JPH01197109A - Controlling device for wheel camber angle - Google Patents

Controlling device for wheel camber angle

Info

Publication number
JPH01197109A
JPH01197109A JP2260288A JP2260288A JPH01197109A JP H01197109 A JPH01197109 A JP H01197109A JP 2260288 A JP2260288 A JP 2260288A JP 2260288 A JP2260288 A JP 2260288A JP H01197109 A JPH01197109 A JP H01197109A
Authority
JP
Japan
Prior art keywords
steering
vehicle
suspension
wheel
camber angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2260288A
Other languages
Japanese (ja)
Other versions
JP2515364B2 (en
Inventor
Hiromichi Nozaki
野崎 博路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63022602A priority Critical patent/JP2515364B2/en
Publication of JPH01197109A publication Critical patent/JPH01197109A/en
Application granted granted Critical
Publication of JP2515364B2 publication Critical patent/JP2515364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/067Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper characterised by the mounting on the vehicle body or chassis of the spring and damper unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/001Arrangements for attachment of dampers
    • B60G13/003Arrangements for attachment of dampers characterised by the mounting on the vehicle body or chassis of the damper unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • B60G2204/4106Elastokinematic mounts
    • B60G2204/41062Elastokinematic mounts hydromounts; interconnected mounts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/81Interactive suspensions; arrangement affecting more than one suspension unit front and rear unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/22Magnetic elements
    • B60G2600/26Electromagnets; Solenoids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To make the head turning ability and convergence ability at turning compatible with each other by increasing one of the right and left roll rigidities of front and rear respective suspensions as well as decreasing the other of the right and left roll rigidities corresponding to the driving condition of a vehicle so as to control respective camber angles of front and rear wheels. CONSTITUTION:Front and rear respective suspensions 18 and 19 respectively paired with the right and the left are provided with mount insulators 14, pipes 21, and electromagnetic valves 22 respectively paired with the right and the left to compose first and second respective rigidity varying means 23 and 24. On the other hand, a driving condition detecting means 25 is provided to input its detected signal into a control means 28. Respective electromagnetic valves 22 are respectively opened or closed by the control means 28 to control the first and second respective rigidity varying means 23 and 24. Thereby, corresponding to the driving condition of a vehicle, one of the respective roll rigidities in the front and rear respective suspensions 18 and 19 is increased as well as the other is decreased, thus respective camber angles of respective front wheels 17F and respective rear wheels 17R are controlled respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車輪キャンバ角制御装置に係り、詳しくは車両
の操向状態に応じて前輪側および後輪側の懸架装置間で
ロール剛性の配分を変化させ、車両の運動性能を向上さ
せた車輪キャンバ角制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a wheel camber angle control device, and more specifically, to a wheel camber angle control device that distributes roll stiffness between front and rear wheel suspension systems according to the steering condition of a vehicle. The present invention relates to a wheel camber angle control device that improves the dynamic performance of a vehicle by changing the camber angle.

(従来の技術) 近時、自動車等の車両においては、高速直進性能および
高速旋回性能等の運動性能が高度に要求されている。こ
のため、例えば懸架装置を工夫することにより車輪のキ
ャンバ角変化を抑制制御するような車輪キャンバ角制御
装置が提案されている(実開昭60−130108号公
報等参照)。
(Prior Art) In recent years, vehicles such as automobiles are highly required to have dynamic performance such as high-speed straight running performance and high-speed turning performance. For this reason, a wheel camber angle control device has been proposed that suppresses and controls changes in the camber angle of the wheel by, for example, devising a suspension system (see Japanese Utility Model Application Publication No. 130108/1983, etc.).

この装置は、第5.6図に示すように、サスペンション
メンバ1、トランスバースリンク2、ストラット3、マ
ウントインシュレータ4およびトランスバースリンクブ
ツシュ5等からなるストラット式のサスペンション6に
よって構成されており、ストラット3およびマウントイ
ンシュレータ4の軸線が交叉するようマウントインシュ
レータ4を車体7に装着している。したがって、車両旋
回申のローリングにより接地した車輪8に対して車体7
が下降し、トランスバースリンク2が揺動してストラッ
ト3が車体7に対して持ち上げられると、マウントイン
シュレータ4がばね定数の低い剪断方向(第6図の中心
線C方向)に変形され、ストラット3の上端部が車両内
方に移動されるようになっている。このため、第6図の
仮想線で示すようなトランスバースリンク2の揺動によ
る車輪8のキャンバ角変化が補正され、旋回性能を向上
させるようにしている。
As shown in Fig. 5.6, this device is composed of a strut-type suspension 6 consisting of a suspension member 1, a transverse link 2, a strut 3, a mount insulator 4, a transverse link bushing 5, etc. The mount insulator 4 is attached to the vehicle body 7 so that the axes of the strut 3 and the mount insulator 4 intersect. Therefore, the vehicle body 7
When the transverse link 2 swings and the strut 3 is lifted relative to the vehicle body 7, the mount insulator 4 is deformed in the shearing direction with a low spring constant (direction of the center line C in Fig. 6), and the strut 3 is adapted to be moved inward of the vehicle. Therefore, the change in the camber angle of the wheel 8 due to the swinging of the transverse link 2 as shown by the imaginary line in FIG. 6 is corrected, and the turning performance is improved.

(発明が解決しようとする課8) しかしながら、このような従来の車輪キャンバ角制御装
置にあっては、車体7のロール角に基づくマウントイン
シュレータ4のコンプライアンスを利用して車輪8のキ
ャンバ角を補正する構成となっていたため、高速旋回等
により車体7に大きな横向加速度が加わる場合、後輪が
滑り易い車両においてはハンドルを切る際の回頭性は良
いが切り戻しの際の収束性が悪くなり、前輪が滑りにく
い車両においては逆に収束性は良いが回顧性が悪くなっ
ていた。すなわち、車両の前・論側および後輪側のサス
ペンション間でロール剛性の配分が一定であるため、こ
の配分が後輪側で低すぎたり高すぎたりすると旋回中の
回頭性と収束性の双方の安定性を確保することが困難と
なり、高速旋回時等の操縦安定性が低下してしまうとい
う問題点があった。
(Issue 8 to be solved by the invention) However, in such a conventional wheel camber angle control device, the camber angle of the wheel 8 is corrected using the compliance of the mount insulator 4 based on the roll angle of the vehicle body 7. Therefore, when large lateral acceleration is applied to the vehicle body 7 due to high-speed turning, etc., in vehicles where the rear wheels are prone to slipping, the turning performance when turning the steering wheel is good, but the convergence performance when turning back is poor. Conversely, in vehicles where the front wheels were less slippery, the convergence was good, but the retrospective performance was poor. In other words, since the distribution of roll stiffness is constant between the front and rear suspensions of the vehicle, if this distribution is too low or too high on the rear wheels, both turning and convergence during turns will be affected. There was a problem in that it became difficult to ensure stability, resulting in a decrease in maneuvering stability during high-speed turns.

(発明の目的) そこで本発明は、車両の操向状態に応じて前輪側および
後輪側の懸架装置間でロール剛性の配分を変化させるこ
とにより、特に、旋回時の回顧性を収束性を両立させ、
車両の運動性能および操縦安定性を向上させることを目
的としている。
(Objective of the Invention) Therefore, the present invention aims to improve retrospective performance and convergence during turns by changing the distribution of roll stiffness between the front wheel and rear wheel suspension systems according to the steering state of the vehicle. Make it compatible,
The purpose is to improve the vehicle's driving performance and handling stability.

(課題を解決するための手段) 本発明は、上記の目的を達成するために、前輪側の懸架
装置に設けられ、該懸架装置のロール剛性を変化させる
ことができる第1剛性可変手段と、後輪側の懸架装置に
設けられ、該懸架装置のロール剛性を変化させることが
できる第2剛性可変手段と、車両の操向状態を検出する
操向状態検出手段と、操向状態検出手段からの検出情報
に基づいて第1剛性可変手段および第2剛性可変手段の
作動を制御する制御手段と、を備え、車両の操向状態に
応じて両懸架装置の一方のロール剛性を増大させるとと
もに他方のロール剛性を減小させ、前輪および後輪のキ
ャンバ角を制御するようにしている。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a first rigidity variable means that is provided in a suspension system on the front wheel side and is capable of changing the roll rigidity of the suspension system; a second rigidity variable means provided in a suspension system on the rear wheel side and capable of changing the roll rigidity of the suspension system; a steering state detection means for detecting a steering state of the vehicle; and a steering state detection means. control means for controlling the operation of the first variable stiffness means and the second variable stiffness means based on the detection information of the first stiffness variable means; This reduces the roll stiffness of the front and rear wheels and controls the camber angles of the front and rear wheels.

(作用) 本発明では、操向状態検出手段からの検出情報に基づい
て、制御手段により第1剛性可変手段および第2剛性可
変手段の作動が制御され、車両の操向状態に応じて前輪
側および後輪側懸架装置の一方のロール剛性が増大され
るとともに他方のロール剛性が減小され、前輪および後
輪のキャンバ角が制御される。したがって、車両の操向
状態に応じて前輪側および後輪側の懸架装置間でロール
剛性の配分が変化され、特に旋回時等の回頭性および収
束性の双方が安定するようキャンバ角が制御される。こ
の結果、車両の運動性能および操縦安定性が向上する。
(Function) In the present invention, the control means controls the operation of the first stiffness variable means and the second stiffness variable means based on the detection information from the steering state detection means, so that the front wheel side The roll rigidity of one side of the rear wheel suspension system is increased and the roll rigidity of the other side is decreased, thereby controlling the camber angles of the front wheels and the rear wheels. Therefore, the distribution of roll stiffness is changed between the front and rear wheel suspension systems depending on the steering state of the vehicle, and the camber angle is controlled to stabilize both turning and convergence, especially when turning. Ru. As a result, the driving performance and steering stability of the vehicle are improved.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第1.2図は本発明の第1実施例を示す図であり、第1
実施例は本発明をマクファーソンストラット方式の懸架
装置に適用したものである。
FIG. 1.2 is a diagram showing the first embodiment of the present invention, and the first
In this embodiment, the present invention is applied to a MacPherson strut type suspension system.

第1図において、11はサスペンションメンバ12はト
ランスバースリンク、13はストラットであり、トラン
スバースリンク12は車両内方側の内端部でサスペンシ
ョンメンバ11に上下方向の揺動可能に支持されている
。ストラット13はトランスバースリンク12の外端部
に連結された下端部13aとマウントインシュレータ1
4およびブラケット15を介して車体16に連結された
上端部13bとを有しており、ストラット13の下端部
13aはさらに前輪17Fあるいは後輪17Rのアクス
ルハウジング(図示していない)に取り付けられている
。これらサスペンションメンバ11、トランスバースリ
ンク12、ストラット13、マウントインシュレータ1
4およびブラケット15等は前輪17Fおよび後輪17
Rに対応して複数段けられ、フロントサスペンション1
8(前輪17F側の懸架装置)およびリヤサスペンショ
ン19(後輪17R側の懸架装置)を構成している。
In FIG. 1, 11 is a suspension member 12, a transverse link, and 13 is a strut, and the transverse link 12 is supported by the suspension member 11 at its inner end on the inward side of the vehicle so as to be able to swing vertically. . The strut 13 has a lower end 13a connected to the outer end of the transverse link 12 and a mount insulator 1.
4 and an upper end 13b connected to the vehicle body 16 via a bracket 15, and the lower end 13a of the strut 13 is further attached to an axle housing (not shown) of a front wheel 17F or a rear wheel 17R. There is. These suspension members 11, transverse links 12, struts 13, mount insulators 1
4 and bracket 15 etc. are front wheel 17F and rear wheel 17
Multi-stage suspension corresponding to R, front suspension 1
8 (suspension device on the front wheel 17F side) and a rear suspension 19 (suspension device on the rear wheel 17R side).

また、マウントインシュレータ14は内部に非圧縮性流
体等が封入された流体封入式のものであり、例えばスト
ラット13の上端部13bを挟んで対称に配置された複
数の流体室14a、14b等を有している。マウントイ
ンシュレータ14の流体室14a、14bは配管21を
介して互いに接続され、この配管21の管路上に設けら
れた電磁式バルブ22の開閉によって互いに連通および
遮断されるようになっており、マウントインシュレータ
14は流体室14a、14b間の連通および遮断によっ
てそのマウント剛性を変化させるようになっている。ま
た、フロントサスペンション18に設けられた左右一対
の電磁式バルブ22は後述する制御手段からの制御信号
v1によって開閉制御され、リヤサスペンション19に
設けられた左右一対の電磁式バルブ22は制御手段から
の制御信号V2によって開閉制御されるようになってお
り、各一対の電磁式バルブ22が左右のマウントインシ
ュレータ14のマウント剛性を変化させることによりフ
ロントサスペンション18およびリヤサスペンション1
9のロール剛性を変化させることができるようになって
いる。すなわち、フロントサスペンション18に設けら
れた左右一対のマウントインシュレータ14、配管21
および電磁式バルブ22によってフロントサスペンショ
ン18のロール剛性を変化させることができる第1剛性
可変手段23が構成されており、リヤサスペンション1
9に設けられた左右一対のマウントインシュレータ14
、配管21および電磁式バルブ22によってリヤサスペ
ンション19のロール剛性を変化させることができる第
2剛性可変手段24が構成されている。
The mount insulator 14 is of a fluid-filled type in which an incompressible fluid or the like is sealed, and has, for example, a plurality of fluid chambers 14a, 14b, etc. arranged symmetrically across the upper end 13b of the strut 13. are doing. The fluid chambers 14a and 14b of the mount insulator 14 are connected to each other via a pipe 21, and are communicated with and disconnected from each other by opening and closing an electromagnetic valve 22 provided on the pipe 21. 14 is adapted to change its mount rigidity by communicating and blocking the fluid chambers 14a and 14b. Further, a pair of left and right electromagnetic valves 22 provided on the front suspension 18 are controlled to open and close by a control signal v1 from a control means, which will be described later. Opening and closing are controlled by a control signal V2, and each pair of electromagnetic valves 22 changes the mount rigidity of the left and right mount insulators 14, thereby controlling the front suspension 18 and the rear suspension 1.
9 roll rigidity can be changed. That is, a pair of left and right mount insulators 14 and piping 21 provided on the front suspension 18
and a first stiffness variable means 23 that can change the roll stiffness of the front suspension 18 by means of an electromagnetic valve 22.
A pair of left and right mount insulators 14 provided at 9
, a pipe 21 and an electromagnetic valve 22 constitute a second rigidity variable means 24 that can change the roll rigidity of the rear suspension 19.

25は操向状態検出手段であり、操向状態検出手段25
は操舵角速度センサ26および横向加速度センサ27か
らなる。操舵角速度センサ26は図外の操舵ハンドルの
操舵角度を検出し、検出情報である操舵角速度信号すを
制御手段28に与える。この操舵角速度信号シは、例え
ば操舵ハンドルの操舵方向が右の場合はプラス、操舵方
向が左の場合はマイナスである。また、横向加速度セン
サ27はフロントサスペンション1日のサスペンション
メンバ11に装着されており、横向加速度センサ27は
旋回時等に車体16に作用する横向加速度を検出し、検
出情報である横向加速度信号yを制御手段28に与える
25 is a steering state detection means;
consists of a steering angular velocity sensor 26 and a lateral acceleration sensor 27. The steering angular velocity sensor 26 detects the steering angle of a steering wheel (not shown) and provides a steering angular velocity signal, which is detected information, to the control means 28. This steering angular velocity signal is, for example, positive when the steering direction of the steering wheel is to the right, and negative when the steering direction is to the left. Further, the lateral acceleration sensor 27 is attached to the suspension member 11 of the front suspension, and the lateral acceleration sensor 27 detects the lateral acceleration acting on the vehicle body 16 when turning, etc., and outputs a lateral acceleration signal y as detection information. to the control means 28.

この横向加速度信号yは右旋回中に車体16に作用する
横向加速度をプラス、左旋回中に車体16に作用する横
向加速度をマイナスとしている。そして、これらの検出
信号δ、yから車両の操向状態である旋回方向および操
舵方向(舵角の切増し方向あるいは切戻し方向等)等が
検出できるようにしている。
This lateral acceleration signal y has a positive value for lateral acceleration acting on the vehicle body 16 during a right turn, and a negative value for a lateral acceleration acting on the vehicle body 16 during a left turn. From these detection signals δ and y, it is possible to detect the steering state of the vehicle, such as the turning direction and the steering direction (direction of increasing steering angle, direction of turning back, etc.).

制御手段28はマイクロコンピュータおよびスイッチ回
路等からなり、操向状態検出手段25からの操舵角速度
信号ルおよび横向加速度信号yに基づいて上述の制御信
号V+ 、Vzを出力するよう制御手段28のマイクロ
コンピュータには所定のプログラムが記憶されている。
The control means 28 is composed of a microcomputer, a switch circuit, etc., and the microcomputer of the control means 28 is configured to output the above-mentioned control signals V+ and Vz based on the steering angular velocity signal y and the lateral acceleration signal y from the steering state detection means 25. A predetermined program is stored in the .

すなわち、制御手段28は操向状態検出手段25からの
検出情報に基づいて各電磁式バルブ22の開を促し、第
1剛性可変手段23および第2剛性可変手段24の作動
を制御するようになっており、制御手段28に制御され
る第1剛性可変手段23および第2剛性可変手段24に
より車両の操向状態に応じてフロントサスペンション1
8およびリヤサスペンション19の一方のロール剛性を
増大させるとともに他方のロール剛性を減小させるよう
になっている。そして、旋回中の車体16がローリング
する際、マウントインシュレータ14のコンプライアン
スによる前輪17Fおよび後輪17Rのキャンバ角変化
をロール剛性を増大させることにより抑制してネガティ
ブ方向(車両内方に倒れる方向)に制御し、あるいはロ
ール剛性を減小させることによりこのキャンバ角変化を
促してポジティブ方向(車両外方に倒れる方向)に制御
するようになっている。
That is, the control means 28 prompts the opening of each electromagnetic valve 22 based on the detection information from the steering state detection means 25, and controls the operation of the first variable stiffness means 23 and the second variable stiffness means 24. The front suspension 1 is controlled by the first stiffness variable means 23 and the second stiffness variable means 24 controlled by the control means 28 according to the steering state of the vehicle.
The roll stiffness of one of the suspension 8 and the rear suspension 19 is increased, while the roll stiffness of the other is decreased. When the vehicle body 16 rolls during a turn, the change in the camber angle of the front wheels 17F and rear wheels 17R due to the compliance of the mount insulator 14 is suppressed by increasing the roll rigidity, so that the vehicle body 16 rolls in a negative direction (direction in which the vehicle falls inward). This camber angle change is promoted by controlling or reducing the roll stiffness, and is controlled in a positive direction (direction in which the vehicle falls outward).

次に、作用を説明する。Next, the effect will be explained.

操向状態検出手段25からの操舵角速度信号すおよび横
向加速度信号yが制御手段28に与えられると、制御手
段28により所定時間毎に第2図に示すような処理が実
行される。まず、操舵角速度信号δおよび横向加速度信
号Vの値が把握され、次いで、両信号の積が求められて
以下に述べる操向状BA、Bのどちらであるかが判別さ
れる。
When the steering angular velocity signal S and the lateral acceleration signal y from the steering state detection means 25 are applied to the control means 28, the control means 28 executes the process shown in FIG. 2 at predetermined time intervals. First, the values of the steering angular velocity signal δ and the lateral acceleration signal V are grasped, and then the product of both signals is calculated to determine which of the steering shapes BA and B described below.

いま、例えば、直進走行(前進)中の車両が右あるいは
左に操向される場合、操舵ハンドルが右に操舵されると
、操舵角速度信号δがプラス(〉0)に変化するととも
に横向加速度信号yがOからプラスに変化し、左に操舵
されると、操舵角速度信号浸がマイナス(くO)に変化
するとともに横向加速度信号yがOからマイナスに変化
する。
Now, for example, when a vehicle traveling straight (forward) is steered to the right or left, when the steering wheel is steered to the right, the steering angular velocity signal δ changes to plus (>0) and the lateral acceleration signal changes. When y changes from O to plus and the vehicle is steered to the left, the steering angular velocity signal dip changes to minus (kuO) and the lateral acceleration signal y changes from O to minus.

この場合、両信号値の積は常時プラス(〉0)あるいは
O(V=0のとき)となり、操向状態Aと判別される。
In this case, the product of both signal values is always positive (>0) or O (when V=0), and steering state A is determined.

次いで、右あるいは左に操舵された後に旋回している車
両が直進方向に操向(切り戻し)される場合、操舵ハン
ドルが左に切り戻されると、操舵角速度信号すがマイナ
ス(くO)に変化して横向加速度信号yがプラス(右旋
回中)のままとなり、右に切り戻されると、操舵角速度
信号δがプラス(〉O)に変化して横向加速度信号ゾが
マイナス(左旋回中)のままとなる。この場合、両信号
値の積は常時マイナス(〈0)となり、制御手段28に
よって操向状IBと判別される。さらに、切り戻しが完
了して車両が直進走行したり、舵角一定で保舵される場
合(θ=0のとき)は、操向状態Bと判別される。
Next, when the turning vehicle is steered straight ahead after being steered to the right or left, when the steering wheel is steered back to the left, the steering angular velocity signal becomes negative (kuO). When the steering angular velocity signal δ changes to positive (〉O) and the lateral acceleration signal y remains positive (during a right turn), the steering angular velocity signal δ changes to positive (〉O) and the lateral acceleration signal y remains negative (during a left turn). ) remains. In this case, the product of both signal values is always negative (<0), and the control means 28 determines that the steering condition is IB. Further, when the steering is completed and the vehicle travels straight or is kept at a constant steering angle (when θ=0), the steering state B is determined.

次いで、制御手段28によって操向状態A、B、すなわ
ち、操舵ハンドルを切っているか切り戻している(保舵
状態を含む)かが判別されると、制御手段28から第1
剛性可変手段23および第2剛性可変手段24に制御信
号V、 、V2が出力される。
Next, when the control means 28 determines the steering states A and B, that is, whether the steering wheel is turned or turned back (including the steering state), the control means 28 determines that the first
Control signals V, , V2 are output to the stiffness variable means 23 and the second stiffness variable means 24.

このとき、判別結果が操向状gAである場合には制御信
号V、により第1剛性可変手段23の電磁式バルブ22
が閉じるとともに制御信号V2により第2剛性可変手段
24の電磁式バルブ22が開き、一方、判別結果が操向
状態Bである場合には制御信号V1により第1剛性可変
手段23の電磁式バルブ22が開くとともに制御信号■
2により第2剛性可変手段24の電磁式バルブ22が閉
じる。したがって、操舵ハンドルを切り増している際に
は、フロントサスペンション18のロール剛性が増大さ
れて前輪17Fのキャンバ角がネガティブ方向に制御さ
れ、リヤサスペンション19のロール剛性が減小されて
後輪17Rのポジティブ方向のキャンバ角変化が促され
る。また、操舵ハンドルを切り戻しあるいは保舵してい
る際には、フロントサスペンション18のロール剛性が
減小されて前輪17Fのポジティブ方向のキャンバ角変
化が促され、リヤサスペンション19のロール剛性が増
大されて後輪17Rのキャンバ角がネガティブ方向に制
御される。このため、車両を旋回させるために操舵ハン
ドルを切ると、テールスライドを容易にして車両の口頭
性を促進するよう車輪のキャンバ角が制御され、操舵ハ
ンドルを切り戻すと、テールの流れを抑制して収束性を
促進するよう車輪のキャンバ角が制御される。
At this time, if the determination result is the steering condition gA, the control signal V causes the electromagnetic valve 22 of the first stiffness variable means 23 to
closes, and the control signal V2 opens the electromagnetic valve 22 of the second variable stiffness means 24. On the other hand, if the determination result is steering state B, the control signal V1 causes the electromagnetic valve 22 of the first variable stiffness means 23 to open. opens and the control signal ■
2 closes the electromagnetic valve 22 of the second variable stiffness means 24. Therefore, when the steering wheel is turned further, the roll rigidity of the front suspension 18 is increased and the camber angle of the front wheel 17F is controlled in the negative direction, and the roll rigidity of the rear suspension 19 is decreased and the rear wheel 17R is A positive camber angle change is encouraged. Furthermore, when the steering wheel is turned back or held, the roll stiffness of the front suspension 18 is reduced, promoting a positive camber angle change of the front wheels 17F, and the roll stiffness of the rear suspension 19 is increased. The camber angle of the rear wheel 17R is controlled in the negative direction. Therefore, when the steering wheel is turned to turn the vehicle, the camber angle of the wheels is controlled to facilitate tail sliding and promote vehicle control, and when the steering wheel is turned back, the wheel camber angle is controlled to reduce tail flow. The camber angle of the wheels is controlled to promote convergence.

このように、本実施例においては、車両の操向状態に応
じてフロントサスペンション18およびリヤサスペンシ
ョン19間でロール剛性の配分が変化され、特に高速旋
回時等の回頭性および収束性の双方が安定するよう車輪
のキャンバ角が制御されるので、車両の運動性能および
操縦安定性が向上する。さらに、従来、限界操向付近の
領域で操縦性と安定性を両立させることが非常に困難で
あったが、旋回中の操舵において、切り増し時のコント
ロールモーメントと切り戻しくカウンターステアを含む
)時の復元モーメントを共に大きくすることができるの
で、ドリフト走行を含む限界領域での操縦性が格段に向
上する。
In this way, in this embodiment, the distribution of roll stiffness is changed between the front suspension 18 and the rear suspension 19 depending on the steering state of the vehicle, and both turning performance and convergence performance are stabilized, especially during high-speed turns. Since the camber angle of the wheels is controlled so as to improve the driving performance and steering stability of the vehicle. Furthermore, in the past, it was extremely difficult to achieve both maneuverability and stability in the area near the steering limit, but this includes the control moment when turning more and the countersteering when turning back) Since it is possible to increase the restoring moment at both times, maneuverability in the limit range, including drifting, is significantly improved.

第3.4図は本発明の第2実施例を示す図であり、同図
において、フロントサスペンション18のサスペンショ
ンメンバ11とトランスバースリンク12の連結部2箇
所にはそれぞれ流体封入ブツシュ31が設けられている
。各流体封入ブツシュ31は連結ポル目2aを挟んでト
ランスバースリンク12の長手方向両側に配置された二
つの流体室31a、31bを有しており、流体室31a
、31bには非圧縮性流体等が封入されている。また、
両流体封入ブツシュ31は第1実施例と同様な配管32
および電磁式バルブ33と共に第1剛性可変手段34を
構成しており、第1剛性可変手段34は制御手段28か
らの制御信号Vlにより車両旋回中トランスバースリン
ク12に作用する圧縮荷重および引張荷重に対して左右
一対の流体封入ブツシュ31の剛性を増減させ、フロン
トサスペンション18のロール剛性を変化させることが
できる。なお、リヤサスペンション19にも第1剛性可
変手段34と同様な第2剛性可変手段(図示していない
)が設けられており、これらにより制御手段28からの
制御信号V、 、V、を受けて車両の操向状態に応じて
フロントサスペンション18およびリヤサスペンション
19のロール剛性の配分が変化されるので、第1実施例
と同様の効果が得られる。
FIG. 3.4 is a diagram showing a second embodiment of the present invention, in which fluid-filled bushings 31 are provided at two connecting portions between the suspension member 11 and the transverse link 12 of the front suspension 18, respectively. ing. Each fluid-filled bushing 31 has two fluid chambers 31a and 31b arranged on both sides of the transverse link 12 in the longitudinal direction with the connecting port 2a in between.
, 31b are filled with an incompressible fluid or the like. Also,
Both fluid-filled bushings 31 are connected to piping 32 similar to the first embodiment.
The first stiffness variable means 34 is configured together with the electromagnetic valve 33, and the first stiffness variable means 34 adjusts the compressive load and tensile load acting on the transverse link 12 while the vehicle is turning in accordance with the control signal Vl from the control means 28. On the other hand, by increasing or decreasing the rigidity of the pair of left and right fluid-filled bushings 31, the roll rigidity of the front suspension 18 can be changed. The rear suspension 19 is also provided with a second stiffness variable means (not shown) similar to the first stiffness variable means 34, and receives the control signals V, , V from the control means 28, and Since the roll rigidity distribution of the front suspension 18 and the rear suspension 19 is changed depending on the steering state of the vehicle, the same effects as in the first embodiment can be obtained.

(効果) 本発明によれば、操向状態検出手段からの検出情報に基
づいて、制御手段により第1剛性可変手段および第2剛
性可変手段の作動を制御し、車両の操向状態に応じて前
輪側および後輪側懸架装置の一方のロール剛性を増大さ
せるとともに他方のロール剛性を減小させて前輪および
後輪のキャンバ角を制御しているので、車両の操向状態
に応じて前輪側および後輪側の懸架装置間でロール剛性
の配分を変化させ、特に高速旋回時等の回顧性および収
束性゛の双方が安定するようキャンバ角を制御すること
ができる。この結果、車両の運動性能および操縦安定性
を向上させることができる。
(Effect) According to the present invention, the control means controls the operation of the first stiffness variable means and the second stiffness variable means based on the detection information from the steering state detection means, and The camber angles of the front and rear wheels are controlled by increasing the roll rigidity of one of the front and rear wheel suspension systems and decreasing the roll rigidity of the other, so that the camber angle of the front and rear wheels is controlled depending on the steering condition of the vehicle. By changing the distribution of roll stiffness between the suspension system on the rear wheel side and the rear wheel side, the camber angle can be controlled so that both retrospective performance and convergence performance are stabilized, especially when turning at high speed. As a result, the driving performance and steering stability of the vehicle can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は本発明に係る車輪キャンバ角制御装置の第
1実施例を示す図であり、第1図はその概略構成図、第
2図はその制御手段の制御フローチャート、第3.4図
は本発明に係る車輪キャンバ角制御装置の第2実施例を
示す図であり、第3図はその概略構成図、第4図はその
要部斜視図、第5.6図は従来例を示す図であり、第5
図はその概略構成図、第6図はその要部断面図である。 17F・・・・・・前輪、 17R・・・・・・後輪、 18・・・・・・フロントサスペンション(前輪側の懸
架装置)、 19・・・・・・リヤサスペンション(後輪側の懸架装
置)ミ 23.34・・・・・・第1剛性可変手段、24・・・
・・・第2剛性可変手段、 25・・・・・・操向状態検出手段、 28・・・・・・制御手段。
Fig. 1.2 is a diagram showing a first embodiment of the wheel camber angle control device according to the present invention, Fig. 1 is a schematic configuration diagram thereof, Fig. 2 is a control flow chart of its control means, and Fig. 3.4 The figures are diagrams showing a second embodiment of the wheel camber angle control device according to the present invention, Fig. 3 is a schematic configuration diagram thereof, Fig. 4 is a perspective view of the main part thereof, and Figs. This is a diagram showing the fifth
The figure is a schematic configuration diagram thereof, and FIG. 6 is a sectional view of the main part thereof. 17F...Front wheel, 17R...Rear wheel, 18...Front suspension (suspension system on the front wheel side), 19...Rear suspension (suspension on the rear wheel side) Suspension system) Mi23.34...First rigidity variable means, 24...
. . . second rigidity variable means, 25 . . . steering state detection means, 28 . . . control means.

Claims (1)

【特許請求の範囲】[Claims] 前輪側の懸架装置に設けられ、該懸架装置のロール剛性
を変化させることができる第1剛性可変手段と、後輪側
の懸架装置に設けられ、該懸架装置のロール剛性を変化
させることができる第2剛性可変手段と、車両の操向状
態を検出する操向状態検出手段と、操向状態検出手段か
らの検出情報に基づいて第1剛性可変手段および第2剛
性可変手段の作動を制御する制御手段と、を備え、車両
の操向状態に応じて両懸架装置の一方のロール剛性を増
大させるとともに他方のロール剛性を減小させ、前輪お
よび後輪のキャンバ角を制御するようにしたことを特徴
とする車輪キャンバ角制御装置。
a first rigidity variable means that is provided on the suspension system on the front wheel side and is capable of changing the roll rigidity of the suspension system; and a first rigidity variable means that is provided on the suspension system on the rear wheel side and is capable of changing the roll rigidity of the suspension system. The second variable stiffness means, the steering state detecting means for detecting the steering state of the vehicle, and the operation of the first variable stiffness means and the second variable stiffness means are controlled based on the detection information from the steering state detecting means. and control means for increasing the roll rigidity of one of the suspension systems and decreasing the roll rigidity of the other according to the steering state of the vehicle, thereby controlling the camber angles of the front wheels and the rear wheels. A wheel camber angle control device featuring:
JP63022602A 1988-02-02 1988-02-02 Wheel camber angle control device Expired - Lifetime JP2515364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022602A JP2515364B2 (en) 1988-02-02 1988-02-02 Wheel camber angle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022602A JP2515364B2 (en) 1988-02-02 1988-02-02 Wheel camber angle control device

Publications (2)

Publication Number Publication Date
JPH01197109A true JPH01197109A (en) 1989-08-08
JP2515364B2 JP2515364B2 (en) 1996-07-10

Family

ID=12087388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022602A Expired - Lifetime JP2515364B2 (en) 1988-02-02 1988-02-02 Wheel camber angle control device

Country Status (1)

Country Link
JP (1) JP2515364B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231013A (en) * 1990-02-05 1991-10-15 Mitsubishi Motors Corp Camber angle control device for wheel
US5069475A (en) * 1989-09-05 1991-12-03 Toyota Jidosha Kabushiki Kaisha Fluid pressure type active suspension having variable performance responsive to front to rear wheel steering angle ratio
US5071158A (en) * 1989-08-28 1991-12-10 Toyota Jidosha Kabushiki Kaisha Fluid pressure type active suspension responsive to change of rate of change of vehicle height or change of acceleration of vehicle body
US5177681A (en) * 1990-04-27 1993-01-05 Toyota Jidosha Kabushiki Kaisha Roll control system in vehicle admissive of counter steering
KR100440113B1 (en) * 2001-07-04 2004-07-12 현대자동차주식회사 Suspension system of vehicles
DE102004014576A1 (en) * 2004-03-25 2005-10-13 Zf Friedrichshafen Ag Method and chassis arrangement for driving stability control of a motor vehicle
KR100680389B1 (en) * 2004-12-15 2007-02-08 현대자동차주식회사 Wheel alignment and vehicle height adjusting apparatus
JP2011207285A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle
JP2011207284A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle
JP2011207286A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973312A (en) * 1982-10-18 1984-04-25 Mazda Motor Corp Suspension of car
JPS6050018A (en) * 1983-08-30 1985-03-19 Toyota Motor Corp Camber angle control device for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973312A (en) * 1982-10-18 1984-04-25 Mazda Motor Corp Suspension of car
JPS6050018A (en) * 1983-08-30 1985-03-19 Toyota Motor Corp Camber angle control device for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071158A (en) * 1989-08-28 1991-12-10 Toyota Jidosha Kabushiki Kaisha Fluid pressure type active suspension responsive to change of rate of change of vehicle height or change of acceleration of vehicle body
US5069475A (en) * 1989-09-05 1991-12-03 Toyota Jidosha Kabushiki Kaisha Fluid pressure type active suspension having variable performance responsive to front to rear wheel steering angle ratio
JPH03231013A (en) * 1990-02-05 1991-10-15 Mitsubishi Motors Corp Camber angle control device for wheel
US5177681A (en) * 1990-04-27 1993-01-05 Toyota Jidosha Kabushiki Kaisha Roll control system in vehicle admissive of counter steering
KR100440113B1 (en) * 2001-07-04 2004-07-12 현대자동차주식회사 Suspension system of vehicles
DE102004014576A1 (en) * 2004-03-25 2005-10-13 Zf Friedrichshafen Ag Method and chassis arrangement for driving stability control of a motor vehicle
KR100680389B1 (en) * 2004-12-15 2007-02-08 현대자동차주식회사 Wheel alignment and vehicle height adjusting apparatus
JP2011207285A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle
JP2011207284A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle
JP2011207286A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle

Also Published As

Publication number Publication date
JP2515364B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
JPS63263124A (en) Hydraulic stabilizer control device
JPH01197109A (en) Controlling device for wheel camber angle
JPS61163009A (en) Vehicle
JPS6238402Y2 (en)
JPS62198511A (en) Suspension control device in vehicle
JPH0532113A (en) Car camber angle control device
JPH0596925A (en) Camber angle control device for vehicle
JPS6067210A (en) Anti-roll control device for vehicle
JPS63188512A (en) Vehicle attitude control device
JPH0532112A (en) Car camber angle control device
JP2510279B2 (en) Rear wheel steering angle control method
JPH0224270A (en) Steering device for vehicle
JPH03281405A (en) Control device for tire pressure
JP2520146B2 (en) Rear wheel steering angle control device
JPH01275272A (en) Running control device for vehicle
JPH0274471A (en) Rear wheel steering angle control device
JPH042575A (en) Integrated control device for auxiliary steering angle and wheel load distribution
JPH0530672B2 (en)
JP3366474B2 (en) Vehicle electronically controlled suspension
JP2528918B2 (en) Rear wheel steering angle control device
JP3082580B2 (en) Alignment control device
JP2539035B2 (en) Rear wheel steering system
JPH0684126B2 (en) Stabilizer control device
JPH04260807A (en) Roll rigidity controlling device
JPS61287806A (en) Suspension having variable stiffness