JPH042575A - Integrated control device for auxiliary steering angle and wheel load distribution - Google Patents

Integrated control device for auxiliary steering angle and wheel load distribution

Info

Publication number
JPH042575A
JPH042575A JP10404590A JP10404590A JPH042575A JP H042575 A JPH042575 A JP H042575A JP 10404590 A JP10404590 A JP 10404590A JP 10404590 A JP10404590 A JP 10404590A JP H042575 A JPH042575 A JP H042575A
Authority
JP
Japan
Prior art keywords
control
steering angle
load distribution
wheel load
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10404590A
Other languages
Japanese (ja)
Other versions
JP2936640B2 (en
Inventor
Toshihiro Yamamura
智弘 山村
Fukashi Sugasawa
菅沢 深
Masatsugu Yokote
正継 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10404590A priority Critical patent/JP2936640B2/en
Priority to GB9108131A priority patent/GB2245873B/en
Priority to US07/686,341 priority patent/US5297646A/en
Priority to DE4112582A priority patent/DE4112582C2/en
Publication of JPH042575A publication Critical patent/JPH042575A/en
Application granted granted Critical
Publication of JP2936640B2 publication Critical patent/JP2936640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To make the total control effect of both control devices optimum in a vehicle mounted simultaneously with an auxiliary steering angle control device and a wheel load distribution control device by discriminating the vehicle state region by parameters including lateral largeness of control effect. CONSTITUTION:In an integrated control device comprising an auxiliary steering angle control device (a) for controlling the steering angle of at least either front wheels or rear wheels at the time of steering the front wheels, and a wheel load distribution control device (b) for controlling the load moving quantity distribution of each wheel, mounted on a vehicle, there is provided a lateral acceleration detecting means (d) for detecting the lateral acceleration YG acting upon the vehicle. The auxiliary steering angle control sensitivity alphas and the wheel load distribution control sensitivity alphaR are set by an integrated control sensitivity setting means (e) in such a way that the wheel load distribution control sensitivity alphaR becomes larger in relation to the auxiliary steering angle control sensitivity alphaS as the lateral acceleration detection value becomes larger. The total control effect of both control devices (a), (b) can be thereby made optimum while preventing the restriction of control quantity on the control device side with larger control effect during the simultaneous operation of both control devices (a), (b).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、補助舵角と輪荷重配分の総合制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a comprehensive control device for auxiliary steering angle and wheel load distribution.

(従来の技術) 従来、補助舵角制御装置の一例である後輪舵角制御装置
としては、例えば、特開昭59−77968号公報に記
載されている装置が知られていて、この従来出典には、
低車速時或は前輪操舵角が大きい時等には後輪を逆相に
転舵し、高車速時或は前輪操舵角が小さい時等には後輪
を同相に転舵し、操縦性能を高める内容が示されている
(Prior Art) Conventionally, as a rear wheel steering angle control device which is an example of an auxiliary steering angle control device, for example, a device described in Japanese Patent Application Laid-Open No. 59-77968 has been known, and this conventional source for,
At low vehicle speeds or when the front wheel steering angle is large, the rear wheels are steered in the opposite phase, and at high vehicle speeds or when the front wheel steering angle is small, the rear wheels are steered in the same phase to improve maneuverability. The content to improve is shown.

また、従来、輪荷重配分制御装置の一例であるサスペン
ション制御装置としては、例えば、特開昭62−292
516号公報に記載されている装置が知られて、この従
来出典には、サスペンションのバネ定数又は減衰定数を
連続的に且つ広範囲に変更することで、車両のロール、
ピッチ、バウンス等による車両姿勢変化を抑制する内容
が示されている。
Furthermore, conventionally, as a suspension control device which is an example of a wheel load distribution control device, for example, Japanese Patent Laid-Open No. 62-292
A device described in Japanese Patent No. 516 is known, and this conventional source describes that by continuously and widely changing the spring constant or damping constant of the suspension, the roll of the vehicle,
The content shows how to suppress changes in vehicle posture due to pitch, bounce, etc.

(発明が解決しようとする課題) しかしながら、上記後輪舵角制御装置とサスペンション
制御装置とを同時に1つの車両に搭載した場合で、補助
舵角制御感度と輪荷重配分制御感度をそれぞれで独自に
設定し、設定感度に基づき互いに独立して後輪舵角制御
と輪荷重配分制御を行なう構成とした場合、本来、補助
舵角制御の制御効果が大きな車両状態領域と輪荷重配分
制御の制御効果が大きな車両状態領域とが異なっている
にもかかわらずこの点が全く考慮されない為、両制御装
置によるトータル的な制御効果が最適なものとはならな
い。
(Problem to be Solved by the Invention) However, when the above-mentioned rear wheel steering angle control device and suspension control device are installed in one vehicle at the same time, the auxiliary steering angle control sensitivity and the wheel load distribution control sensitivity can be adjusted independently. If the configuration is such that rear wheel steering angle control and wheel load distribution control are performed independently of each other based on the setting sensitivity, the vehicle condition region where the control effect of auxiliary steering angle control is large and the control effect of wheel load distribution control are Although this point is different from the large vehicle state region, this point is not taken into account at all, so the total control effect of both control devices will not be optimal.

また、後輪舵角制御と輪荷重配分制御とが同時に行なわ
れる場合、一方の制御効果の小さな車両状態であっても
制御量は単独で搭載される場合と同じ制御量となりトー
タルのエネルギ消費が大となると共に、このように複数
の制御装置が搭載される車両では燃費等の理由によりト
ータルのエネルキの消費が限られる場合には、制御効果
の大きい側の制御量が制限されることがある。
In addition, when rear wheel steering angle control and wheel load distribution control are performed simultaneously, even if the vehicle is in a state where one control has a small effect, the control amount will be the same as when it is installed alone, and the total energy consumption will be reduced. In addition, in vehicles equipped with multiple control devices like this, if the total energy consumption is limited due to reasons such as fuel efficiency, the control amount that has a greater control effect may be limited. .

そこで、□□□にある性能を向上させるために協調制御
したり、一方の制御変更により他の性能劣化分を補う制
御を行ない、互いの制御をリンクさゼることか考えられ
るが、この場合、特定の性能に対してのみ効果が得られ
るに過ぎず、トータル的な制御効果の最適化を達成し得
ない。
Therefore, it is possible to perform cooperative control in order to improve the performance of , the effect can only be obtained for a specific performance, and the optimization of the total control effect cannot be achieved.

本発明は、上述のような問題に着目してなされたもので
、補助舵角制御装置と輪荷重配分制御装置とが同時に搭
載された車両の総合制御装置において、両制御装置の同
時作動時に制御効果の大きい装置側で制御量が制限され
るのを防止しながら、両制御装置によるトータル的な制
御効果の最適化を図ることを課題とする。
The present invention has been made by focusing on the above-mentioned problem, and is a general control device for a vehicle in which an auxiliary steering angle control device and a wheel load distribution control device are installed at the same time. The object of the present invention is to optimize the total control effect of both control devices while preventing the control amount from being limited on the side of the device that has the greatest effect.

(課題を解決するための手段) 上記課題を解決するために本発明の補助舵角と輪荷重配
分の総合制御装置では、補助舵角制御の制御効果が大き
な車両状態領域と輪荷重配分制御の制御効果が大きな車
両状態領域とを少なくとも横加速度を含む同じパラメー
タにより区別し、制御効果の大小に応じて制御感度を変
更する手段とした。
(Means for Solving the Problems) In order to solve the above problems, in the comprehensive control device for auxiliary steering angle and wheel load distribution of the present invention, the vehicle state region where the control effect of auxiliary steering angle control is large and the wheel load distribution control are The present invention is a means for distinguishing a vehicle state region with a large control effect using the same parameter including at least lateral acceleration, and changing control sensitivity depending on the magnitude of the control effect.

即ち、第1図のクレーム対応図に示すように、請求項1
記載の発明では、前輪または後輪の少なくとも一方の舵
角を前輪操舵時に制御する補助舵角制御装置aと、各輪
の荷重移動量の配分を制御する輪荷重配分制御装置すと
、車両に作用する横加速度Y6を検出する横加速度検出
手段dと、横加速度検出値の値が大きいほど補助舵角制
御感度α5に対して輪荷重配分制御感度α9を相対的に
大きくするように補助舵角制?!1]感度α、と輪荷重
配分制a感度asを設定する総合制御感度設定手段eと
、を備えている事を特徴とする。
That is, as shown in the claim correspondence diagram of FIG.
In the described invention, the auxiliary steering angle control device a controls the steering angle of at least one of the front wheels or the rear wheels during front wheel steering, and the wheel load distribution control device controls the distribution of the amount of load movement of each wheel. The lateral acceleration detection means d detects the applied lateral acceleration Y6, and the auxiliary steering angle is set such that the larger the detected lateral acceleration value is, the larger the wheel load distribution control sensitivity α9 is relative to the auxiliary steering angle control sensitivity α5. Regulation? ! 1] A general control sensitivity setting means e for setting the sensitivity α and the wheel load distribution control sensitivity a as.

また、請求項2記載の発明では、前輪または後輪の少な
くとも一方の舵角を前輪操舵時に制御する補助舵角制御
装置aと、各輪の荷重移動量の配分を制御する輪荷重配
分制御装置すと、車両に作用する前後加速度XGを検出
する前後加速度検出手段Cと、車両に作用する横加速度
Y6を検出する横加速度検出手段dと、前後加速度検出
値の二乗と横加速度検出値の二乗の和(X6’+Y6勺
を演算し、この和(XG’+YG’)の値が大きいほど
補助舵角制御感度α5に対する輪荷重配分制御感度a8
の比(α8/α5)の値が大きくなるように補助舵角制
御感度a5と輪荷重配分制御感度σ8を設定する総合制
御感度設定手段eと、を備えている事を特徴とする。
Further, in the invention according to claim 2, there is provided an auxiliary steering angle control device a that controls the steering angle of at least one of the front wheels or the rear wheels during front wheel steering, and a wheel load distribution control device that controls the distribution of the amount of load movement of each wheel. Then, the longitudinal acceleration detection means C detects the longitudinal acceleration XG acting on the vehicle, the lateral acceleration detection means d detects the lateral acceleration Y6 acting on the vehicle, the square of the detected longitudinal acceleration value and the square of the detected lateral acceleration value. The sum (X6'+Y6') is calculated, and the larger the value of this sum (XG'+YG'), the greater the wheel load distribution control sensitivity a8 with respect to the auxiliary steering angle control sensitivity α5.
The present invention is characterized by comprising a comprehensive control sensitivity setting means e for setting the auxiliary steering angle control sensitivity a5 and the wheel load distribution control sensitivity σ8 so that the value of the ratio (α8/α5) becomes large.

(作 用) 車両走行時に、請求項1記載の発明にあっては、総合制
御感度設定手段eにおいて、横加速度検出値の値が大き
いほど補助舵角制御感度α3に対して輪荷重配分制御感
度α8を相対的に大きくするように補助舵角制御感度α
5と輪荷重配分制御感度α、が設定される。
(Function) In the invention according to claim 1, when the vehicle is running, the overall control sensitivity setting means e sets the wheel load distribution control sensitivity to the auxiliary steering angle control sensitivity α3 as the detected lateral acceleration value increases. Auxiliary steering angle control sensitivity α to relatively increase α8
5 and wheel load distribution control sensitivity α are set.

また、車両走行時に、請求項2記載の発明にあっては、
総合制御感度設定手段eにおいて、前接加速度検出手段
Cから検出される前後加速度検出値の二乗と横加速度検
出手段dから検出される横加速度検出値の二乗の和(X
a’ + Ya’)が演算され、この和(Xa’+yo
′)の値が大きいほど補助舵角制御感度α、に対する輪
荷重配分制御感度α8の比(α、/σS)の値が大きく
なるように補助舵角制御感度aSと輪荷重配分制御感度
α8が設定される。
Further, in the invention according to claim 2, when the vehicle is running,
In the comprehensive control sensitivity setting means e, the sum (X
a' + Ya') is calculated, and this sum (Xa' + yo
The auxiliary steering angle control sensitivity aS and the wheel load distribution control sensitivity α8 are adjusted so that the larger the value of Set.

つまり、Y6もしくは(XG’+YG’)をパラメータ
とじて動制御感度α5.α、を設定変更するようにして
いるが、これは下記の理由による。
In other words, using Y6 or (XG'+YG') as a parameter, dynamic control sensitivity α5. The setting of α is changed for the following reason.

輪荷重配分制御は、左右輪間又は前後輪間の荷重移動量
をコントロールすることでタイヤのコーナリングパワー
をコントロールするものである為、荷重移動量が大きい
領域で制御効果が大きく、制御効果が大きな領域とは前
後加速度や横加速度が大きな領域ということができる。
Wheel load distribution control controls tire cornering power by controlling the amount of load transfer between the left and right wheels or between the front and rear wheels, so the control effect is large in areas where the amount of load transfer is large; The region can be said to be a region where longitudinal acceleration and lateral acceleration are large.

一方、補助舵角制御は、タイヤのコーナリングパワー特
性において線形域から非線形域まで効果があるが、非線
形域では他の制御装置の効果が大きい為、相対的にタイ
ヤ特性の線形頭載で制御効果が大きく、制御効果が大き
な領域とは輪荷重配分移動の少ない前後加速度及び横加
速度が小さな領域ということができる。
On the other hand, auxiliary steering angle control is effective in the tire cornering power characteristics from the linear region to the nonlinear region, but in the nonlinear region, the effect of other control devices is large, so the control effect is relatively due to the linear overhead of the tire characteristics. The region where the control effect is large and the control effect is large can be said to be the region where the wheel load distribution movement is small and the longitudinal acceleration and lateral acceleration are small.

従って、Y6もしくは(Xa’+Yc勺をパラメータと
することで制御効果の大小に応じた領域区別が可能とな
り、Y6もしくは(XG’+YG’)の値が小さい走行
時には、補助舵角制御感度α5が輪荷重配分制御感度α
8に対して相対的に高めとされることで、輪荷重配分制
御に伴なうステア特性の変化が小さく抑えられ、制御効
果の大きな補助舵角制御が十分に生かされる。
Therefore, by using Y6 or (Xa'+Yc') as a parameter, it is possible to distinguish areas according to the magnitude of the control effect, and when driving with a small value of Y6 or (XG'+YG'), the auxiliary steering angle control sensitivity α5 is Wheel load distribution control sensitivity α
By setting the value relatively higher than 8, changes in steering characteristics due to wheel load distribution control can be suppressed to a small extent, and auxiliary steering angle control, which has a large control effect, can be fully utilized.

方、Y6もしくは(XG’+YG’)の値が大きい走行
時には、輪荷重配分制御感度α8が補助舵角制御感度α
5に対して相対的に高めとされることで、補助舵角制御
に伴なうタイヤの横滑り角の変化で輪荷重の移動量が変
化するのが小さく抑えられ、制御効果の大きな輪荷重配
分制御が十分に生かされることになり、開制御装置a、
bによるトータル的な制御効果の最適化が図られる。
On the other hand, when driving with a large value of Y6 or (XG'+YG'), wheel load distribution control sensitivity α8 becomes auxiliary steering angle control sensitivity α.
5, the change in wheel load movement due to changes in tire skid angle due to auxiliary steering angle control can be kept small, resulting in wheel load distribution with a large control effect. The control will be fully utilized, and the opening control device a,
The total control effect is optimized by b.

また、燃費等の理由によりトータルのエネルギの消費が
限られても動制御感度α5.α8の変更制御により制御
効果が小さい装置側でのエネルギ消費が減少する為、開
制御装置a、bのうち制御効果の大きい装置側での制御
量制限が防止される。
Furthermore, even if the total energy consumption is limited due to fuel efficiency or other reasons, the dynamic control sensitivity α5. Since the energy consumption on the side of the device with a small control effect is reduced by the change control of α8, the restriction of the control amount on the side of the device with a large control effect among the open control devices a and b is prevented.

(第1実施例) まず、構成を説明する。(First example) First, the configuration will be explained.

第2図は前後輪舵角制御装置(補助舵角制御装置の一例
)と前後輪駆動力配分制御装置(割駒動力制御装置の一
例)とアクティブサスペンション制御装置(輪荷重配分
制御装置の一例)との同時搭載車両を示す全体システム
図である。
Figure 2 shows a front and rear wheel steering angle control device (an example of an auxiliary steering angle control device), a front and rear wheel drive force distribution control device (an example of a Warikoma power control device), and an active suspension control device (an example of a wheel load distribution control device). FIG. 2 is an overall system diagram showing a vehicle equipped with the same system.

各制御システムが搭載された車両は、後輪駆動へ一スの
トルクスプリット四輪駆動車で、左右の後輪IR1IL
には、エンジン2.トランスミッション3.リアプロペ
ラシャフト4.リアディファレンシャル5.左右のリア
ドライフシャフト6R,6Lを介してエンジン駆動力が
伝達される。
The vehicle equipped with each control system is a torque split four-wheel drive vehicle with one torque split to the rear wheel drive, and the left and right rear wheels are IR1IL.
Engine 2. Transmission 3. Rear propeller shaft 4. Rear differential 5. Engine driving force is transmitted via left and right rear dry shafts 6R, 6L.

左右の前輪7R,7Lには、リアプロペラシャフト4の
途中に設けられたトランスファ8からフロントプロペラ
シャフト9.フロントディファレンシャル10.左右の
フロントドライブシャフト11R1+ILを介してエン
ジン駆動力が伝達される。
A front propeller shaft 9. is connected to the left and right front wheels 7R, 7L from a transfer 8 provided in the middle of the rear propeller shaft 4. Front differential 10. Engine driving force is transmitted via the left and right front drive shafts 11R1+IL.

そして、前輪7R17Lを操舵するフロントステアリン
グギア装置12及び左右後輪IR,11間には、供給油
圧によるビストンストロークで前輪7R,7L及び後輪
+R,11に補助舵角を与える前後輪舵角制御アクチュ
エータとしての前輪油圧パワーシリンダ13及び後輪油
圧パワーシリンダ14が設けられる。
The front steering gear device 12 that steers the front wheels 7R and 17L and the left and right rear wheels IR and 11 are provided with a front and rear wheel steering angle control that provides an auxiliary steering angle to the front wheels 7R and 7L and rear wheels +R and 11 using a piston stroke using supplied hydraulic pressure. A front wheel hydraulic power cylinder 13 and a rear wheel hydraulic power cylinder 14 are provided as actuators.

また、前記トランスファ8には、締結圧制御により前輪
側へ可変の伝達トルクを与える前後輪駆動力配分制御ア
クチュエータとしての油圧多板クラッチ15が内蔵され
る。
Further, the transfer 8 includes a hydraulic multi-plate clutch 15 as a front and rear wheel drive force distribution control actuator that provides variable transmission torque to the front wheels through engagement pressure control.

さらに、各輪のばね上とばね下関には、供給油圧の独立
制御により車体の揺動を積極的に抑えるアクティフサス
ペンション制御アクチュエータとしての油圧シリンダ+
6FR1+6FL、 +6RR,+6RLが設けられて
いる。
In addition, hydraulic cylinders are installed at the sprung upper and lower parts of each wheel to act as active suspension control actuators that actively suppress vehicle body rocking by independently controlling the supply hydraulic pressure.
6FR1+6FL, +6RR, +6RL are provided.

前記前輪油圧パワーシリンダ13及び後輪油圧パワーシ
リンダ14への供給油圧制御は、前輪油圧制御バルブ1
7F及び後輪油圧制御バルブ+7Hに対する舵角制御コ
ントローラ18からのバルブ作動制御指令により行なわ
れるもので、舵角制御コントローラ18には前輪舵角セ
ンサ19.車速センサ20等から検出信号が入力され、
例えば、旋回時に所望のヨーレート応答を得るヨーレイ
トのモデル適合制御や操舵応答性と操舵安定性の両立を
目指す位相反転制御等が行なわれる。
The hydraulic pressure supplied to the front wheel hydraulic power cylinder 13 and the rear wheel hydraulic power cylinder 14 is controlled by the front wheel hydraulic control valve 1.
7F and rear wheel hydraulic control valve +7H from the steering angle control controller 18. The steering angle control controller 18 includes a front wheel steering angle sensor 19. A detection signal is input from the vehicle speed sensor 20, etc.,
For example, yaw rate model adaptation control to obtain a desired yaw rate response during a turn, phase inversion control to achieve both steering responsiveness and steering stability, etc. are performed.

前記油圧多様クラッチ15への供給油圧制御は、駆動力
配分制御バルブ21に対する駆動力配分コントローラ2
2からのバルブ作動制御指令により行なわれるもので、
駆動力配分コントローラ22には右前輪回転センサ23
.左前輪回転センサ24.右後輪回転センサ25.左後
輪回転センサ26.横加速度センサ2γ等からの検出信
号が入力され、駆動力配分を後輪駆動(0:100)か
らリジッド4 W D (50:50)まで連続的に制
御する上記前後輪駆動力配分制御により、例えば、発進
時や加速時等では駆動輪スリップを抑えながら、旋回時
には前輪への駆動力配分を減じて後輪駆動傾向とするこ
とで、駆動性能と旋回性能の向上を両立させる制御等が
行なわれる。
The hydraulic pressure supplied to the hydraulic multipurpose clutch 15 is controlled by the driving force distribution controller 2 for the driving force distribution control valve 21.
This is performed by the valve operation control command from 2.
The driving force distribution controller 22 includes a right front wheel rotation sensor 23.
.. Left front wheel rotation sensor 24. Right rear wheel rotation sensor 25. Left rear wheel rotation sensor 26. The front and rear wheel drive force distribution control continuously controls the drive force distribution from rear wheel drive (0:100) to rigid 4WD (50:50) by inputting the detection signal from the lateral acceleration sensor 2γ, etc. For example, control can be performed to improve both drive performance and turning performance by suppressing drive wheel slip when starting or accelerating, while reducing the distribution of drive power to the front wheels and tending to drive the rear wheels when cornering. It will be done.

前記油圧シリンダ+6FR,16FL、 +6RR,+
6RLへの供給油圧制御は、右前輪制御バルブ28FR
,左前輪制御バルブ28FL、右後輪制御バルブ28R
R,左後輪制御バルブ28Rシに対するサスペンション
制御コントローラ29からのバルブ作動制御指令により
行なわれるもので、サスペンション制御コントローラ2
9には上下加速度センサ30.横加速度センサ27.前
後加速度センサ31.車高センサ32等からの検出信号
が入力され、例えば、車体上下方向のバウンド抑制制御
や車体ロールの抑制制御や車両のピッチング抑制制御や
車高変化の抑制制御等が行なわれる。
Said hydraulic cylinder +6FR, 16FL, +6RR, +
The hydraulic pressure supplied to 6RL is controlled by the right front wheel control valve 28FR.
, left front wheel control valve 28FL, right rear wheel control valve 28R
This is performed by a valve operation control command from the suspension control controller 29 for the left rear wheel control valve 28R.
9 is a vertical acceleration sensor 30. Lateral acceleration sensor 27. Longitudinal acceleration sensor 31. Detection signals from the vehicle height sensor 32 and the like are input, and, for example, control to suppress bounce in the vertical direction of the vehicle body, control to suppress vehicle body roll, control to suppress vehicle pitching, control to suppress vehicle height changes, etc. are performed.

そして、前後加速度センサ31 (前後加速度検出手段
)及び横加速度センサ27(横加速度検出手段)からの
検出信号とマニュアルスイッチ33からのスイッチ信号
を入力し、車両状態に応じた制御効果の大小領域を(x
a”’+’c’)と(XG/YG)をパラメータとして
区別し、その時の車両状態に最適である補助舵角制御感
度α5と駆動力配分制御感度α1と輪荷重配分制御感度
α8を求め、各制御感度α5.(11,α8を前記各コ
ントローラ18.22.29に8カする総合制御コント
ローラ34(総合制御感度設定手段)が設けられている
Then, the detection signals from the longitudinal acceleration sensor 31 (longitudinal acceleration detection means) and the lateral acceleration sensor 27 (lateral acceleration detection means) and the switch signal from the manual switch 33 are input, and the magnitude range of the control effect according to the vehicle condition is determined. (x
a''+'c') and (XG/YG) as parameters, and find the auxiliary steering angle control sensitivity α5, driving force distribution control sensitivity α1, and wheel load distribution control sensitivity α8 that are optimal for the vehicle condition at that time. , a comprehensive control controller 34 (comprehensive control sensitivity setting means) is provided which sets each control sensitivity α5.(11, α8) to each of the controllers 18, 22, and 29.

尚、前記マニュアルスイッチ33は、ドライバーの意図
や好みを反映させるために制御特性モートを変更するス
イッチで、実施例では駆動力特性重視のモートAと旋回
性重視のモードBの2つが設定されている。
The manual switch 33 is a switch that changes the control characteristic mode to reflect the driver's intentions and preferences, and in the embodiment, two modes are set: mode A, which emphasizes driving force characteristics, and mode B, which emphasizes turning performance. There is.

第3図に前後輪舵角制御システムの具体例を示し、第4
図に前後輪駆動力配分システムの具体例を示し、第5図
にアクティブサスペンション制御システムの具体例を示
すが、いずれも周知であり詳しい説明は省略する。
Figure 3 shows a specific example of the front and rear wheel steering angle control system.
A specific example of the front and rear wheel drive force distribution system is shown in the figure, and a specific example of the active suspension control system is shown in FIG. 5, but both are well known and detailed explanations will be omitted.

次に、本実施例での制御感度設定に関する基本概念を説
明する。
Next, the basic concept regarding control sensitivity setting in this embodiment will be explained.

(イ) (X62+YG’)、  (x、i/Ya)を
制御効果の大小領域を区分するパラメータとする理由 まず、(X62+YG’)、  (XG/Ya)を制御
効果の大小領域を区分するパラメータとして各制御感度
α5゜α工、α8を変更設定するようにしているが、こ
れは下記の理由による。
(B) Reason for using (X62+YG') and (x, i/Ya) as parameters for dividing the control effect into large and small areas. First, (X62+YG') and (XG/Ya) are parameters for separating the control effect into large and small areas. The control sensitivities α5° and α8 are changed and set for the following reason.

・副駆動力制御は、駆動力又は制動力の配分によるスリ
ップ率コントロールであるので駆動力又は制動力が大き
く、スリップ率が大となる領域で制御効果が大きく、制
御効果が大きな領域とは前後加速度が大きな加速領域又
は減速領域ということができる。
- Sub-driving force control is slip rate control by distributing driving force or braking force, so the control effect is large in the area where the driving force or braking force is large and the slip rate is large, and the area where the control effect is large is around the front and back. This can be called an acceleration region or a deceleration region where acceleration is large.

・輪荷重配分制御は、左右輪間の荷重移動量(又は前後
輪間)をコントロールしてタイヤのコーナリングパワー
をコントロールするので、荷重移動が大きい領域での制
御効果が大きい。
- Wheel load distribution control controls tire cornering power by controlling the amount of load transfer between the left and right wheels (or between the front and rear wheels), so the control effect is large in areas where the load transfer is large.

つまり、横加速度や前後加速度の大きな領域となる。但
し、前後加速度より横加速度を重視するもので、これは
、横加速度の方が定常的に発生することが多いためであ
る。
In other words, this is a region with large lateral acceleration and longitudinal acceleration. However, lateral acceleration is more important than longitudinal acceleration because lateral acceleration is more likely to occur regularly.

・補助舵角制御は、タイヤのコーナリングパワー特性に
おいて線形域から非線形域まで効果があるが、非線形域
では他の制御装置の効果が大きい為、相対的にタイヤ特
性の線形領域で制御効果が大きく、制御効果が大きな領
域とは輪荷重移動の少ない前後加速度及び横加速度が小
さな領域ということができる。
・Auxiliary steering angle control is effective in the tire cornering power characteristics from the linear region to the nonlinear region, but since other control devices have a large effect in the nonlinear region, the control effect is relatively large in the linear region of tire characteristics. The region where the control effect is large can be said to be the region where the wheel load movement is small and the longitudinal acceleration and lateral acceleration are small.

従って、各制御感度α5.α1.α8により制御効果の
大きな短間状態領域を概念図により示すと笛6図のよう
(こなる。
Therefore, each control sensitivity α5. α1. A conceptual diagram of the short-term state region where α8 has a large control effect is as shown in Figure 6.

(ロ)制御感度を固定値とした場合の問題a)補助舵角
制御が得意な(Xc2+ Ya勺が小さい領域での問題 ・副駆動力制御について 基本的にこの領域では制御が不必要であり、パワーが無
駄となるし、補助舵角制御にたくさんパワー(例えば、
油圧制御の際の油圧)をかけて補助舵角制御効果を大き
くしたいにもかかわらず、燃費等の理由によりトータル
の出力が限られるため、補助舵角制御装置で必要なパワ
ーを得られない。
(B) Problems when the control sensitivity is set to a fixed value a) Problems in the region where auxiliary steering angle control is good (Xc2+Ya) is small - Regarding auxiliary driving force control, control is basically unnecessary in this region. , power is wasted and a lot of power is required for auxiliary steering angle control (e.g.
Despite the desire to increase the effect of auxiliary steering angle control by applying hydraulic pressure (hydraulic pressure during hydraulic control), the required power cannot be obtained with the auxiliary steering angle control device because the total output is limited due to reasons such as fuel consumption.

性能的には、輪荷重配分が変化するのに連動して前後輪
のコーナリングパワーが変化し、コーナリンクパワーの
変化が無いものとして制御している補助舵角制御装置の
制御効果が損なわれる。
In terms of performance, the cornering power of the front and rear wheels changes in conjunction with the change in wheel load distribution, and the control effect of the auxiliary steering angle control device, which performs control assuming that there is no change in cornering power, is impaired.

・輪荷重配分制御について パワーが無駄になることと補助舵角制御装置のパワーが
得られなくなる点は、副駆動力制御と同様である。
-Wheel load distribution control is similar to auxiliary driving force control in that power is wasted and power from the auxiliary steering angle control device cannot be obtained.

性能的には、補助舵角制御の単独制御はステア特性があ
る一定値と考えて制御を行なっているが、輪荷重配分制
御によりステア特性が変化してしまい(具体的には前後
のコーナリングパワーのバランスが変化する)、補助舵
角制御が本来狙っていた特性が得られなくなる。
In terms of performance, the independent control of auxiliary steering angle control is performed by considering the steering characteristics to be a certain constant value, but the steering characteristics change due to wheel load distribution control (specifically, the steering characteristics change due to the front and rear cornering power). balance changes), the characteristics that the auxiliary steering angle control was originally aiming for cannot be obtained.

b)輪荷重配分制御が得意な(XG’+YG’)が大で
、(XG/YG)が小の領域での問題 ・補助舵角制御について パワーが無駄になることと輪荷重配分制御装置のパワー
が得られなくなる点は、他と同様である。
b) Problems in areas where wheel load distribution control is good (XG'+YG') is large and (XG/YG) is small ・Power is wasted in auxiliary steering angle control and wheel load distribution control device The point that power cannot be obtained is the same as the others.

性能的には、例えば、補助舵角制御を行なった為にタイ
ヤの横滑り角が変化してしまいタイヤに働く横力1前後
力の向きが変化し、輪荷重の移動量が変化する(後輪を
逆相に切ると横滑り角が旋回内側を向くように発生し、
前内輪の輪荷重配分が減少し、後外輪の輪荷重が増大す
る)。従って、輪荷重配分制御の制御前の状態が、補助
舵角制御の有無により違っていて、輪荷重配分制御で狙
った通りの制御が適切に行なえない。
In terms of performance, for example, when auxiliary steering angle control is performed, the sideslip angle of the tires changes, the direction of the lateral force acting on the tires changes, and the amount of wheel load movement changes (rear wheel When the angle is turned to the opposite phase, the sideslip angle points toward the inside of the turn,
The wheel load distribution on the front inner wheel decreases and the wheel load on the rear outer wheel increases). Therefore, the state before the wheel load distribution control is different depending on the presence or absence of the auxiliary steering angle control, and the wheel load distribution control cannot perform the desired control appropriately.

・副駆動力制御について パワーが無駄になることと輪荷重配分制御装置のパワー
が得られなくなる、占は、他と同様である。
- Power is wasted in the auxiliary driving force control, and the power of the wheel load distribution control device cannot be obtained.The situation is the same as the others.

性能的には、例えば、前後輪駆動力配分制御では駆動力
配分を変化させるために前後輪のスリップ率が変動する
。輪荷重配分制御でステア特性の制御を行なって各輪の
発生するコーナリングフォスを最適にしたいにもかかわ
らず、スリップ率の変動によりコーナリンクフォースが
最適値よりずれてしまう。
In terms of performance, for example, in front and rear wheel drive force distribution control, the slip ratios of the front and rear wheels vary in order to change the drive force distribution. Although it is desired to optimize the cornering force generated by each wheel by controlling the steering characteristics using wheel load distribution control, the corner link force deviates from the optimum value due to fluctuations in slip ratio.

C)副駆動力制御が得意な(XG’+YG’)が大で、
(XG/YG)が大の領域での問題 ・補助舵角制御について パワーが無駄になることと副駆動力制御装置のパワーが
得られなくなる点は、他と同様である。
C) Good at sub-driving force control (XG'+YG') is large;
Problems in the region where (XG/YG) is large - Power is wasted in the auxiliary steering angle control and the power of the auxiliary driving force control device cannot be obtained, as in the other cases.

性能的には、例えば、補助舵角制御を行なった為にタイ
ヤの横滑り角が変化してしまいタイヤに働く横力1前後
力の向きが変化し、輪荷重の移動量が変化する(後輪を
逆相に切ると横滑り角が旋回内側を向くように発生し、
前内輪の輪荷重が減少して前内輪が空転する)。
In terms of performance, for example, when auxiliary steering angle control is performed, the sideslip angle of the tires changes, the direction of the lateral force acting on the tires changes, and the amount of wheel load movement changes (rear wheel When the angle is turned to the opposite phase, the sideslip angle points toward the inside of the turn,
The wheel load on the front inner wheel decreases, causing the front inner wheel to spin).

従って、輪荷重の変化によって各輪のスリップ率が変化
し、最終的には前後輪回転速度差が補助舵角制御の有無
により異なってくるために狙った通りの制御が行なえな
い。
Therefore, the slip ratio of each wheel changes due to a change in the wheel load, and ultimately the difference in rotational speed between the front and rear wheels differs depending on whether or not auxiliary steering angle control is being performed, making it impossible to perform the desired control.

・輪荷重配分制御について パワーが無駄になることと副駆動力制御装置のパワーが
得られな(なる点は、他と同様である。
・Power is wasted for wheel load distribution control and power is not obtained for the auxiliary driving force control device (the points are the same as the others).

性能的には、例えば、輪荷重配分制御を行なった為にあ
る一輪の輪荷重配分が減少するとそのタイヤのスリップ
率は増大し、最悪の場合、空転してしまい前後輪の回転
速度差が輪荷重配分制御の有無により変ってしまう為、
狙い通りの制御が行なえない。
In terms of performance, for example, if the wheel load distribution of one wheel decreases due to wheel load distribution control, the slip rate of that tire will increase, and in the worst case, it will spin and the difference in rotational speed between the front and rear wheels will cause the tire to slip. This will vary depending on the presence or absence of load distribution control.
Unable to control as desired.

次に、作用を説明する。Next, the effect will be explained.

第7図は各制御感度α5.α□、a8を設定して各コン
トローラ18,22.29に出力する総合制御コントロ
ーラ34での制御感度設定処理作動の流れを示すフロー
チャートで、以下、各ステップについて説明する。
FIG. 7 shows each control sensitivity α5. This is a flowchart showing the flow of the control sensitivity setting processing operation in the general controller 34 which sets α□, a8 and outputs it to each controller 18, 22, 29. Each step will be explained below.

ステップ101では、マニュアルスイッチ33からのス
イッチ信号と前後加速度センサ31及び横加速度センサ
27からのセンサ信号が読み込まれる。
In step 101, a switch signal from the manual switch 33 and sensor signals from the longitudinal acceleration sensor 31 and the lateral acceleration sensor 27 are read.

ステップ102では、前後加速度X。の二乗と横加速度
Y6の二乗の和が算出される。
In step 102, longitudinal acceleration X is determined. The sum of the square of Y6 and the square of the lateral acceleration Y6 is calculated.

ステップ+03では、(xc”Ya2) (7)値M 
所定値以上かどうかが判断される。
At step +03, (xc”Ya2) (7) value M
It is determined whether the value is equal to or greater than a predetermined value.

この判断で、(xa’+ya’)の値が所定値未満であ
れば、ステップ108へ進み、補助舵角制御感度aS 
T駆動力配分制御感度α□、輪荷重配分制御感度aRを
それぞれα50.α工l、QRIに設定する。
In this judgment, if the value of (xa'+ya') is less than the predetermined value, the process proceeds to step 108, and the auxiliary steering angle control sensitivity aS
T driving force distribution control sensitivity α□ and wheel load distribution control sensitivity aR are respectively α50. Set to α engineering and QRI.

ここで、aT(、α9.はα51に対してきわめて小さ
な値に設定し、補助舵角制御効果が大きくなるようにす
る。例えば、a s + = 1でαTIT an+4
oとじても良い。
Here, aT(, α9. is set to a very small value with respect to α51 so that the auxiliary steering angle control effect becomes large. For example, when a s + = 1, αTIT an+4
You can close it with o.

方、ステップ103の判断で、(XG’+YG’)の値
が所定値以上と判断された場合には、ステップ]04以
降に進む。
On the other hand, if it is determined in step 103 that the value of (XG'+YG') is greater than or equal to the predetermined value, the process proceeds to step ]04 and subsequent steps.

ステップ104では、ステップ枠内に記載されている(
XG’+YG’)の値に対する補助舵角制御感度特性マ
ツプ及び制御ゲイン特性マツプにより補助舵角制御感度
α5と制御ゲインに5の値が算出される。
In step 104, the (
A value of 5 is calculated for the auxiliary steering angle control sensitivity α5 and the control gain using the auxiliary steering angle control sensitivity characteristic map and the control gain characteristic map for the value of XG'+YG').

尚、これらの特性マツプはマニュアルスイッチ33によ
る特性モードにより選択されるが、基本的に、補助舵角
制御感度α5は、(XG’+Y(、’)の値が大きくな
るほど小さくなり(右下がり)、制御ゲインに5は、(
XG’+YG’)の値が大きくなるほど大きくなる(右
上がり)特性に設定している。
Note that these characteristic maps are selected by the characteristic mode by the manual switch 33, but basically, the auxiliary steering angle control sensitivity α5 becomes smaller (downwards to the right) as the value of (XG'+Y(,') becomes larger. , the control gain is 5 (
It is set to have a characteristic that increases as the value of (XG'+YG') increases (upwards to the right).

ステップ105では、(XO/YG)の値が算出される
In step 105, the value of (XO/YG) is calculated.

ステップ106では、ステップ枠内に記載されている(
XG/YG)の値に対する駆動力配分制御感度特性マツ
プ及び輪荷重配分制御感度特性マツプにより駆動力配分
基本制御感度a0゜と輪荷重配分基本制御感度aROの
値が算出される。
In step 106, the (
The values of the driving force distribution basic control sensitivity a0° and the wheel load distribution basic control sensitivity aRO are calculated using the driving force distribution control sensitivity characteristic map and the wheel load distribution control sensitivity characteristic map for the value of XG/YG).

尚、これらの特性マツプはマニュアルスイッチ33によ
る特性モードにより選択されるが、基本的に、駆動力配
分基本側@感度α、。は、(XG/YG)の値が大きく
なるほど大きくなり(右上がり)、輪荷重配分基本制御
感度α8゜は、(XG/YG)の値が大きくなるほど小
さくなる(右下がり)特性に設定している。
Incidentally, these characteristic maps are selected by the characteristic mode by the manual switch 33, but basically, the driving force distribution basic side @sensitivity α. is set to a characteristic that increases as the value of (XG/YG) increases (upwards to the right), and wheel load distribution basic control sensitivity α8° decreases as the value of (XG/YG) increases (downwards to the right). There is.

ステップ107では、前記ステップ106で求められた
基本制御感度α、。、α□。を下2の式で補正を行ない
、駆動力配分制御感度01及び輪荷重配分制御感度a8
が算出される。
In step 107, the basic control sensitivity α obtained in step 106 is determined. ,α□. is corrected using the formula 2 below to obtain driving force distribution control sensitivity 01 and wheel load distribution control sensitivity a8.
is calculated.

αT:αTO°にS αR: a80° にS ステップ+09では、ステップ+04及びステップ10
7もしくはステップ108で得られた各制御感度α5.
α、、α8が、それぞれ舵角制御コントローラ18.駆
動力配分コントローラ22.サスペンション制御コント
ローラ29へ出力される。
αT: S to αTO° αR: S to a80° At step +09, step +04 and step 10
7 or each control sensitivity α5 obtained in step 108.
α, , α8 are the steering angle control controllers 18. Drive force distribution controller 22. It is output to the suspension control controller 29.

以上の各制御感度as、a工、α□の設定に基づいて各
コントローラ18,22.29では下記のような制御が
行なわれる。
Based on the settings of the control sensitivities as, a, and α□, the controllers 18, 22, and 29 perform the following control.

舵角制御コントローラ18では、下記の式に示すように
、基本制御舵角fsf及びfS、に補助舵角制御感度α
5を掛は合わせた値が前輪補助舵角目標値6ど及び後輪
補助舵角目標値6RIとされ、この目標値ろ1.ろ2が
得られる指令信号が前輪舵角制御バルブ17F及び後輪
舵角制御バルブ+7Rに圧力される。
In the steering angle control controller 18, as shown in the following equation, the basic control steering angles fsf and fS are given an auxiliary steering angle control sensitivity α.
The combined values multiplied by 5 are set as the front wheel auxiliary steering angle target value 6 etc. and the rear wheel auxiliary steering angle target value 6RI. The command signal obtained by filter 2 is applied to the front wheel steering angle control valve 17F and the rear wheel steering angle control valve +7R.

ろ♂=α3・f、、(e、V) δr= a s・+ sr (e 、  v )駆動力
配分コントローラ22では、下記の式に示すように、基
本前輪側駆動力配分割合f、に駆動力配分制御感度α□
を掛は合わせた値が駆動力配分前輪割合目標値T 、1
1とされ、この目標値TFが得られる指令信号が駆動力
配分制御バルブ21に出力される。
ro = α3・f,, (e, V) δr= a s・+ sr (e, v) The driving force distribution controller 22 sets the basic front wheel side driving force distribution ratio f, as shown in the following formula. Driving force distribution control sensitivity α□
The combined value is the drive force distribution front wheel ratio target value T, 1
1, and a command signal from which this target value TF is obtained is output to the driving force distribution control valve 21.

Tど=α工・十〇 (△N、YG) 但し、ΔNは前後輪回転速度差であって、各回転センサ
23,24.25.26からの信号により後輪回転速度
Nrど前輪回転速度Nfを求め、これらの差をとる次式
により得られる。
Tdo=αwork・10 (△N, YG) However, ΔN is the difference in rotational speed between the front and rear wheels, and the rear wheel rotational speed Nr and the front wheel rotational speed are determined by the signals from each rotation sensor 23, 24, 25, and 26. It is obtained by the following equation, which calculates Nf and takes the difference between them.

△N=Nr−Nf サスペンション制御コントローラ29では、下記の式に
示すように、基本輪荷重配分割合f□に輪荷重配分制御
感度σ8を掛は合わせた値が輪荷重配分割合目標値Rs
′とされる。
△N=Nr-Nf In the suspension control controller 29, as shown in the following formula, the basic wheel load distribution ratio f□ is multiplied by the wheel load distribution control sensitivity σ8 and the combined value is the wheel load distribution ratio target value Rs.
'

R5”= a R−f q(Za、X6.Ya、S)以
上説明したように、本発明である補助舵角と輪荷重配分
の総合制御装置の実施例に相当する前後輪舵角制御と前
後輪駆動力配分制御をみた場合、下記に列挙する効果が
発揮される。
R5''=a R-f q(Za, When looking at the front and rear wheel drive force distribution control, the effects listed below are exhibited.

■ (X62+ Ya’)をパラメータとすることで制
御効果の大小に応じた領域区別が可能となり、第8図の
特性マツプに示すように、0(6′+Yc’)の値が小
さい走行時には、補助舵角制御感度Qsが輪荷重配分制
御感度α8に対して相対的に高めとされることで、輪荷
重配分制御に伴なうステア特性の変化が小さく抑えられ
、制御効果の大きな前後輪舵角制御が十分に生かされる
■ By using (X62+Ya') as a parameter, it is possible to distinguish areas according to the magnitude of the control effect, and as shown in the characteristic map in Figure 8, when driving with a small value of 0(6'+Yc'), By setting the auxiliary steering angle control sensitivity Qs to be relatively higher than the wheel load distribution control sensitivity α8, changes in steering characteristics due to wheel load distribution control are suppressed to a small level, and the front and rear wheel steering has a large control effect. Angle control is fully utilized.

また、(XG24−YG’)の値が大きい走行時には、
輪荷重配分制御感度α9が補助舵角制御感度α3に対し
て相対的に高めとされることで、補助舵角制御に伴なう
タイヤの横滑り角の変化で輪荷重の移動量が変化するの
が小さく抑えられ、制御効果の大きなアクティブサスペ
ンション制御が十分に生かされることになる。
Also, when driving with a large value of (XG24-YG'),
By setting the wheel load distribution control sensitivity α9 to be relatively higher than the auxiliary steering angle control sensitivity α3, the amount of movement of the wheel load changes due to a change in the tire skid angle due to the auxiliary steering angle control. This means that active suspension control, which has a large control effect, can be fully utilized.

即ち、補助舵角と輪荷重配分の両制御装置によるトータ
ル的な制御効果の最適化が図られる。
That is, the total control effect of both the auxiliary steering angle and wheel load distribution control devices is optimized.

■ 燃費等の理由によりトータルのエネルギの消費が限
られても両制御感度α5.α8の変更制御により制御効
果が小さい装置側でのエネルギ消費が減少する為、補助
舵角と駆動力配分の両制御装置のうち制御効果の大きい
装置側での制御量制限が防止される。
■ Even if total energy consumption is limited due to fuel efficiency or other reasons, both control sensitivity α5. Since the energy consumption on the side of the device with a small control effect is reduced by the change control of α8, restriction of the control amount on the side of the device with a large control effect among both the auxiliary steering angle and driving force distribution control devices is prevented.

■ マニュアルスイッチ33を設け、第8図及び第9図
に示すように、駆動力特性重視モードAと旋回性重視モ
ードBのいずれかを選択が可能とした為、ドライバーの
好みや走行路面等に対応して搭載装置の性能を引き出す
ことができる。
■ A manual switch 33 is provided, and as shown in Figs. 8 and 9, it is possible to select either mode A emphasizing driving force characteristics or mode B emphasizing turning performance, so that it can be adjusted according to the driver's preference or the driving road surface. Correspondingly, the performance of the installed equipment can be brought out.

(第2実施例) 次に、請求項1記載の発明に相当する第2実施例の補助
舵角と輪荷重配分の総合制御装置について説明する。
(Second Embodiment) Next, a comprehensive control device for controlling the auxiliary steering angle and wheel load distribution according to the second embodiment corresponding to the invention set forth in claim 1 will be described.

第1実施例は、副駆動力制御装置を含むシステムである
為、前後加速度×6と横加速度Y6の両者により制御感
度の大小を決定する例を示したが、この第2実施例は補
助舵角制御装置と輪荷重配分制御装置との2つの装置が
同時に搭載された車両であって、請求項1に記載したよ
うに、前後加速度×6を検出することなく、横加速度Y
6のみを検出して補助舵角制御感度α5と輪荷重配分制
御感度α8とを設定するようにした例である。
Since the first embodiment is a system that includes an auxiliary driving force control device, an example was shown in which the magnitude of control sensitivity is determined by both longitudinal acceleration x 6 and lateral acceleration Y6, but this second embodiment A vehicle is equipped with two devices, an angle control device and a wheel load distribution control device, at the same time, and as stated in claim 1, the vehicle detects the lateral acceleration Y without detecting the longitudinal acceleration×6.
This is an example in which only 6 is detected and auxiliary steering angle control sensitivity α5 and wheel load distribution control sensitivity α8 are set.

構成的には、第1実施例装置において、駆動力配分制御
系が省略されたシステムとなり、他の構成は変更ないの
で、説明を省略する。
In terms of configuration, this is a system in which the driving force distribution control system is omitted from the device of the first embodiment, and the other configurations are unchanged, so a description thereof will be omitted.

次に、第10図は第2実施例の総合制御コントローラ3
4で行なわれる制御感度設定処理作動の流れを示すフロ
ーチャートで、以下、各ステップについて説明する。
Next, FIG. 10 shows the general control controller 3 of the second embodiment.
This is a flowchart showing the flow of the control sensitivity setting processing operation performed in step 4, and each step will be explained below.

ステップ201では、横加速度センサ27から横加速度
Y6が読み込まれる。
In step 201, lateral acceleration Y6 is read from the lateral acceleration sensor 27.

ステップ202では、横加速度YGに基づいてステ枠内
に記載されている制御感度特性マツプに従って補助舵角
制御感度α5と輪荷重配分制御感度α8が決定される。
In step 202, the auxiliary steering angle control sensitivity α5 and the wheel load distribution control sensitivity α8 are determined based on the lateral acceleration YG and according to the control sensitivity characteristic map written in the step frame.

即ち、低前後加速度域では輪荷重配分制御感度α8より
補助舵角制御感度α5が高めの値とされ、高前後加速度
域では補助舵角制御感度α5より輪荷重配分制御感度α
3が高めの値とされる。
That is, in the low longitudinal acceleration range, the auxiliary steering angle control sensitivity α5 is set to a higher value than the wheel load distribution control sensitivity α8, and in the high longitudinal acceleration range, the wheel load distribution control sensitivity α is set higher than the auxiliary steering angle control sensitivity α5.
3 is considered a high value.

ステップ203では、ステップ202で決定された動制
御感度α5.α8が舵角制御コントローラ18とサスペ
ンション制御コントローラ29に出力される。
In step 203, the dynamic control sensitivity α5 determined in step 202. α8 is output to the steering angle controller 18 and suspension controller 29.

従って、第1実施例と同様に、両制御装置の同時作動時
に制御効果の大きい装置側で制御量が制限されるのを防
止しながら、両制御装置によるトータル的な制御効果の
最適化を図ることが出来る。
Therefore, as in the first embodiment, the total control effect of both control devices is optimized while preventing the control amount from being limited on the side of the device with the greater control effect when both control devices operate simultaneously. I can do it.

以上、実施例を図面に基づいて説明してきたが、具体的
な構成はこの実施例に限られるものでまなく、本発明の
要旨を逸脱しない範囲における設計変更等があっても本
発明に含まれる。
Although the embodiment has been described above based on the drawings, the specific configuration is not limited to this embodiment, and even if there is a design change within the scope of the invention, it is included in the invention. It will be done.

例えば、実施例では制御感度α5.a8が交差する特性
(第8図)の例を示したが、必ずしも両特性が交差する
必要はなく、第9図に示すように、(Xa’ + Yo
’)に対する(α8/α5)の特性グラフを記載した場
合、(XG’ 十Ya勺の値が大きくなるほど(α8/
α、)の値が大きくなるように補助舵角制御感度α5と
輪荷重制御感度α8を設定すれば本発明に含まれる。つ
まり、(α8/αS)のグラフが右上がり特性のグラフ
であることを満たしていれば各制御感度特性マツプは上
に凸でも下に凸でもクレームを満足する。
For example, in the embodiment, the control sensitivity α5. Although we have shown an example of the characteristic where a8 intersects (Fig. 8), it is not necessary that both characteristics intersect, and as shown in Fig. 9, (Xa' + Yo
When describing the characteristic graph of (α8/α5) for (XG'), the larger the value of (XG')
It is included in the present invention if the auxiliary steering angle control sensitivity α5 and the wheel load control sensitivity α8 are set so that the value of α, ) becomes large. In other words, if the graph of (α8/αS) satisfies the fact that it is a graph with upward-sloping characteristics, each control sensitivity characteristic map satisfies the claim whether it is convex upward or convex downward.

また、本実施例においては、駆動力配分制御装置を含む
システムについて説明してきたが、駆動力配分制御装置
が搭載されてない車両にも連用できるのは勿論であり、
少なくとも補助舵角制御装置と輪荷重配分制御装置とが
同時に搭載された車両には適用できる。
Further, in this embodiment, a system including a driving force distribution control device has been described, but it is of course applicable to a vehicle that is not equipped with a driving force distribution control device.
This invention can be applied to vehicles equipped with at least an auxiliary steering angle control device and a wheel load distribution control device.

また、補助舵角制御装置として、実施例では前後輪を共
に舵角制御する例を示したが、後輪もしくは前輪のみを
補助舵角制御する装置であっても良い。
Furthermore, although the embodiment shows an example in which the auxiliary steering angle control device controls the steering angle of both the front and rear wheels, it may be a device that performs auxiliary steering angle control of only the rear wheels or the front wheels.

また、輪荷重配分制御装置として、油圧アクティブサス
ペンション制御システムによりロール剛性とピッチ剛性
を共に変更できる例を示したが、エアーサスペンション
による荷重移動制御システムや、スタビライザ特性変更
によりロール剛性配分のみの制御を行なうロール剛性配
分制御システムやピッチ剛性配分のみの制御を行なうピ
ッチ剛性配分制御システムやバネ定数と減衰定数の一方
を変更する制御システム等であっても良い。
In addition, as a wheel load distribution control device, we have shown an example in which both roll stiffness and pitch stiffness can be changed using a hydraulic active suspension control system, but it is also possible to control only roll stiffness distribution by using a load transfer control system using an air suspension or by changing stabilizer characteristics. A roll stiffness distribution control system that controls pitch stiffness distribution only, a pitch stiffness distribution control system that controls only pitch stiffness distribution, a control system that changes either the spring constant or the damping constant, etc. may be used.

(発明の効果) 以上説明してきたように、本発明にあっては、補助舵角
制御装置と輪荷重配分制御装置とが同時に搭載された車
両の総合制御装置において、補助舵角制御の制御効果が
大きな車両状態領域と輪荷重配分制御の制御効果が大き
な車両状態領域とを少なくとも横加速度を含む同じパラ
メータにより区別し、制御効果の大小に応じて制御感度
を変更する手段とした為、両制御装置の同時作動時に制
御効果の大きい装置側で制御量が制限されるのを防止し
ながら、両制御装置によるトータル的な制御効果の最適
化を図ることが出来るという効果が得られる。
(Effects of the Invention) As explained above, in the present invention, the control effect of the auxiliary steering angle control is achieved in a comprehensive control device for a vehicle in which an auxiliary steering angle control device and a wheel load distribution control device are simultaneously installed. The vehicle condition area where the wheel load distribution control is large and the vehicle condition area where the control effect of the wheel load distribution control is large are distinguished by the same parameters, including at least lateral acceleration, and the control sensitivity is changed depending on the magnitude of the control effect. When the devices are operated simultaneously, it is possible to prevent the control amount from being limited on the side of the device with the greater control effect, while optimizing the total control effect of both control devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の補助舵角と輪荷重配分の総合制御装置
を示すクレーム対応図、第2図は前後輪舵角制御装置(
補助舵角制御装置の一例)と前後輪駆動力配分制御装置
(副駆動力制御装置の一例)とアクティフサスペンショ
ン制御装置(輪荷重配分制御装置の一例)との同時搭載
車両を示す全体システム図、第3図は前後輪舵角制御シ
ステムの具体例を示す図、第4図は前後輪駆動力配分制
御システムの具体例を示す図、第5図はアクティブサス
ペンション制御システムの具体例を示す図、第6図は各
制御で制御効果の大きな車両状態領域を示す領域概念図
、第7図は第1実施例の総合制御コントローラでの制御
感度設定処理作動の流れを示すフローチャート、第8図
は(XG”YG’)の値に対する補助舵角制御感度と輪
荷重配分制御感度の特性マツプ図、第9図は制御感度比
特性グラフ図、第10図は第2実施例の総合制御コント
ローラでの制御感度設定処理作動の流れを示すフローチ
ャートである。 a・・・補助舵角制御装置 b・・−輪荷重配分制御装置 C・・・前後加速度検出手段 d・・・横加速度検出手段 e・・−総合制御感度設定手段
Fig. 1 is a claim correspondence diagram showing the integrated control device for auxiliary steering angle and wheel load distribution of the present invention, and Fig. 2 is a diagram showing the comprehensive control device for the auxiliary steering angle and wheel load distribution of the present invention.
Overall system diagram showing a vehicle equipped with a front and rear wheel drive force distribution control device (an example of an auxiliary steering angle control device), an active suspension control device (an example of a wheel load distribution control device), and an active suspension control device (an example of a wheel load distribution control device) , FIG. 3 is a diagram showing a specific example of the front and rear wheel steering angle control system, FIG. 4 is a diagram showing a specific example of the front and rear wheel drive force distribution control system, and FIG. 5 is a diagram showing a specific example of the active suspension control system. , FIG. 6 is a conceptual region diagram showing the vehicle state region where each control has a large control effect, FIG. 7 is a flowchart showing the flow of control sensitivity setting processing operation in the integrated controller of the first embodiment, and FIG. (XG"YG') characteristic map of auxiliary steering angle control sensitivity and wheel load distribution control sensitivity, FIG. 9 is a control sensitivity ratio characteristic graph, and FIG. It is a flowchart showing the flow of control sensitivity setting processing operation. -Comprehensive control sensitivity setting means

Claims (1)

【特許請求の範囲】 1)前輪または後輪の少なくとも一方の舵角を前輪操舵
時に制御する補助舵角制御装置と、 各輪の荷重移動量の配分を制御する輪荷重配分制御装置
と、 車両に作用する横加速度を検出する横加速度検出手段と
、 横加速度検出値の値が大きいほど補助舵角制御感度に対
して輪荷重配分制御感度を相対的に大きくするように補
助舵角制御感度と輪荷重配分制御感度を設定する総合制
御感度設定手段と、 を備えている事を特徴とする補助舵角と輪荷重配分の総
合制御装置。 2)前輪または後輪の少なくとも一方の舵角を前輪操舵
時に制御する補助舵角制御装置と、 各輪の荷重移動量の配分を制御する輪荷重配分制御装置
と、 車両に作用する前後加速度を検出する前後加速度検出手
段と、 車両に作用する横加速度を検出する横加速度検出手段と
、 前後加速度検出値の二乗と横加速度検出値の二乗の和を
演算し、この和の値が大きいほど補助舵角制御感度に対
する輪荷重配分制御感度の比の値が大きくなるように補
助舵角制御感度と輪荷重配分制御感度を設定する総合制
御感度設定手段と、を備えている事を特徴とする補助舵
角と輪荷重配分の総合制御装置。
[Scope of Claims] 1) An auxiliary steering angle control device that controls the steering angle of at least one of the front wheels or the rear wheels during front wheel steering; a wheel load distribution control device that controls the distribution of the amount of load movement of each wheel; and a vehicle. lateral acceleration detection means for detecting lateral acceleration acting on the lateral acceleration; A comprehensive control device for auxiliary steering angle and wheel load distribution, comprising: comprehensive control sensitivity setting means for setting wheel load distribution control sensitivity; 2) An auxiliary steering angle control device that controls the steering angle of at least one of the front wheels or rear wheels during front wheel steering, a wheel load distribution control device that controls the distribution of the amount of load movement of each wheel, and a longitudinal acceleration that acts on the vehicle. The longitudinal acceleration detection means detects the lateral acceleration acting on the vehicle, the lateral acceleration detection means detects the lateral acceleration acting on the vehicle, and the sum of the square of the longitudinal acceleration detection value and the square of the lateral acceleration detection value is calculated, and the larger the value of the sum, the more the assistance is applied. An auxiliary device comprising: comprehensive control sensitivity setting means for setting auxiliary steering angle control sensitivity and wheel load distribution control sensitivity so that the value of the ratio of wheel load distribution control sensitivity to steering angle control sensitivity becomes large. Comprehensive control device for steering angle and wheel load distribution.
JP10404590A 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution Expired - Fee Related JP2936640B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10404590A JP2936640B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution
GB9108131A GB2245873B (en) 1990-04-18 1991-04-16 Control system for optimizing operation of vehicle performance/safety enhancing systems
US07/686,341 US5297646A (en) 1990-04-18 1991-04-17 Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like
DE4112582A DE4112582C2 (en) 1990-04-18 1991-04-17 Motor vehicle with an active chassis controlled by means of a control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10404590A JP2936640B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution

Publications (2)

Publication Number Publication Date
JPH042575A true JPH042575A (en) 1992-01-07
JP2936640B2 JP2936640B2 (en) 1999-08-23

Family

ID=14370249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10404590A Expired - Fee Related JP2936640B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and wheel load distribution

Country Status (1)

Country Link
JP (1) JP2936640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237878A (en) * 2006-03-08 2007-09-20 Honda Motor Co Ltd Controller for vehicle
JP2009520635A (en) * 2005-12-23 2009-05-28 ルノー・エス・アー・エス Vehicle roll control system
JPWO2010134251A1 (en) * 2009-05-21 2012-11-08 アイシン精機株式会社 Vehicle ground load control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520635A (en) * 2005-12-23 2009-05-28 ルノー・エス・アー・エス Vehicle roll control system
JP2007237878A (en) * 2006-03-08 2007-09-20 Honda Motor Co Ltd Controller for vehicle
JPWO2010134251A1 (en) * 2009-05-21 2012-11-08 アイシン精機株式会社 Vehicle ground load control device

Also Published As

Publication number Publication date
JP2936640B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US5297646A (en) Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like
KR100622228B1 (en) Driving power control device between right-left wheel for vehicles
JPS62295714A (en) Suspension for vehicle
JP2913748B2 (en) Comprehensive control device for braking / driving force and wheel load distribution
JPS6238402Y2 (en)
JPH042557A (en) Integrated control device for auxiliary steering angle and braking/driving force
JPH042575A (en) Integrated control device for auxiliary steering angle and wheel load distribution
JPH0596925A (en) Camber angle control device for vehicle
JPH03231017A (en) Camber angle control device for wheel
JP3060800B2 (en) Vehicle yawing momentum control system
JPS63188512A (en) Vehicle attitude control device
JPH0532113A (en) Car camber angle control device
JP2588546B2 (en) Vehicle motion characteristics control method
JPH0732845A (en) Suspension control device for vehicle
JP2548294B2 (en) Vehicle drive controller
JPH045115A (en) Synthetic controller for auxiliary steering angle and wheel load distribution
JPH0415114A (en) Synthetic controller for front and rear wheel drive force distribution and wheel load distribution
JPH04230472A (en) Electronically controlled power steering device
JPS62198510A (en) Active type suspension control device
JPS63162314A (en) Roll stiffness control device for vehicle
JPH03169735A (en) Integrated control device for roll rigidity distribution and differential limit force for vehicle
JPH03139409A (en) Suspension device for vehicle
JPH03164316A (en) Integrated control device for roll rigidity distribution and driving force distribution in vehicle
JPH0672172A (en) Driving force distributing device for four-wheel drive vehicle with four-wheel steering system
JPH04260807A (en) Roll rigidity controlling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees