JPH01197385A - Substrate holder - Google Patents

Substrate holder

Info

Publication number
JPH01197385A
JPH01197385A JP2433088A JP2433088A JPH01197385A JP H01197385 A JPH01197385 A JP H01197385A JP 2433088 A JP2433088 A JP 2433088A JP 2433088 A JP2433088 A JP 2433088A JP H01197385 A JPH01197385 A JP H01197385A
Authority
JP
Japan
Prior art keywords
substrate
substrate holder
planar member
hole parts
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2433088A
Other languages
Japanese (ja)
Inventor
Takashi Minemoto
尚 峯本
Kaoru Matsuda
薫 松田
Osamu Kamata
修 鎌田
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2433088A priority Critical patent/JPH01197385A/en
Publication of JPH01197385A publication Critical patent/JPH01197385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a uniform epitaxial film in a short period of time on both faces of a substrate by using metallic materials consisting of at least >=1 kinds of Pt, Au and Ph to form a planar member having a desired number of through- hole parts and a perpendicular bar shaped part. CONSTITUTION:The desired number of the through-hole parts 1-4 are provided to the planar member 100 formed by using the metallic material consisting of at least one kind selected from the Pt, Au and Rh. The hole parts 1-4 on the front face 101 side of the planar member 100 are formed to the diameter smaller than the diameter of the substrates 200 and claws 103 consisting of the above-mentioned metallic material are welded to the circumference of the hole parts 1-4 on the front face 101 side. The bar-shaped member consisting of the above-mentioned metallic material is perpendicularly welded to the center of the rear face 102 of the planar member 100, by which the substrate holder is obtd. The substrates 200 are mounted in the hole parts 1-4 of the planar member 100 of such substrate holder and are dipped in a flux 22, by which an oxide crystal is epitaxially grown in the liquid phase on both faces of the substrates 200.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は基板保持体に関し、液相エピタキシャル成長に
よる酸化物結晶、特にガラネット結晶の基板の保持体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a substrate holder, and more particularly to a holder for substrates of oxide crystals, particularly galanet crystals, grown by liquid phase epitaxial growth.

従来の技術 光通信、光計測の分野で酸化物エピタキシャル膜が種々
の用途に使用されている。
BACKGROUND OF THE INVENTION Oxide epitaxial films are used for various purposes in the fields of optical communication and optical measurement.

また、従来のフローラングゾーン法(FZ法)やフラッ
クス法に比べて液相エピタキシャル法(LPE法)を用
いる事によりB1置換型ガーネットが、生産性よく作ら
れるようになってきており、近年半導体レーザのノイズ
発生の原因となる反射戻り光をおさえる光アイソレータ
への応用が盛んになされつつある。
In addition, B1-substituted garnet has become more productively produced by using the liquid phase epitaxial method (LPE method) than the conventional flow zone method (FZ method) or flux method, and in recent years it has been used for semiconductors. It is increasingly being applied to optical isolators that suppress reflected return light that causes laser noise.

光アイソレータ用結晶としては、ファラデー回転角の絶
対値が1θl=45degである事が必要である。Bi
置換型ガーネットにおいては使用波長1.3〜1.56
μm帯の場合、数百μm〜1fl程度の膜厚の結晶を得
る必要がある。
As a crystal for an optical isolator, it is necessary that the absolute value of the Faraday rotation angle is 1θl=45 degrees. Bi
For substitutional garnet, the wavelength used is 1.3 to 1.56.
In the case of the μm band, it is necessary to obtain crystals with a film thickness of several hundred μm to 1 fl.

従来ガーネット基板を第4図のように基板保持体に取り
つけ、第6図のような成長装置を用いて基板の片面ある
いは両面にLPE成長していた。
Conventionally, a garnet substrate was attached to a substrate holder as shown in FIG. 4, and a growth apparatus as shown in FIG. 6 was used to grow LPE on one or both sides of the substrate.

発明が解決しようとする課題 ガーネット結晶を基板の両面にLPE成長する場合、基
板のホルダーと反対側の面(以後、表面と呼ぶ)はほぼ
平面に成長するのに対し、基板のホルダー側の而(以後
、裏面と呼ぶ)は、凹凸が激しく、膜厚が一定しないと
いう問題があった。
Problems to be Solved by the Invention When garnet crystals are grown on both sides of a substrate by LPE, the surface of the substrate opposite to the holder (hereinafter referred to as the surface) grows almost flat, whereas the surface of the substrate on the holder side grows almost flat. The problem was that the surface (hereinafter referred to as the back surface) was extremely uneven and the film thickness was not constant.

ファラデー回転角の絶対値1θ1は膜厚に比例するため
膜厚の不均一は1θ1の不均一となる。通常光アイソレ
ータ用結晶としては1θ1が45degより大きくなる
よう膜厚をやや多く成長した後、研磨により1θl=4
5degとなるように膜厚を調整するのが普通である。
Since the absolute value 1θ1 of the Faraday rotation angle is proportional to the film thickness, the non-uniformity of the film thickness becomes the non-uniformity of 1θ1. Normally, as a crystal for optical isolators, after growing a film with a slightly thicker layer so that 1θ1 is larger than 45 degrees, polishing is performed to make 1θ1=4
The film thickness is usually adjusted to 5 degrees.

しかし膜厚の不均一が大きい時は、膜厚の最も薄い場所
で1θ1が46degを鏝るよう成長しなければならず
、成長時間がそれだけ長く必要となる。
However, when the non-uniformity of the film thickness is large, the film must be grown so that 1θ1 reaches 46 degrees at the thinnest part, which requires a correspondingly longer growth time.

また特開昭60−208730号公報に示されるような
多層構造の結晶を、基板の両側に成長させる場合は、膜
厚の不均一によシ、温度特性の設計値からのずれや、1
θl=45degからのずれといった特性のばらつきと
なり、実用上問題がある。
In addition, when growing a multilayered crystal on both sides of a substrate as shown in Japanese Patent Application Laid-Open No. 60-208730, it is difficult to grow the crystals on both sides of the substrate due to non-uniformity of the film thickness, deviation of the temperature characteristics from the designed value, and
This results in variations in characteristics such as a deviation from θl=45 degrees, which poses a practical problem.

次に基板の片面のみに成長する場合、膜厚はほぼ均一に
成長するが成長時間は基板の両面に成長する場合の約2
倍必要となるという問題があった。
Next, when growing only on one side of the substrate, the film thickness grows almost uniformly, but the growth time is about 2 times longer than when growing on both sides of the substrate.
There was a problem in that it required twice as much.

課題を解決するだめの手段 本発明は、前記課題を解決するため、白金、金。A means to solve problems In order to solve the above problems, the present invention uses platinum and gold.

ロジウムの少なくても1種類以上の金属材料で作られ、
平板状部材と中lL?部よシ垂直に出た棒状部材よりな
り、平板状部材には貫通した所望の穴部を所望の数有し
、さらにその穴部の回りに基板を固定するための手段を
有した酸化物結晶の液相エピタキシャル用基板保持体で
ある。
Made of at least one metal material such as rhodium,
Flat plate member and middle lL? An oxide crystal consisting of a rod-like member extending vertically from the part to the plate-like member, having a desired number of holes passing through the plate-like member, and further having means for fixing a substrate around the holes. This is a substrate holder for liquid phase epitaxial use.

作  用 このような本発明の構成では、基板に対して、均一にか
つ短時間でエピタキシャル膜を成長させることができる
Effect: With such a structure of the present invention, an epitaxial film can be grown uniformly on a substrate in a short time.

実施例 本発明の実施例を第1図〜第3図を用いて説明する。Example Embodiments of the present invention will be described using FIGS. 1 to 3.

第1図は本発明による基板保持体を示す図である。直径
72m、厚み1.611II+の白金製円板1oOに、
11nch基板2ooを4枚を保持するための穴部1〜
4を設けである。基板200が落下しないように円板の
表面101側の穴部1〜4の直径は11nch基板20
0よシ小さく直径21■である。基板2ooを穴部1〜
4に固定するため、白金製のツメ103を円板1oOに
溶接しまた円板10oの中心には、回転の中心軸となる
ように6μm8wsφの白金h6を溶接して、基板保持
体を作成した。
FIG. 1 is a diagram showing a substrate holder according to the present invention. A platinum disk 1oO with a diameter of 72m and a thickness of 1.611II+,
Hole 1 to hold four 11nch boards 2oo
4 is provided. In order to prevent the substrate 200 from falling, the diameter of holes 1 to 4 on the surface 101 side of the disk is 11 nch.
It is smaller than 0, with a diameter of 21 cm. Connect board 2oo to hole 1~
4, a platinum claw 103 was welded to the disk 1oO, and a platinum h6 of 6 μm 8wsφ was welded to the center of the disk 10o so as to serve as the central axis of rotation, thereby creating a substrate holder. .

この基板保持体100の欠部1〜4に11nch径60
0 pm厚のCa−Mg−Zr置換GGG格子定数a=
12.497人の基板200を4枚取り付け、第2図に
示すようにPbo−B2O2−Bi2o3系融剤22を
用いて、(B iG d )3(F e G a )s
 O12を片面約86μm9両面で約170μm成長し
た結果を第3図に示す。膜厚の分布は、最も薄い部分を
0として示しである。基板200の結晶の表面201の
膜厚のばらつきは第3図(8)に示すように4μmであ
り、これは本発明を用いる前とほぼ同様の値である。次
に裏面102の膜厚のばらつきは、第3図(司に示すよ
うに6μmであり表面101と同様に小さく本発明を用
いる前の約%となっている。
The cutouts 1 to 4 of this substrate holder 100 have 11 nch diameter 60 mm.
0 pm thick Ca-Mg-Zr substituted GGG lattice constant a=
12. Attach four substrates 200 of 497 people and use a Pbo-B2O2-Bi2o3 flux 22 as shown in FIG.
FIG. 3 shows the results of growing O12 to about 86 μm on one side and about 170 μm on both sides. The film thickness distribution is shown with the thinnest portion being 0. The variation in film thickness on the surface 201 of the crystal of the substrate 200 is 4 μm as shown in FIG. 3(8), which is approximately the same value as before using the present invention. Next, the variation in film thickness on the back surface 102 is 6 μm as shown in FIG.

次にコノ結晶の上に(B t YbGd )3F e、
 Q、2を約360μm成長した。この時膜厚のばらつ
きは表面、裏面とも10μm以内であった。
Next, (B t YbGd )3F e,
Q.2 was grown to about 360 μm. At this time, the variation in film thickness was within 10 μm on both the front and back surfaces.

以上の工程により成長した結晶をダイシングソーを用い
て4等分し、厚み精度±1μmで鏡面研磨を行った結果
、各結晶のファラデー回転角の絶対値を101=46±
0.7degとする事が可能であった。この結果、膜厚
の不均一性のため光アイソレータに必要なチップの大き
さ(2Tla角〜6trr!R角又は2mφ〜6Wlφ
)に切り出した後1θl=4sdegとなるようにチッ
プ間で厚みを変えて鏡面研磨する場合と比べて工数を著
しく低減する事が可能となった。
The crystal grown through the above steps was divided into four equal parts using a dicing saw, and mirror polished to a thickness accuracy of ±1 μm. As a result, the absolute value of the Faraday rotation angle of each crystal was determined to be 101 = 46 ±
It was possible to set it to 0.7deg. As a result, due to the non-uniformity of the film thickness, the chip size required for the optical isolator (2Tla angle to 6trr!R angle or 2mφ to 6Wlφ
) It became possible to significantly reduce the number of man-hours compared to the case where the thickness was changed between chips and mirror polishing was performed so that 1θl = 4sdeg after cutting.

なお、本実施例で600μmと通常より厚い基板を用い
たのは、特願昭62−230129で示すように基板と
エピタキシャル膜の熱膨張係数差によるワレを防止する
ためであり、また(BtGd)3(FeGa )601
2と(BiYbGd)3Fe6012を2層にエピタキ
シャル成長するのは、特願昭61−299438で示す
ように実用的な光アイソレータとして温度特性を良好に
するためである。
The reason why a thicker than usual substrate of 600 μm was used in this example was to prevent cracking due to the difference in thermal expansion coefficient between the substrate and the epitaxial film, as shown in Japanese Patent Application No. 62-230129, and (BtGd) 3(FeGa)601
The reason for epitaxially growing two layers of 2 and (BiYbGd)3Fe6012 is to improve the temperature characteristics as a practical optical isolator, as shown in Japanese Patent Application No. 61-299438.

本発明により、膜厚の均一性に優れたエピタキシャル膜
を短かい時間で成長できる理由を以下に説明する。LP
E法により、第6図に示すような基板保持体に基板20
0を取シつけて両面にエピタキシャル成長した場合表面
201では融液の流れを乱すものがないので一様に成長
するのに対し、裏面202では融液の流れが基板保持体
の足部61で乱されるため不均一となり成長膜厚にむら
が発生する。第6図は(G d Ca )  (G a
 Mg Z r ) s O12(Ca−Mg−Zr置
換GGG)基板200を第4図のように基板保持体に固
定、その両面に(B iGd ) (FeGa )60
12を片面約85 pm 、両面で約170μm成長し
た時の表面201と裏面202の膜厚め不均一性を示し
た図である。最も薄い部分を0として示しである。これ
より実際に表面では膜厚のばらつきが約5μmであるの
に対し、裏面では約60μm程度ばらついている事がわ
かシ、特に基板保持体の足部に近い所で大きく膜厚がば
らついている。
The reason why an epitaxial film with excellent film thickness uniformity can be grown in a short period of time according to the present invention will be explained below. LP
By the E method, the substrate 20 is placed on the substrate holder as shown in FIG.
When epitaxial growth is performed on both sides by attaching 0, the growth is uniform on the front surface 201 because there is nothing to disturb the flow of the melt, whereas on the back surface 202, the flow of the melt is disturbed by the feet 61 of the substrate holder. As a result, the growth becomes non-uniform and unevenness occurs in the thickness of the grown film. Figure 6 shows (G d Ca ) (G a
A MgZr)sO12 (Ca-Mg-Zr substituted GGG) substrate 200 is fixed to a substrate holder as shown in FIG.
12 is a diagram showing the non-uniformity of the film thickness on the front surface 201 and the back surface 202 when grown to about 85 pm on one side and about 170 μm on both sides. The thinnest part is shown as 0. This shows that while the film thickness actually varies by about 5 μm on the front surface, it varies by about 60 μm on the back surface, and there is a large variation in film thickness, especially near the feet of the substrate holder. .

以上の事よシ、融液の流れは表面のツメ部分62ではほ
とんど乱されないため膜厚の分布は小さいのに対し、基
板保持体の足部61では融液が攪拌され融液の流れが乱
されるため膜厚の分布が大きくなると考えられる。従っ
て膜厚の分布を小さくするために、保持体の足部による
融液の攪拌をなくすため、基板保持体の足部を回転の中
心と一致させる事が有効である。
Based on the above, the flow of the melt is hardly disturbed at the tabs 62 on the surface, so the film thickness distribution is small, whereas the flow of the melt is agitated at the feet 61 of the substrate holder, and the flow of the melt is disturbed. It is thought that the distribution of film thickness becomes large because of this. Therefore, in order to reduce the film thickness distribution and to eliminate stirring of the melt by the feet of the substrate holder, it is effective to align the feet of the substrate holder with the center of rotation.

なお、本実施例では、基板保持体の材質を白金としたが
、高温、空気雰囲気に耐える金、ロジウム、又はこれら
と白金の少なくとも2種類以上を含む合金を用いてもよ
い。
In this embodiment, the material of the substrate holder is platinum, but gold, rhodium, or an alloy containing at least two of these and platinum, which can withstand high temperatures and air atmosphere, may be used.

発明の効果 本発明によれば、基板の表と裏の両方の面に均一性よく
エピタキシャル膜を成長する事が可能となり、基板の片
面のみに成長する場合に比べて成長時間が約半分となり
、又基板の両面にエピタキシャル膜を成長する従来の方
法に比べて、膜厚の均一性が上昇するため成長時間を短
縮でき、特に多層構造の場合、鏡面研磨の工数が著しく
減少するため、その工業的価値は高い。
Effects of the Invention According to the present invention, it is possible to grow an epitaxial film with good uniformity on both the front and back surfaces of the substrate, and the growth time is approximately half that of the case where the epitaxial film is grown on only one side of the substrate. In addition, compared to the conventional method of growing epitaxial films on both sides of a substrate, the uniformity of the film thickness is improved, which reduces the growth time. Especially in the case of a multilayer structure, the number of steps for mirror polishing is significantly reduced, making it easier for the industry. The value is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(8)は本発明の一実施例における基板保持板保
持体を用いて基板に成長を行なわせる時の様子を示す断
面図、第3図(8)、 (B)は本発明を用いた場合の
膜厚のばらつきを示す図、第4図は従来のいる前のエピ
タキシャル膜の膜厚ばらつきを示す図である。 31・・・・・・ルツボ、22・・・・・・融剤、1o
O・・・・・・基板保持体の円板、101・・・・・・
基板保持体の表面、102・・・・・・基板保持体の裏
面、103・・・・・・ツメ部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名21
−  ルッ小 第2図       22−融 を1 第3図 (A) (B) (単位μm) 第4図 第5図 ↑ 第61 (A) (B) 隼位:Am
FIG. 1 (8) is a cross-sectional view showing how a substrate is grown using a substrate holding plate holder in an embodiment of the present invention, and FIG. 3 (8) and (B) are FIG. 4 is a diagram showing variations in film thickness when using the conventional epitaxial film. 31... Crucible, 22... Fluxing agent, 1o
O... Disk of substrate holder, 101...
Surface of the substrate holder, 102... Back surface of the substrate holder, 103... Claw portion. Name of agent: Patent attorney Toshio Nakao and 1 other person21
- Rutsu Small Figure 2 22- Melting 1 Figure 3 (A) (B) (Unit: μm) Figure 4 Figure 5 ↑ 61 (A) (B) Falcon position: Am

Claims (1)

【特許請求の範囲】[Claims]  白金、金、ロジウムの少なくても1種類以上の金属材
料で作られ、平板状部材と中心部より垂直に出た棒状部
材よりなり、前記平板状部材には貫通した穴部を有し、
前記穴部の回りに基板を固定するための手段を有し、前
記基板主面に酸化物結晶の液相エピタキシャル成長が行
われる基板保持体。
It is made of at least one kind of metal material such as platinum, gold, and rhodium, and consists of a flat member and a rod-like member protruding perpendicularly from the center, and the flat member has a penetrating hole,
A substrate holder having means for fixing a substrate around the hole, and in which liquid phase epitaxial growth of an oxide crystal is performed on the main surface of the substrate.
JP2433088A 1988-02-03 1988-02-03 Substrate holder Pending JPH01197385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2433088A JPH01197385A (en) 1988-02-03 1988-02-03 Substrate holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2433088A JPH01197385A (en) 1988-02-03 1988-02-03 Substrate holder

Publications (1)

Publication Number Publication Date
JPH01197385A true JPH01197385A (en) 1989-08-09

Family

ID=12135171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2433088A Pending JPH01197385A (en) 1988-02-03 1988-02-03 Substrate holder

Country Status (1)

Country Link
JP (1) JPH01197385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335392B2 (en) * 2002-11-29 2008-02-26 Neomax Co., Ltd. Method for producing corrosion-resistant rare earth metal-based permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335392B2 (en) * 2002-11-29 2008-02-26 Neomax Co., Ltd. Method for producing corrosion-resistant rare earth metal-based permanent magnet

Similar Documents

Publication Publication Date Title
Giess et al. Liquid phase epitaxial growth of magnetic garnet films by isothermal dipping in a horizontal plane with axial rotation
JPH01197385A (en) Substrate holder
US4200484A (en) Method of fabricating multiple layer composite
US5479290A (en) Faraday's rotator and optical isolator
JPH06295848A (en) Fabrication of semiconductor device
JPH01197397A (en) Garnet substrate and its production
JP2003255269A (en) Optical isolator
JP3132094B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2757045B2 (en) Manufacturing method of optical isolator
JP3645700B2 (en) Optical isolator element and manufacturing method thereof
JPS61101488A (en) Molecular beam crystal growth apparatus
JPS62145736A (en) Liquid phase epitaxial growth
JPH06157189A (en) Single crystal growth device
US4041447A (en) Bonded magnetic bubble memory
JP2003002792A (en) Method for producing magnetic garnet single crystal film
WO2003001276A1 (en) Optical isolator
JP2001125045A (en) Optical component, non-reciprocal element and method for manufacturing the same
JP2514398B2 (en) Method for growing single crystal for magneto-optical element
JPS62191491A (en) Method for crystal growth
JPH1072280A (en) Device for producing oxide single crystal film by liquid phase epitaxy and production of oxide single crystal film therewith
JPH07215799A (en) Method for growing garnet crystal
JP2000105354A (en) Element for optical isolator
Nakajima et al. A new improved (YbTbBi)/sub 3/Fe/sub 5/O/sub 12/epitaxial thick film
JPS6226459Y2 (en)
JP2001125043A (en) Optical isolator