しを行なっているが、これを、例えば2
シンボル単位とか3シンボル単位とかに変更することも
できる。この場合、復号処理部4が4ビツトの符号シン
ボルの2シンボルあるいは3シンボルを8ビツトあるい
は12ビツトの符号シンボルの1シンボルと見做して復
号するようにしてもよいし、あるいは、復号処理部4に
それぞれ2シンボルあるいは3シンボル分の記憶容量を
もつ受信信号中間バッファ、復号結果中間バッファを付
加し、これら中間バッファを介してRAM2.RAM3
との受信信号、復号結果のやりとりをし、1符号シンボ
ル単位で復号するようにもできる。このようにしてRA
M2.RAM3の1アドレスに複数のシンボルを収容す
るようにすれば、RAMのハードウェアの選択に自由度
が増える。
In the embodiment shown in FIG. 1, writing and reading are performed in RAM2 in units of one code symbol and in RAM3 in units of one information symbol.
It is also possible to change it to symbol units or 3 symbol units. In this case, the decoding processing unit 4 may decode two or three of the 4-bit code symbols as one symbol of the 8-bit or 12-bit code symbols, or the decoding processing unit 4 may A received signal intermediate buffer and a decoding result intermediate buffer each having a storage capacity of 2 or 3 symbols are added to RAM 2 . RAM3
It is also possible to exchange received signals and decoding results with the computer, and to perform decoding in units of one code symbol. In this way R.A.
M2. By accommodating a plurality of symbols in one address of the RAM 3, the degree of freedom in selecting RAM hardware increases.

符号シンボル単位で、なくその各ビット単位に復号な行
う復号処理部も知られている。本発明はかかる符号を行
う場合にも適用できる。
There are also known decoding processing units that perform decoding not on a code symbol basis but on a bit-by-bit basis. The present invention can also be applied to cases where such codes are used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明の逐次復号装置は、復
調基準位相の食違いにより受信信号のバッファがオーバ
ーフローしてこの食違いを除去すべく最初のリセットを
すると、それ以降は受信信号のバッファのアドレスの個
数を等測的に縮小し、縮小したバッファのオーバーフロ
ーによってリセットを繰返すので、復調基準位相の食違
いを短時間で除去でき、リセットの際に捨てる受信信号
を数、も少なくなる効果がある。
As explained in detail above, in the sequential decoding device of the present invention, when the received signal buffer overflows due to a difference in the demodulation reference phase and an initial reset is performed to remove this difference, the received signal buffer is Since the number of addresses is reduced isometrically and reset is repeated by overflow of the reduced buffer, discrepancies in the demodulation reference phase can be eliminated in a short time, and the number of received signals discarded during reset can be reduced. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の逐次復号装置の一実施例を示すブロ
ック図である。 1・・・・・・位相転換回路、2,3・・・・・・RA
M、4・・・・・・復号処理部、41.42・・・・・
・カウンタ、43・・・・・・セレクタ、44・・・・
・・制御回路、45・・・・・・復号回路。 代理人 弁理士  内 原   晋
FIG. 1 is a block diagram showing an embodiment of a sequential decoding device of the present invention. 1... Phase switching circuit, 2, 3... RA
M, 4...Decoding processing unit, 41.42...
・Counter, 43...Selector, 44...
...Control circuit, 45...Decoding circuit. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】 畳込み符号の符号シンボルで直交変調した変調信号を伝
送し復調して得た第1の受信信号を、制御信号に制御さ
れて、4相位相不確定性による復調基準位相の食違いを
除去すべく試行錯誤的に論理操作し、論理操作結果を第
2の受信信号として出力する復調基準位相転換手段と、 あらかじめ定めた第1の数の前記第2の受信信号を記憶
し得る受信信号記憶手段と、 前記第2の受信信号の復号結果を前記あらかじめ定めた
第1の数だけ記憶し得る復号結果記憶手段と、 前記第2の受信信号を前記受信信号記憶手段に順次書込
むと同時に前記復号結果記憶手段から既に書込まれてい
る前記復号結果を順次読出し外部へ出力し、前記受信信
号記憶手段から読出した一つの前記第2の受信信号の復
号が完了すると前記復号結果を前記復号結果記憶手段に
書込むと同時に前記受信信号記憶手段から今復号が完了
した前記第2の受信信号の次に書込まれている前記第2
の受信信号を読出して復号を試み、以前の復号に誤りの
可能性があるとして復号を後退させるときは前記受信信
号記憶手段から直前に読出した前記第2の受信信号の前
に書込まれている前記第2の受信信号を読出すと同時に
今読出す前記第2の受信信号を以前に復号完了したとき
前記復号結果記憶手段に書込んだ前記復号結果を読出し
て復号をやり直し、前記受信信号記憶手段に書込まれて
いる最も古い前記第2の受信信号の復号ができないまで
に復号が遅れ前記復調基準位相転換手段の論理操作に間
違いがあると判断すると、前記制御信号により前記復調
基準位相転換手段を制御して前記論理操作をやり直し、
その後に前記受信信号記憶手段に新しく書込まれる前記
第2の受信信号を読出して復号を試みるリセット動作を
行い、このリセット動作後復号の完了した前記第2の受
信信号の数があらかじめ定めた第2の数に達するまでに
復号が進まずしかも前記受信信号記憶手段に書込んだ最
新の前記第2の受信信号によりあらかじめ定めた前記第
1の数未満の第3の数だけ前に書込んだ前記第2の受信
信号を読出して復号を試みるまでに復号が遅れ前記復調
基準位相転換手段の論理操作に間違いがあると判断する
ごとに前記リセット動作を繰返す逐次復号処理手段とを
備えたことを特徴とする逐次復号装置。
[Claims] A first received signal obtained by transmitting and demodulating a modulated signal quadrature-modulated with code symbols of a convolutional code is controlled by a control signal to obtain a demodulation reference phase due to four-phase phase uncertainty. demodulation reference phase shifting means for performing a logical operation by trial and error in order to remove the discrepancy between the two and outputting the result of the logical operation as a second received signal; and storing a predetermined first number of the second received signals. a decoding result storage means capable of storing the first number of decoding results of the second received signal; and a decoding result storage means capable of storing the first number of decoding results of the second received signal; At the same time as writing, the decoding results already written are sequentially read out from the decoding result storage means and outputted to the outside, and when the decoding of one of the second received signals read from the received signal storage means is completed, the decoding is performed. At the same time as writing the result into the decoding result storage means, the second received signal written next to the second received signal whose decoding has now been completed is stored in the received signal storage means.
When decoding is attempted by reading out the received signal of the second received signal read out from the received signal storage means and the decoding is to be performed backwards because there is a possibility of an error in the previous decoding, the second received signal written before the second received signal read immediately before from the received signal storage means is read out and decoded. At the same time as reading out the second received signal currently being read out, the decoding result written in the decoding result storage means is read out when the decoding of the second received signal to be read out is completed previously, and the decoding is redone. If the decoding is delayed until the oldest second received signal written in the storage means cannot be decoded, and it is determined that there is an error in the logical operation of the demodulation reference phase changing means, the demodulation reference phase is changed by the control signal. redoing the logical operation by controlling a conversion means;
Thereafter, a reset operation is performed to read and decode the second received signal newly written in the received signal storage means, and after this reset operation, the number of the second received signals that have been decoded reaches a predetermined number. The decoding does not progress until the number 2 is reached, and the second received signal, which is the latest one written in the received signal storage means, is written a third number earlier than the first number, which is predetermined in advance. and successive decoding processing means that repeats the reset operation every time it is determined that there is a mistake in the logical operation of the demodulation reference phase conversion means. Characteristic sequential decoding device.
JP63264822A 1987-10-20 1988-10-19 Successive decoding device Expired - Fee Related JPH0683185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264822A JPH0683185B2 (en) 1987-10-20 1988-10-19 Successive decoding device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-265643 1987-10-20
JP26564387 1987-10-20
JP63264822A JPH0683185B2 (en) 1987-10-20 1988-10-19 Successive decoding device

Publications (2)

Publication Number Publication Date
JPH01198846A true JPH01198846A (en) 1989-08-10
JPH0683185B2 JPH0683185B2 (en) 1994-10-19

Family

ID=26546694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264822A Expired - Fee Related JPH0683185B2 (en) 1987-10-20 1988-10-19 Successive decoding device

Country Status (1)

Country Link
JP (1) JPH0683185B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168753A (en) * 1988-05-24 1990-06-28 Nec Corp Synchronizing detection method in error correction device, its equipment and synchronizing method using the equipment
JPH08167919A (en) * 1994-12-13 1996-06-25 Nec Corp Digital demodulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168753A (en) * 1988-05-24 1990-06-28 Nec Corp Synchronizing detection method in error correction device, its equipment and synchronizing method using the equipment
JPH08167919A (en) * 1994-12-13 1996-06-25 Nec Corp Digital demodulator

Also Published As

Publication number Publication date
JPH0683185B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4539684A (en) Automatic frame synchronization recovery utilizing a sequential decoder
JPH028503B2 (en)
JPH05335972A (en) Viterbi decoder
EP0355850B1 (en) Sequential decoder
US6324224B1 (en) Apparatus and method for receiving data with bit insertion
US6327316B1 (en) Data receiver using approximated bit metrics
US5878060A (en) Viterbi decoding apparatus and viterbe decoding method
WO2003009480A2 (en) Method and apparatus for decoding multi-level trellis coded modulation
JPH01198846A (en) Successive decoder
US5710785A (en) Sequential decoder having short synchronization recovery time
US5642369A (en) Quick resynchronization receiver for sequential decoding of convolutional codes
EP1322041A1 (en) Viterbi decoder using restructured trellis
AU758068B2 (en) Fast metric calculation for viterbi decoder implementation
JPH01132241A (en) Sequential decoding device
JP2000165260A (en) Decoder
JP2701702B2 (en) Viterbi decoding circuit
JP2621582B2 (en) Successive decoding device
JPH08279833A (en) Sequential decoder
JPH022277A (en) Multi-value qam communication system
US7155656B1 (en) Method and system for decoding of binary shortened cyclic code
JP3874605B2 (en) Error correction method and error correction apparatus
JPH08288967A (en) Transmission system, its transmitter-receiver and trellis decoder
JP2871140B2 (en) Demodulation reference phase ambiguity removal system and receiving apparatus therefor
JPH0543221B2 (en)
JPH0653843A (en) Sequential decoding device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees