JPH042557A - Integrated control device for auxiliary steering angle and braking/driving force - Google Patents

Integrated control device for auxiliary steering angle and braking/driving force

Info

Publication number
JPH042557A
JPH042557A JP10404490A JP10404490A JPH042557A JP H042557 A JPH042557 A JP H042557A JP 10404490 A JP10404490 A JP 10404490A JP 10404490 A JP10404490 A JP 10404490A JP H042557 A JPH042557 A JP H042557A
Authority
JP
Japan
Prior art keywords
control
steering angle
driving force
braking
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10404490A
Other languages
Japanese (ja)
Other versions
JP3079538B2 (en
Inventor
Toshihiro Yamamura
智弘 山村
Fukashi Sugasawa
菅沢 深
Masatsugu Yokote
正継 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10404490A priority Critical patent/JP3079538B2/en
Priority to GB9108131A priority patent/GB2245873B/en
Priority to US07/686,341 priority patent/US5297646A/en
Priority to DE4112582A priority patent/DE4112582C2/en
Publication of JPH042557A publication Critical patent/JPH042557A/en
Application granted granted Critical
Publication of JP3079538B2 publication Critical patent/JP3079538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To make the total control effect of both control devices optimum in a vehicle provided with an auxiliary steering angle control device and a braking/driving force control device simultaneously mounted thereon by discriminating vehicle state regions from each other by parameters including longitudinal acceleration, and changing control sensitivity according to the grade of control effect. CONSTITUTION:An integrated control device is provided with an auxiliary steering angle control device (a) for controlling the steering angle of at least one of front wheels and rear wheels at the time of steering the front wheels, and a braking/driving force control device (b) for controlling at least one of the braking force and driving force of each wheel, respectively mounted on a vehicle. The integrated control device is further provided with a longitudinal acceleration detecting means (c) for detecting the longitudinal acceleration XG acting upon the vehicle. The auxiliary steering angle control sensitivity alphas and the braking/driving force control sensitivity alphaT are then set by an integrated control sensitivity setting means (e) so as to enlarge the braking/driving force control sensitivity alphar relatively to the auxiliary steering angle cotnrol sensitivity alphas as the longitudinal acceleration detection value increases. The total control effect of both control devices a, b is therefore made optimum while preventing the control quantity of the device, having a larger control effect during the simultaneous operation of both control devices a, b, from being limited.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、補助舵角と制限動力の総合制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated control device for auxiliary steering angle and limited power.

(従来の技術) 従来、補助舵角制御装置の一例である後輪舵角制御装置
としては、例えば、特開昭59−77968号公報に記
載されている装置が知られていて、この従来出典には、
低車速時或は前輪操舵角が大きい時等には後輪を逆相に
転舵し、高車速時或は前輪操舵角が小さい時等には後輪
を同相に転舵し、操縦性能を高める内容が示されている
(Prior Art) Conventionally, as a rear wheel steering angle control device which is an example of an auxiliary steering angle control device, for example, a device described in Japanese Patent Application Laid-Open No. 59-77968 has been known, and this conventional source for,
At low vehicle speeds or when the front wheel steering angle is large, the rear wheels are steered in the opposite phase, and at high vehicle speeds or when the front wheel steering angle is small, the rear wheels are steered in the same phase to improve maneuverability. The content to improve is shown.

また、従来、制駆動力制御装置の一例である四輪駆動車
の駆動力配分制御装置としては、例えば、特開昭61−
157437号公報に記載されている装置が知られて、
この従来出典には、駆動輪スリップ発生時に従動輪側へ
の駆動力配分を増して4輪駆動方向に駆動力配分を制御
し、急発進時や加速時等において駆動・は能と走行安定
性を高める内容が示されている。
In addition, conventionally, as a driving force distribution control device for a four-wheel drive vehicle, which is an example of a braking/driving force control device, for example,
A device described in Japanese Patent No. 157437 is known,
This conventional source states that when driving wheel slip occurs, the drive force distribution to the driven wheels is increased and the drive force distribution is controlled in the four-wheel drive direction, improving drive performance and running stability during sudden starts or acceleration. It shows the content that will improve your performance.

(発明が解決しようとする課題) しかしながら、上記後輪舵角制御装置と四輪駆動上の駆
動力配分制御装置とを同時に1つの車両に搭載した場合
で、後輪舵角制御感度と駆動力配分制御感度をそれぞれ
で独自に設定し、設定感度に基づき互いに独立して接輪
舵角制御と駆動力配分制御を行なう構成とした場合、本
来、補助舵角制御の制御効果が大きな車両状態領域と制
駆動力制御の制御効果が大きな車両状態領域とが胃なっ
ているにもかかわらすこの点が全く考慮されない為、両
制御装置によるトータル的な制御効果が最適なものとは
ならない。
(Problem to be Solved by the Invention) However, when the above rear wheel steering angle control device and the driving force distribution control device for four-wheel drive are simultaneously installed in one vehicle, the rear wheel steering angle control sensitivity and driving force If the distribution control sensitivity is set independently for each, and the contact wheel steering angle control and the driving force distribution control are performed independently of each other based on the set sensitivity, the vehicle condition region where the control effect of the auxiliary steering angle control is originally large is Despite the fact that the control effect of braking/driving force control is large in the vehicle condition range, these points are not taken into account at all, so the total control effect of both control devices will not be optimal.

また、接輪舵角制御と駆動力配分制御とが同時に行なわ
れる場合、一方の制御効果の小さな車両状態であっても
制御量は単独で搭載される場合と同じ制御量となりトー
タルのエネルギ消費が大となると共に、このように複数
の制御装置が搭載される車両では燃費等の理由によりト
ータルのエネルギの消費が限られる場合には、制御効果
の大きい側の制御量が制限されることがある。
In addition, when wheel contact steering angle control and driving force distribution control are performed simultaneously, even if the vehicle state has a small control effect on one of them, the control amount will be the same as when it is installed alone, and the total energy consumption will be reduced. In addition, in vehicles equipped with multiple control devices like this, if the total energy consumption is limited due to reasons such as fuel efficiency, the control amount that has a greater control effect may be limited. .

そこで、単にある性能を向上させるために協調制御した
り、一方の制御変更により他の性能外化分を補う制御を
行ない、互いの制御をリンクさせることが考えられるが
、この場合、特定の性能に対してのみ効果が得られるに
過ぎず、トータル的な制御効果の最適化を達成し得ない
Therefore, it is possible to perform cooperative control simply to improve a certain performance, or to link mutual controls by changing one control to compensate for the difference in performance of the other. However, the effect can only be obtained for the control effect, and it is not possible to achieve optimization of the total control effect.

本発明は、上述のような問題に着目してなされたもので
、補助舵角制御装置と制駆動力制御装置とが同時に搭載
された車両の総合制御装置において、両制御装置の同時
作動時に制御効果の大きい装置側で制御量が制限される
のを防止しながら、両制御装置によるトータル的な制御
効果の最適化を図ることを課題とする。
The present invention has been made with attention to the above-mentioned problems, and is a general control device for a vehicle in which an auxiliary steering angle control device and a braking/driving force control device are installed at the same time. The object of the present invention is to optimize the total control effect of both control devices while preventing the control amount from being limited on the side of the device that has the greatest effect.

(課題を解決するための手段) 上記課題を解決するために本発明の補助舵角と制駆勧力
の総合制御装置では、補助舵角制御の制御効果が大きな
車両状態領域と制駆動力制御の制御効果が大きな車両状
態領域とを少なくとも前後加速度を含む同じバラメー・
−夕により区別し、制御効果の大小に応じて制御感度を
変更する手段とした。
(Means for Solving the Problems) In order to solve the above problems, the comprehensive control device for auxiliary steering angle and braking/driving force according to the present invention provides a vehicle state region in which the control effect of auxiliary steering angle control is large and braking/driving force control. The vehicle condition area where the control effect is large is the same as the vehicle condition area including at least longitudinal acceleration.
- The control sensitivity is changed according to the magnitude of the control effect.

即ち、第1図のクレーム対応図に示すように、請求項1
記載の発明では、前輪または後輪の少なくとも一方の舵
角を前輪操舵時に制御する補助舵角制御装置aと、各輪
の制動力または駆動力の少なくとも一方を制御する制駆
動力制御装置すと、車両に作用する前後加速度×6を検
出する前後加速度検出手段Cと、前後加速度検出値の値
が大きいほど補助舵角制御感度α5に対して制駆動力制
御感度α、を相対的に大きくするように補助舵角制?a
感度a、と制駆動力制御感度α工を設定する総合制御感
度設定手段eと、を備えている事を特徴とする。
That is, as shown in the claim correspondence diagram of FIG.
The described invention includes an auxiliary steering angle control device a that controls the steering angle of at least one of the front wheels or the rear wheels during front wheel steering, and a braking/driving force control device a that controls at least one of the braking force or the driving force of each wheel. , a longitudinal acceleration detection means C that detects the longitudinal acceleration x 6 acting on the vehicle, and the braking/driving force control sensitivity α is relatively increased with respect to the auxiliary steering angle control sensitivity α5 as the detected longitudinal acceleration value is larger. Like auxiliary steering angle system? a
The present invention is characterized by comprising a general control sensitivity setting means e for setting a sensitivity a and a braking/driving force control sensitivity α.

また、請求項2記載の発明では、前輪または後輪の少な
くとも一方の舵角を前輪操舵時に制御する補助舵角制御
装置aと、各輪の制動力または駆動力の少なくとも一方
を制御する制駆動力制御装置すと、車両に作用する前後
加速度×。を検出する前後加速度検出手段Cと、車両に
作用する横加速度Y6を検出する横加速度検出手段dと
、前後加速度検出値の二乗と横加速度検出値の二乗の和
(X62十YG’)を演算し、この和(XG’+YG2
)の値が大きいほど補助舵角制御感度a5に対する制駆
動力制御感度a工の比(α工/as)の値が大きくなる
ように補助舵角制御感度a、と制駆動力制御感度a工を
設定する総合制御感度設定手段eと、を備えている事を
特徴とする。
Further, in the invention according to claim 2, there is provided an auxiliary steering angle control device a that controls the steering angle of at least one of the front wheels or the rear wheels during front wheel steering, and a braking/driving device that controls at least one of the braking force or the driving force of each wheel. When the force control device is used, the longitudinal acceleration that acts on the vehicle x. The longitudinal acceleration detection means C detects the lateral acceleration Y6 acting on the vehicle, the lateral acceleration detection means d detects the lateral acceleration Y6 acting on the vehicle, and calculates the sum of the square of the longitudinal acceleration detection value and the square of the lateral acceleration detection value (X62 + YG') And this sum (XG'+YG2
), the ratio of the braking/driving force control sensitivity a to the auxiliary steering angle control sensitivity a5 (α/as) increases. The present invention is characterized by comprising a comprehensive control sensitivity setting means e for setting.

(作 用) 車両走行時に、請求項1記載の発明にあっては、総合制
御感度設定手段eにおいて、前後加速度検出手段Cから
検出される前後加速度検出値の値が大きいほど補助舵角
制御感度α5に対して制駆動力制御感度aTを相対的に
太き(するように補助舵角制御感度α5と制駆動力制御
感度α、が設定される。
(Function) When the vehicle is running, in the invention according to claim 1, the overall control sensitivity setting means e determines the auxiliary steering angle control sensitivity as the longitudinal acceleration detection value detected by the longitudinal acceleration detection means C increases. The auxiliary steering angle control sensitivity α5 and the braking/driving force control sensitivity α are set so that the braking/driving force control sensitivity aT is relatively thick with respect to α5.

また、車両走行時に、請求項2記載の発明にあっては、
総合制御感度設定手段eにおいて、前後加速度検出手段
Cから検出される前後加速度検出値の二乗と横加速度検
出手段dから検出される横加速度検出値の二乗の和(X
G’+YG’)が演算され、ごの和(X6’+ y、2
)の値が大きいほど補助舵角制御感度α5に対する制駆
動力制御感度a工の比(σ工/as)の値が大きくなる
ように補助舵角制御感度α、と制駆動力制御感度a工と
が設定される。
Further, in the invention according to claim 2, when the vehicle is running,
In the comprehensive control sensitivity setting means e, the sum (X
G'+YG') is calculated, and the sum (X6'+ y, 2
), the larger the value of the auxiliary steering angle control sensitivity α and the braking/driving force control sensitivity a-factor, the greater the ratio (σ/as) of the braking/driving force control sensitivity a-factor to the auxiliary steering angle control sensitivity α5. is set.

つまり、×6もしくは(xG’ + vc’)をパラメ
ータとして面制御感度αs、a工を設定変更するように
しているが、これは下記の理由による。
In other words, the surface control sensitivities αs and a are set and changed using x6 or (xG'+vc') as parameters, and this is for the following reasons.

制駆動力制御は、駆動力又は制動力の配分によるスリ・
ノブ率コントロールであるので駆動力又は制動力が大き
く、スリップ率が大となる領域で制御効果が大きく、制
御効果が大きな作成とは前後加速度が大きな領域という
ことができる。
Braking/driving force control reduces pickpocketing by distributing driving force or braking force.
Since it is a knob rate control, the control effect is large in the region where the driving force or braking force is large and the slip ratio is large, and the creation of a large control effect can be said to be the region where the longitudinal acceleration is large.

補助舵角制御は、タイヤのコーナリングパワ特性におい
て線形域から非線形域まで効果があるが、非線形域では
他の制御装置の効果が大きい為、相対的にタイヤ特性の
線形領域で制御効果が大きく、制御効果が大きな領域と
は輪荷重移動の少ない前後加速度及び横加速度が小さな
領域ということができる。
Auxiliary steering angle control is effective in the tire cornering power characteristics from the linear region to the nonlinear region, but since other control devices have a large effect in the nonlinear region, the control effect is relatively large in the linear region of tire characteristics. The region where the control effect is large can be said to be the region where the wheel load movement is small and the longitudinal acceleration and lateral acceleration are small.

従って、×6もしくは(XG’ + YG’)をパラメ
ータとすることで制御効果の大小に応じた領域区別が可
能となり、X、もしくは(xa’ + YG’)の値が
小さい走行時には、補助舵角制御感度asが制駆動力制
御感度α、に対しで相対的に高めとされることで、制駆
動力制御に伴なう前後輪のコーナリングパワの変化が小
さく抑えられ、制御効果の大きな補助舵角制御が十分に
生かされるし、×6もしくは(X6’+Y6勺の値が大
きい走行時には、制駆動力制御感度α、が補助舵角制御
感度α5に対して相対的に高めとされることで、補助舵
角制御に伴なう輪荷重の変化で各輪スリップ率の変化が
小さく抑えられ、制御効果の大きな制駆動力制御が十分
に生かされることになり、両制御装置a、bによるトー
タル的な制御効果の最適化が図られる。
Therefore, by using x6 or (XG' + YG') as a parameter, it is possible to distinguish areas according to the magnitude of the control effect, and when traveling with a small value of X or (xa' + YG'), the auxiliary rudder Since the angular control sensitivity as is relatively high compared to the braking/driving force control sensitivity α, changes in the cornering power of the front and rear wheels due to braking/driving force control are suppressed to a small level, and the control effect is large. The steering angle control is fully utilized, and when driving with a large value of x6 or (X6'+Y6), the braking/driving force control sensitivity α is set to be relatively high compared to the auxiliary steering angle control sensitivity α5. Therefore, the change in the slip rate of each wheel is kept small due to the change in wheel load accompanying the auxiliary steering angle control, and the braking/driving force control, which has a large control effect, is fully utilized. The total control effect is optimized.

また、燃費等の理由によりトータルのエネルギの消費が
限られても両制御感度α5.α工の変更制御により制御
効果が小さい装置側でのエネルギ消費が減少する為、両
制御装置a、bのうち制御効果の大きい装置側での制御
量制限が防止される。
Furthermore, even if the total energy consumption is limited due to fuel efficiency or other reasons, both control sensitivity α5. Since the energy consumption on the side of the device with a small control effect is reduced by the change control of the α process, restriction of the control amount on the side of the device with a large control effect among the two control devices a and b is prevented.

(第1実施例) まず、構成を説明する。(First example) First, the configuration will be explained.

第2図は前後輪舵角制御装置(補助舵角制御装置の一例
)と前後輪駆動力配分制御装置(制駆動力制御装置の一
例)とアクティブサスペンション制御装置(輪荷重配分
制御装置の一例)との同時搭載車両を示す全体システム
図である。
Figure 2 shows a front and rear wheel steering angle control device (an example of an auxiliary steering angle control device), a front and rear wheel drive force distribution control device (an example of a braking/driving force control device), and an active suspension control device (an example of a wheel load distribution control device). FIG. 2 is an overall system diagram showing a vehicle equipped with the same system.

各制御システムが搭載された車両は、接輪駆動ヘースの
トルクスプリット四輪駆動車で、左右の後輪1R,+1
には、エンジン2.トランスミッション3.リアプロペ
ラシャフト4.リアディファレンシャル5.左右のリア
トライフシャフト6R,6Lを介してエンジン駆動力が
伝達される。
The vehicle equipped with each control system is a contact-wheel drive, torque split four-wheel drive vehicle with left and right rear wheels 1R, +1
The engine 2. Transmission 3. Rear propeller shaft 4. Rear differential 5. Engine driving force is transmitted via left and right rear trilife shafts 6R, 6L.

左右の前輪7R,7Lには、リアプロペラシャフト4の
途中に設けられたトランスファ8からフロントプロペラ
シャフト9.フロントディファレンシャル10.左右の
フロントドライブシャフト11R1+ I Lを介して
エンジン駆動力が伝達される。
A front propeller shaft 9. is connected to the left and right front wheels 7R, 7L from a transfer 8 provided in the middle of the rear propeller shaft 4. Front differential 10. Engine driving force is transmitted via the left and right front drive shafts 11R1+IL.

そして、前輪7R,7Lを操舵するフロントステアリン
グギア装置12及び左右後輪+R,11間には、供給油
圧によるピストンスト・ローフで前輪7R,71−及び
後輪IR,ILに補助舵角を与える前後輪舵角制御アク
チュエータとしての前輪油圧パワーシリンダ73及び後
輪油圧パワ−シリンダ14が設けられる。
Then, between the front steering gear device 12 that steers the front wheels 7R, 7L and the left and right rear wheels +R, 11, an auxiliary steering angle is given to the front wheels 7R, 71- and the rear wheels IR, IL by a piston stroke loaf using supplied hydraulic pressure. A front wheel hydraulic power cylinder 73 and a rear wheel hydraulic power cylinder 14 are provided as front and rear wheel steering angle control actuators.

また、前記トランスファ8には、締結圧制御により前輪
側へ可変の伝達トルクを与える前後輪駆動力配分制御ア
クチュエータとしての油圧多板クラッチ15が内蔵され
る。
Further, the transfer 8 includes a hydraulic multi-plate clutch 15 as a front and rear wheel drive force distribution control actuator that provides variable transmission torque to the front wheels through engagement pressure control.

さらに、各輪のばね上とばね下問には、供給油圧の独立
制御により車体の揺動を積極的に抑えるアクティフサス
ペンション制御アクチコエータとしての油圧シリンダ1
6[R116FL、 +6RR,+6R1−が設けられ
ている。
Furthermore, the sprung and unsprung parts of each wheel are equipped with hydraulic cylinder 1, which acts as an active suspension control acticoator that actively suppresses vehicle body rocking by independently controlling the supply hydraulic pressure.
6[R116FL, +6RR, +6R1- are provided.

前記前輪油圧パワーシリンダ13及び後輪油圧パワーシ
リンダ14への供給油圧制御は、前輪油圧制御バルブ1
7F及び後輪油圧制御バルブ+7Rに対する舵角制御コ
ントローラ18からのバルブ作動制御指令により行なわ
れるもので、舵角制御コントローラ18には前輪舵角セ
ンサ79.車速センサ20等から検圧信号が入力され、
例えば、旋回時に所望のヨーレ−ト応答を得るヨーレイ
トのモデル適合制御や操舵応答性と操舵安定性の両立を
目指す位相反転制御等が行なわれる。
The hydraulic pressure supplied to the front wheel hydraulic power cylinder 13 and the rear wheel hydraulic power cylinder 14 is controlled by the front wheel hydraulic control valve 1.
7F and rear wheel hydraulic control valve +7R from the steering angle control controller 18. The steering angle control controller 18 includes a front wheel steering angle sensor 79. A pressure detection signal is input from the vehicle speed sensor 20, etc.,
For example, yaw rate model adaptation control to obtain a desired yaw rate response during a turn, phase inversion control to achieve both steering responsiveness and steering stability, etc. are performed.

前記油圧多板クラッチ15への供給油圧制御は、駆動力
配分制御バルブ21に対する駆動力配分コントローラ2
2からのバルブ作動制御指令により行なわれるもので、
駆動力配分コントローラ22には右前輪回転センサ23
.左前輪回転セン右前輪回転センサ転センサ25.左後
輪回転センサ26.横加速度センサ2Y等からの検出信
号が入力され、駆動力配分を後輪駆動(0:+OO)か
らリジット4 W D (50・50)まで連続的に制
御する上記前接輪駆動力配分制御により、例えば、発進
時や加速時等では駆動輪スリップを抑えながら、旋回時
には前輪への駆動力配分を減じて後輪駆動傾向とするこ
とで、駆動性能と旋回性能の向上を両立させる制御等が
行なわれる。
The hydraulic pressure supplied to the hydraulic multi-disc clutch 15 is controlled by the driving force distribution controller 2 for the driving force distribution control valve 21.
This is performed by the valve operation control command from 2.
The driving force distribution controller 22 includes a right front wheel rotation sensor 23.
.. Left front wheel rotation sensor Right front wheel rotation sensor Rotation sensor 25. Left rear wheel rotation sensor 26. The detection signal from the lateral acceleration sensor 2Y, etc. is input, and the front wheel drive force distribution control described above continuously controls the drive force distribution from rear wheel drive (0: +OO) to rigid 4WD (50/50). For example, control can improve both driving performance and turning performance by suppressing drive wheel slip when starting or accelerating, while reducing the distribution of driving force to the front wheels and favoring rear wheel drive when turning. It is done.

前記油圧シリンダ16FR1+6FL、 +6RR9+
6RLへの供給油圧制御は、右前輪制御バルブ28FR
,左前輪制御バルブ28FL、右後輪制御バルブ28R
R,左後輪制御バルク28日シに対するサスペンション
制御コントローラ29からのバルブ作動制御指令により
行なわれるもので、サスペンション制御コントロラ29
には上。下加速度センサ30.横加速度センサ279前
後加速度センサ31.車高センサ32等からの検出信号
が入力され、例えば、車体上下方向のバウンド抑制制御
や車体ロールの抑制制御や車両のピッチング抑制制御や
中高変化の抑制制御等が行なわれる。
Said hydraulic cylinder 16FR1+6FL, +6RR9+
The hydraulic pressure supplied to 6RL is controlled by the right front wheel control valve 28FR.
, left front wheel control valve 28FL, right rear wheel control valve 28R
R, left rear wheel control bulk 28 This is performed based on the valve operation control command from the suspension control controller 29.
Above. Lower acceleration sensor 30. Lateral acceleration sensor 279 Front-rear acceleration sensor 31. Detection signals from the vehicle height sensor 32 and the like are input, and, for example, control to suppress bounce in the vertical direction of the vehicle body, control to suppress vehicle body roll, control to suppress pitching of the vehicle, control to suppress changes in mid-height, etc. are performed.

そして、前後加速度センサ31 (前後加速度検出手段
)及び横加速度センサ27(横加速度検出手段)からの
検出信号とマニュアルスイッチ33からのスイッチ信号
を入力し、車両状態に応じた制御効果の大小領域を(X
G’YG’)と(XG/YG)をパラメータとして区別
し、その時の車両状態に最適である補助舵角制御感度a
3と駆動力配分制御感度α、と輪荷重配分制@感度α、
を求め、各制御感度a、、、(χ1.a8を前記各コン
トローラ18.22.29(こ出力する総合制御コント
ローラ34(総合制御感度設定手段)が設けられている
Then, the detection signals from the longitudinal acceleration sensor 31 (longitudinal acceleration detection means) and the lateral acceleration sensor 27 (lateral acceleration detection means) and the switch signal from the manual switch 33 are input, and the magnitude range of the control effect according to the vehicle condition is determined. (X
G'YG') and (XG/YG) are distinguished as parameters, and the auxiliary steering angle control sensitivity a is optimal for the vehicle condition at that time.
3 and driving force distribution control sensitivity α, and wheel load distribution control @sensitivity α,
A comprehensive control controller 34 (comprehensive control sensitivity setting means) is provided which calculates the control sensitivities a, ... (χ1.a8) and outputs them to each of the controllers 18, 22, 29.

尚、前記マニュアルスイ・ンチ33は、トライバの意図
や好みを反映させるために制御特性モートを変更するス
イッチで、実施例では駆動力特性重視のモートAと旋回
性重視のモートBの2つが設定されている。
The manual switch 33 is a switch that changes the control characteristic mote to reflect the driver's intentions and preferences, and in the embodiment, two modes are set: mote A that emphasizes driving force characteristics and mote B that emphasizes turning performance. has been done.

第3図に前後輪舵角制御システムの具体例を示し、第4
Mに前後輪駆動力配分システムの具体例を示し、第5図
にアクティフサスペンション制御システムの具体例を示
すが、いずれも周知であり詳しい説明は省略する。
Figure 3 shows a specific example of the front and rear wheel steering angle control system.
A specific example of the front and rear wheel drive force distribution system is shown in M, and a specific example of the active suspension control system is shown in FIG. 5, but both are well known and detailed explanation will be omitted.

次に、本実施例での制御1感度詮定に関する基本概念を
説明する。
Next, the basic concept regarding control 1 sensitivity determination in this embodiment will be explained.

(イ) (X、、’+Y、’)、  (xa/Y、i)
を制御効果の大小領域を区分するパラメータとする理由 まず、(XG’+Y、、’)、  (XG/YG)を制
御効果の大小領域を区分するパラメータとして各制御感
度α、。
(a) (X,,'+Y,'), (xa/Y,i)
Reason for using (XG'+Y,,') and (XG/YG) as parameters for dividing the control effect into large and small regions.First, each control sensitivity α, is used as a parameter for dividing the control effect into large and small regions.

α0.a8を変更設定するようにしているが、これま下
2の理由による。
α0. I am trying to change the settings for a8, but this is due to the second reason below.

・割駒動力制御は、駆動力yは制動力の配分によるスリ
ップ率コントロールであるので駆動力又は制動力が大き
く、スリップ率が大となる領域で制御効果が大きく、制
御効果が大きな領域とは前後加速度が大きな加速9域又
は減速頭載ということができる。
・In Warikoma power control, the driving force y is slip rate control by distributing the braking force, so the control effect is large in the area where the driving force or braking force is large and the slip rate is large, and the area where the control effect is large is This can be said to be the acceleration range 9 or deceleration head-on, where the longitudinal acceleration is large.

・輪荷重配分制御は、左右輪間の荷重移動量(又は前後
輪間)をコントロールしてタイヤのコーナリングパワー
をコントロールするので、荷重移動が大きい領域での制
御効果が大きい。
- Wheel load distribution control controls tire cornering power by controlling the amount of load transfer between the left and right wheels (or between the front and rear wheels), so the control effect is large in areas where the load transfer is large.

つまり、横加速度や前後加速度の大きな領域となる。但
し、前後加速度より横加速度を重視するもので、これは
、横加速度の方が定常的に発生することが多いためであ
る。
In other words, this is a region with large lateral acceleration and longitudinal acceleration. However, lateral acceleration is more important than longitudinal acceleration because lateral acceleration is more likely to occur regularly.

・補助舵角制御は、タイヤのコーナリングパワ特性にお
いて線形域から非線形域まで効果があるが、非線形域で
は他の制御装置の効果が大きい為、相対的にタイヤ特性
の線形領域で制御効果が大きく、制御効果が大きな領域
とは輪荷重移動の少ない前後加速度及び横加速度が小さ
な領域ということができる。
・Auxiliary steering angle control is effective in the tire cornering power characteristics from the linear region to the nonlinear region, but since other control devices have a large effect in the nonlinear region, the control effect is relatively large in the linear region of tire characteristics. The region where the control effect is large can be said to be the region where the wheel load movement is small and the longitudinal acceleration and lateral acceleration are small.

従って、各制御感度a、、、a工、α8により制御効果
の大きな車両状態90域を概念図により示すと第6図の
ようになる。
Therefore, a conceptual diagram of 90 vehicle states in which the control effect is large due to each control sensitivity a, a, a, and α8 is as shown in FIG.

(ロ)制御感度を固定値とした場合の問題a)補助舵角
制御が得意な(XG’+YG’)が小さい領域での問題 ・制駆動力制御について 基本的にこの領域では制御が不必要であり、パワーが無
駄となるし、補助舵角制御にたくさんパワー(例えば、
油圧制御の際の油圧)をかけて補助舵角制御効果を大き
くしたいにもかかわらず、燃費等の理由によりトータル
の出力が限られるため、補助舵角制御装置で必要なパワ
ーを得られない。
(B) Problems when the control sensitivity is set to a fixed value a) Problems in the region where (XG'+YG') is small, where auxiliary steering angle control is good - Braking/driving force control basically does not require control in this region Therefore, power is wasted, and a lot of power is required for auxiliary steering angle control (for example,
Despite the desire to increase the effect of auxiliary steering angle control by applying hydraulic pressure (hydraulic pressure during hydraulic control), the required power cannot be obtained with the auxiliary steering angle control device because the total output is limited due to reasons such as fuel consumption.

性能的には、割駒動力が変化するのに連動して前後輪の
コーナリンクパワーが変化し、コーナリンクパワーの変
化が無いものとして制御している補助舵角制御装置の制
御効果が損なわれる。
In terms of performance, the corner link power of the front and rear wheels changes in conjunction with the change in the splitting power, which impairs the control effect of the auxiliary steering angle control device, which controls the corner link power as if there were no change. .

・輪荷重配分制御について パワーが無駄になることと補助舵角制御装置のパワーが
得られなくなる点は、制駆動力制御と同様である。
-Wheel load distribution control is similar to braking/driving force control in that power is wasted and power from the auxiliary steering angle control device cannot be obtained.

・性能的には、補助舵角制御の単独制御はステア特性が
ある一定値と考えて制御を行なっているが、輪荷重配分
制御によりステア特性が変化してしまい(具体的には前
後のコーナリンクパワーのバランスが変化する)、補助
舵角制御が本来狙っていた特性が得られなくなる。
・In terms of performance, the independent control of the auxiliary steering angle control is performed by assuming that the steering characteristic is a constant value, but the steering characteristic changes due to wheel load distribution control (specifically, the steering characteristics change between the front and rear corners). (link power balance changes), it becomes impossible to obtain the characteristics that the auxiliary steering angle control was originally aiming for.

b)輪荷重配分制御が得意な(Xc’+Ya’)が大で
、(XG/YG)が小の領域での問題 ・補助舵角制御について パワーが無駄になることと輪荷重配分制御装置のパワー
が得られなくなる点は、他と同様である。
b) Problems in the area where wheel load distribution control is good (Xc'+Ya') is large and (XG/YG) is small - Power is wasted in auxiliary steering angle control and wheel load distribution control device The point that power cannot be obtained is the same as the others.

性能的には、例えば、補助舵角制御を行なった為にタイ
ヤの横滑り角が変化してしまいタイヤに働く横力2前後
力の向きが変化し、輪荷重の移動量が変化する(後輪を
逆相に切ると横滑り角が旋回内側を向くように発生し、
前内輪の輪荷重が減少し、後外輪の輪荷重が増大する)
In terms of performance, for example, when auxiliary steering angle control is performed, the sideslip angle of the tires changes, the direction of the lateral force acting on the tires changes, and the amount of wheel load movement changes (rear wheel When the angle is turned to the opposite phase, the sideslip angle points toward the inside of the turn,
(The wheel load on the front inner wheel decreases and the wheel load on the rear outer wheel increases.)
.

従って、輪荷重配分制御の制御前の状態が、補助舵角制
御の有無により逢っていて、輪荷重配分制御で狙った通
りの制御が適切に行なえない。
Therefore, the state before the wheel load distribution control is different depending on the presence or absence of the auxiliary steering angle control, and the wheel load distribution control cannot perform the desired control appropriately.

・制駆動力制御について パワーが無駄になることと輪荷重配分制御装置のパワ〜
が得られなくなる点は、他と同様である。
・Wasted power in braking/driving force control and power of wheel load distribution control device
The point that it becomes impossible to obtain is the same as the others.

性能的には、例えば、前後輪駆動力配分制御では駆動力
配分を変化させるために前後輪のスリップ率が変動する
。輪荷重配分制御でステア特性の制御を行なって各輪の
発生するコーナリングフォースを最適にしたいにもかか
わらず、スリップ率の変動によりコーナリングフォース
が最適値よりずれてしまう。
In terms of performance, for example, in front and rear wheel drive force distribution control, the slip ratios of the front and rear wheels vary in order to change the drive force distribution. Although it is desired to optimize the cornering force generated by each wheel by controlling the steering characteristics using wheel load distribution control, the cornering force deviates from the optimum value due to fluctuations in slip ratio.

C)制駆動力制御が得意な(XG’+ YG’)が大で
、(XG/Yc)が大の領域での問題 ・補助舵角制御について パワーが無駄になることと制駆動力制御装置のパワーが
得られなくなる点は、他と同様である。
C) Problems in areas where braking/driving force control is good (XG'+YG') is large and (XG/Yc) is large - Power is wasted in auxiliary steering angle control and braking/driving force control system The point that you will not be able to obtain the power is the same as the others.

性能的には、例えば、補助舵角制御を行なった為にタイ
ヤの横滑り角が変化してじまいタイヤに働く横力2前後
力の向きが変化し、輪荷重の移動量が変化する(後輪を
逆相に切ると横滑り角が旋回内側を向くように発生し、
前内輪の輪荷重が減少して前内輪が空転する)。
In terms of performance, for example, when auxiliary steering angle control is performed, the sideslip angle of the tires changes, the direction of the lateral force acting on the tires changes, and the amount of wheel load movement changes (rear wheel When the angle is turned to the opposite phase, the sideslip angle points toward the inside of the turn,
The wheel load on the front inner wheel decreases, causing the front inner wheel to spin).

従って、輪荷重の変化によって各輪のスリップ率が変化
し、最終的には前後輪回転速度差が補助舵角制御の有無
により異なってくるために狙った通りの制御が行なえな
い。
Therefore, the slip ratio of each wheel changes due to a change in the wheel load, and ultimately the difference in rotational speed between the front and rear wheels differs depending on whether or not auxiliary steering angle control is being performed, making it impossible to perform the desired control.

・輪荷重配分制御について パワーが無駄になることと輪荷重配分制御装置のパワー
が得られなくなる点は、他と同様である。
・As with the others, power is wasted in wheel load distribution control and the power of the wheel load distribution control device cannot be obtained.

性能的には、例えば、輪荷重配分制御を行なった為にあ
る一輪の輪荷重が減少するとそのタイヤのスリップ率は
増大し、最悪の場合、空転してしまい前後輪の回転速度
差が輪荷重配分制御の有無により変ってしまう為、狙い
通りの制御が行なえない。
In terms of performance, for example, if the load on one wheel decreases due to wheel load distribution control, the slip rate of that tire will increase, and in the worst case, it will spin, and the difference in rotational speed between the front and rear wheels will increase the wheel load. Since it changes depending on the presence or absence of distribution control, it is not possible to perform the desired control.

次に、作用を説明する。Next, the effect will be explained.

第7図は各制御感度α8.α□、α8を設定して各コン
トローラ+8.22.29に出力する総合制御コントロ
ーラ34での制御感度設定処理作動の流れを示すフロー
チャートで、以下、各ステップこついて説明する。
Figure 7 shows each control sensitivity α8. This is a flowchart showing the flow of the control sensitivity setting processing operation in the general controller 34 which sets α□, α8 and outputs it to each controller +8, 22, 29. Each step will be explained below.

ステップ101では、マニュアルスイッチ33からのス
イッチ信号と前後加速度センサ31及び横加速度センサ
27からのセンサ信号が読み込まれる。
In step 101, a switch signal from the manual switch 33 and sensor signals from the longitudinal acceleration sensor 31 and the lateral acceleration sensor 27 are read.

ステップ102では、前後加速度×6の二乗と横加速度
Y6の二乗の和が算出される。
In step 102, the sum of the square of the longitudinal acceleration x 6 and the square of the lateral acceleration Y6 is calculated.

ステップ103では、(xc”ya’)の値が所定値以
上かどうかが判断される。
In step 103, it is determined whether the value of (xc"ya') is greater than or equal to a predetermined value.

この判断で、(XG2+YG’)の値が所定値未満であ
れば、ステ・ンブ108へ進み、補助舵角制m感度α5
.駆動力配分制御感度α、9輪筒重配分制御感度α8を
それぞれα51.  (2v1.  α、、に設定する
In this judgment, if the value of (XG2+YG') is less than the predetermined value, the process proceeds to step 108, and the auxiliary steering angle control m sensitivity α5
.. The driving force distribution control sensitivity α and the nine-wheel cylinder weight distribution control sensitivity α8 were set to α51. (Set to 2v1. α, .

ここで、α工l、(ZRIはQSIに対してきわめて小
さな値に設定し、補助舵角制御効果が大きくなるように
する。例えば、α51−1でα11.aRl 幻0とし
ても良い。
Here, α(ZRI) is set to a very small value with respect to QSI so that the auxiliary steering angle control effect becomes large.For example, α11.aRl may be set to 0 at α51-1.

方、ステップ103の判断で、(XG’+YG’)の値
が所定値以上と判断された場合には、ステップ104以
降に進む。
On the other hand, if it is determined in step 103 that the value of (XG'+YG') is greater than or equal to the predetermined value, the process proceeds to step 104 and subsequent steps.

ステップ104では、ステップ枠内に記載されている(
XG’+YG’)の値に対する補助舵角制御感度特性マ
ツプ及び制御ゲイン特性マツプにより補助舵角制御感度
α5と制御ゲインに5の値が算出される。
In step 104, the (
A value of 5 is calculated for the auxiliary steering angle control sensitivity α5 and the control gain using the auxiliary steering angle control sensitivity characteristic map and the control gain characteristic map for the value of XG'+YG').

尚、これらの特性マツプはマニュアルスイッチ33によ
る特性モードにより選択されるが、基本的に、補助舵角
制御感度α5は、(XG2+YG’)の値が大きくなる
ほど小さくなり(右下がり)、制御ゲインに5は、(X
a’+Yc’)の値が大きくなるほど大きくなる(右上
がり)特性に設定している。
These characteristic maps are selected by the characteristic mode by the manual switch 33, but basically, the auxiliary steering angle control sensitivity α5 becomes smaller (downwards to the right) as the value of (XG2+YG') increases, and the control gain 5 is (X
It is set to have a characteristic that increases as the value of a'+Yc') increases (upwards to the right).

ステップ105では、(XG/YG)の値が算出される
In step 105, the value of (XG/YG) is calculated.

ステップ106では、ステップ枠内に記載されている(
xc/yc)の値に対する駆動力配分制御感度特性マツ
プ及び輪筒重配分制?11感度特性マツプにより駆動力
配分基本制御感度a工。と輪荷重配分基本制御感度αI
loの値が算出される。
In step 106, the (
Driving force distribution control sensitivity characteristic map and wheel cylinder weight distribution system for the value of xc/yc)? 11 Sensitivity characteristic map provides basic control sensitivity for driving force distribution. and wheel load distribution basic control sensitivity αI
The value of lo is calculated.

尚、これらの特性マツプはマニュアルスイッチ33によ
る特性モードにより選択されるが、基本的に、駆動力配
分基本制御感度a工。は、(XG/YG)の値が大きく
なるほど大きくなり(右上がり)、輪荷重配分基本制御
感度(IRQは、(XG/YG)の値が大きくなるほど
小さくなる(右下がり)特性に設定している。
Incidentally, these characteristic maps are selected by the characteristic mode by the manual switch 33, but basically, the driving force distribution basic control sensitivity is a. is set to a characteristic that increases as the value of (XG/YG) increases (upwards to the right), and wheel load distribution basic control sensitivity (IRQ) decreases as the value of (XG/YG) increases (downwards to the right). There is.

ステップ+07では、前記ステップ106で求められた
基本制御感度α、。+  QROを下記の式で補正を行
ない、駆動力配分制御感度α、及び輪荷重配分制御感度
α8が算出される。
In step +07, the basic control sensitivity α obtained in step 106 is calculated. +QRO is corrected using the following formula to calculate driving force distribution control sensitivity α and wheel load distribution control sensitivity α8.

α丁=a丁。・Ks aR”CZROoKS ステップ109では、ステップ104及びステップ10
7もしくはステップ108で得られた各制御感度α9.
α□、α8が、それぞれ舵角制御コントローラ18.駆
動力配分コントローラ22.すスペンション制御コント
ローラ29へ出力される。
α ding = a ding.・Ks aR"CZROoKS In step 109, step 104 and step 10
7 or each control sensitivity α9 obtained in step 108.
α□ and α8 are the steering angle control controllers 18. Drive force distribution controller 22. It is output to the suspension control controller 29.

以上の各制御感度αs、G□、anの設定に基づいて各
コントローラ18,22.29では下記のような制御が
行なわれる。
Based on the settings of the control sensitivities αs, G□, and an, the controllers 18, 22, and 29 perform the following control.

舵角制御コントローラ18では、下記の式に示すように
、基本制御舵角f sf及びf arに補助舵角制御感
度α5を掛は合わせた値が前輪補助舵角目標値ろ、゛及
び後輪補助舵角目標値δ2とされ、この目標値ろF2 
δ8゛が得られる指令信号が前輪舵角制御バルブ+7F
及び後輪舵角制御バルブ+7Rに出力される。
In the steering angle control controller 18, as shown in the following formula, the basic control steering angles fsf and far are multiplied by the auxiliary steering angle control sensitivity α5, and the sum is the front wheel auxiliary steering angle target value, ゛, and the rear wheel. The auxiliary steering angle target value δ2 is set as the auxiliary steering angle target value δ2, and this target value F2
The command signal that obtains δ8゛ is the front wheel steering angle control valve +7F.
and is output to the rear wheel steering angle control valve +7R.

ろど=α5・fs、(L  V) ろビーCs’fs、(θ、V) 駆動力配分コントローラ22では、下記の式に示すよう
に、基本前輪側駆動力配分割合f□に駆動力配分制御感
度α工を掛は合わせた値が駆動力配分前輪割合目標値T
 F”とされ、この目標値下Fが得られる指令信号が駆
動力配分制御バルブ21に出力される。
Rod=α5・fs, (L V) Lobby Cs'fs, (θ, V) The driving force distribution controller 22 distributes the driving force to the basic front wheel side driving force distribution ratio f□ as shown in the following formula. The value obtained by multiplying the control sensitivity α is the driving force distribution front wheel ratio target value T.
F'', and a command signal for obtaining this target value lower F is output to the driving force distribution control valve 21.

T p”=a + ・f T  (ΔN、Y6)但し、
ΔNは前後輪回転速度差であって、各回転セン+j23
.24.25.26からの信号により接輪回転速度Nr
と前輪回転速度Nfを求め、これらの差をとる次式によ
り得られる。
T p”=a + ・f T (ΔN, Y6) However,
ΔN is the rotational speed difference between the front and rear wheels, and each rotation sensor +j23
.. 24. The contact wheel rotation speed Nr by the signal from 25.26
and the front wheel rotational speed Nf, and the difference between them is obtained by the following equation.

△N=Nr−Nf サスペンション制御コントローラ29では、下記の式に
示すように、基本輪荷重配分割合f、に輪荷重配分制御
感度α8を掛は合わせた値が輪荷重配分割合目標値R5
°とされる。
△N=Nr-Nf In the suspension control controller 29, as shown in the following formula, the basic wheel load distribution ratio f is multiplied by the wheel load distribution control sensitivity α8 and the combined value is the wheel load distribution ratio target value R5.
°.

R5゜−α8・+ −(Za、 XG、 YG、 S)
以上説明したように、本発明である補助舵角と制駆動力
の総合制御装置の実施例に相当する前後輪舵角制御と前
後輪駆動力配分制御をみた場合、下記に列挙する効果が
発揮される。
R5゜−α8・+ −(Za, XG, YG, S)
As explained above, when looking at the front and rear wheel steering angle control and the front and rear wheel drive force distribution control that correspond to the embodiment of the auxiliary steering angle and braking/driving force comprehensive control device of the present invention, the effects listed below are exhibited. be done.

■ (Xc’+Yc勺をパラメータとすることで制御効
果の大小に応じた9域区別が可能となり、第8図の特性
マツプに示すように、(XG’+YG’)の値が小さい
走行時には、補助舵角制御感度α5が駆動力配分制御感
度a、に対して相対的に高めとされることで、駆動力配
分制御に伴なう前後輪のコーナリングパワーの変化が小
さく抑えられ、制御効果の大きな前後輪舵角制御が十分
に生かされる。
(By using Xc'+Yc' as a parameter, it is possible to distinguish between 9 regions depending on the magnitude of the control effect, and as shown in the characteristic map in Figure 8, when driving with a small value of (XG'+YG'), By setting the auxiliary steering angle control sensitivity α5 to be relatively higher than the driving force distribution control sensitivity a, the change in cornering power of the front and rear wheels due to the driving force distribution control is suppressed to a small level, and the control effect is reduced. The large front and rear wheel steering angle control is fully utilized.

また、(XG’+YG’)の値が大きい走行時には、駆
動力配分制御感度α□が補助舵角制御感度α5に対して
相対的に高めとされることで、前後輪舵角制御に伴なう
輪荷重配分の変化で各輪スリップ率の変化が小さく抑え
られ、制御効果の大きな駆動力配分制御が十分に生かさ
れることになる。
In addition, when driving with a large value of (XG'+YG'), the driving force distribution control sensitivity α□ is set relatively higher than the auxiliary steering angle control sensitivity α5, so that the front and rear wheel steering angle control Changes in the wheel load distribution can suppress changes in the slip ratio of each wheel to a small extent, and the driving force distribution control, which has a large control effect, can be fully utilized.

即ち、補助舵角と駆動力配分の両制御装置によるトータ
ル的な制御効果の最適化が図られる。
That is, the total control effect of both the auxiliary steering angle and driving force distribution control devices can be optimized.

■ 燃費等の理由によりトータルのエネルギの消費が限
られても両制御感度α5.α工の変更制御により制御効
果が小さい装置側でのエネルギ消費が減少する為、補助
舵角と駆動力配分の両制御装置のうち制御効果の大きい
装置側での制御量制限が防止される。
■ Even if total energy consumption is limited due to fuel efficiency or other reasons, both control sensitivity α5. Since the energy consumption on the side of the device with a small control effect is reduced by the change control of α, the control amount restriction on the side of the device with a large control effect among both the auxiliary steering angle and driving force distribution control devices is prevented.

■ マニュアルスイッチ33を設け、第8図及び第9図
に示すように、駆動力特性重視モードAと旋回性重視モ
ードBのいずれかを選択が可能とした為、ドライバーの
好みや走行路面等に対応して搭載装置の性能を引き出す
ことができる。
■ A manual switch 33 is provided, and as shown in Figs. 8 and 9, it is possible to select either mode A emphasizing driving force characteristics or mode B emphasizing turning performance, so that it can be adjusted according to the driver's preference or the driving road surface. Correspondingly, the performance of the installed equipment can be brought out.

(第2実施例) 次に、請求項1配截の発明に相当する第2実施例の補助
舵角と制駆動力の総合制御装置について説明する。
(Second Embodiment) Next, a comprehensive control device for the auxiliary steering angle and braking/driving force according to the second embodiment will be described.

第1実施例は、輪荷重配分制御装置を含むシステムであ
る為、前後加速度×6と横加速度Y6の両者により制御
感度の大小を決定する例を示したが、この第2実施例は
補助舵角制御装置と制駆動力制御装置との2つの装置が
同時に搭載された車両であって、請求項1に記載したよ
うに、横加速度Y6を検出することなく、前後加速度×
6のみを検出して補助舵角制御感度α、と駆動力配分制
御感度α□とを設定するようにした例である。
Since the first embodiment is a system including a wheel load distribution control device, an example was shown in which the control sensitivity is determined by both longitudinal acceleration x 6 and lateral acceleration Y6, but this second embodiment is a system that includes a wheel load distribution control device. A vehicle is equipped with two devices, an angle control device and a braking/driving force control device, at the same time, and as described in claim 1, the longitudinal acceleration x is detected without detecting the lateral acceleration Y6.
This is an example in which only 6 is detected and the auxiliary steering angle control sensitivity α and the driving force distribution control sensitivity α□ are set.

構成的には、第1実施例装置において、サスペンション
制御系が省略されたシステムとなり、他の構成は変更な
いので、説明を省略する。
In terms of configuration, the suspension control system is omitted from the system of the first embodiment, and the other configurations are unchanged, so a description thereof will be omitted.

次に、第10図は第2実施例の総合制御コント・ローラ
34で行なわれる制御感度設定処理作動の流れを示すフ
ローチャートで、以下、各ステップについて説明する。
Next, FIG. 10 is a flowchart showing the flow of control sensitivity setting processing performed by the general control controller 34 of the second embodiment, and each step will be explained below.

ステップ201では、前後加速度センサ31から前後加
速度×6が読み込まれる。
In step 201, longitudinal acceleration×6 is read from the longitudinal acceleration sensor 31.

ステップ202では、前後加速度×6に基づいてステ枠
内に記載されている制?la感度特性マツプに従って補
助舵角制御感度α、と駆動力配分制御感度QTが決定さ
れる。
In step 202, based on the longitudinal acceleration x 6, what is the system written in the step frame? The auxiliary steering angle control sensitivity α and the driving force distribution control sensitivity QT are determined according to the la sensitivity characteristic map.

即ち、低前後加速度域では駆動力配分制御感度α□より
補助舵角制御感度α5が高めの値とされ、高前後加速度
域では補助舵角制御感度asより駆動力配分制御感度a
Tが高めの値とされる。
That is, in the low longitudinal acceleration range, the auxiliary steering angle control sensitivity α5 is set to a higher value than the driving force distribution control sensitivity α□, and in the high longitudinal acceleration range, the driving force distribution control sensitivity a is set higher than the auxiliary steering angle control sensitivity as.
T is assumed to be a high value.

ステップ203では、ステップ202で決定された動制
御感度α5.α工が舵角制御コントローラ18と駆動力
配分コントローラ22に出力される。
In step 203, the dynamic control sensitivity α5 determined in step 202. α work is output to the steering angle control controller 18 and the driving force distribution controller 22.

従って、第1実施例と同様に、両制御装置の同時作動時
に制御効果の大きい装置側で制御量が制限されるのを防
止しながら、両制御装置によるトタル的な制御効果の最
適化を図ることが出来る。
Therefore, as in the first embodiment, the total control effect of both control devices is optimized while preventing the control amount from being limited on the side of the device with a large control effect when both control devices operate simultaneously. I can do it.

以上、実施例を図面に基づいて説明してきたが、具体的
な構成はこの実施例に限られるものではなく、本発明の
要旨を逸脱しない範囲における設計変更等があっても本
発明に含まれる。
Although the embodiment has been described above based on the drawings, the specific configuration is not limited to this embodiment, and even if there is a design change within the scope of the gist of the present invention, it is included in the present invention. .

例えば、実施例では制御感度σ3.a工が交差する特性
(第8図)の例を示したが、必ずしも両特性が交差する
必要はなく、第9図に示すように、(XG’+YG勺に
対する(α工/α5)の特性グラフを記載した場合、(
XG’ +Yc勺の値が大きくなるほど(α、/as)
の値が大きくなるように補助舵角制御感度α、と駆動力
配分制御感度α1を設定すれ2本発明に含まれる。つま
り、(α工/αS)のグラフが右上がり特性のグラフで
あることを満たしていれば各制御感度特性マツプは上に
凸でも下に凸でもクレームを満足する。
For example, in the embodiment, the control sensitivity σ3. Although we have shown an example of the characteristic in which a is intersecting (Fig. 8), it is not necessary that the two characteristics intersect, and as shown in Fig. If you include a graph, (
The larger the value of XG' + Yc is (α, /as)
The present invention includes setting the auxiliary steering angle control sensitivity α and the driving force distribution control sensitivity α1 so that the value of is large. In other words, if the graph of (αWork/αS) satisfies the fact that it is a graph with upward-sloping characteristics, each control sensitivity characteristic map satisfies the claim whether it is convex upward or convex downward.

また、本実施例においては、輪荷重配分制御装置を含む
システムについて説明してきたが、輪荷重配分制御装置
が搭載されてない車両にも連用できるのは勿論であり、
少なくとも補助舵角制御装置ど制駆動力制御装置とが同
時に搭載された車両には連用できる。
Further, in this embodiment, a system including a wheel load distribution control device has been described, but it is of course applicable to a vehicle that is not equipped with a wheel load distribution control device.
It can be used in combination with a vehicle equipped with at least an auxiliary steering angle control device and a braking/driving force control device.

また、補助舵角制御装置として、実施例では前後輪を共
に舵角制御する例を示したが、後輪もしくは前輪のみを
補助舵角制御する装置であっても良い。
Furthermore, although the embodiment shows an example in which the auxiliary steering angle control device controls the steering angle of both the front and rear wheels, it may be a device that performs auxiliary steering angle control of only the rear wheels or the front wheels.

また、制駆動力制御装置として、前後輪駆動力配分装置
の例を示したが、左右駆動力配分制御装置や各輪の駆動
力を直接制御するトラクションコントロール装置や各輪
の制動力を制御するアンチロックブレーキングシステム
等であっても良い。
In addition, as an example of a braking/driving force control device, we have shown an example of a front/rear wheel drive force distribution device, but a left/right driving force distribution control device, a traction control device that directly controls the driving force of each wheel, or a traction control device that directly controls the braking force of each wheel may also be used. It may also be an anti-lock braking system or the like.

(発明の効果) 以上説明してきたように、本発明にあっては、補助舵角
制御装置と制駆動力制御装置とが同時に搭載された車両
の総合制御装置において、補助舵角制御の制御効果が大
きな車両状態領域と制駆動力制御の制御効果が大きな車
両状態領域とを少なくとも前後加速度を含む同じパラメ
ータにより区別し、制御効果の大小に応じて制御感度を
変更する手段とした為、両制御装置の同時作動時に制御
効果の大きい装置側で制御量が制限されるのを防止しな
がら、両制御装置によるトータル的な制御効果の最適化
を図ることが出来るという効果が得られる。
(Effects of the Invention) As explained above, in the present invention, the control effect of the auxiliary steering angle control is achieved in a comprehensive control device for a vehicle in which an auxiliary steering angle control device and a braking/driving force control device are simultaneously installed. The vehicle condition area where the control effect is large and the vehicle condition area where the control effect of braking/driving force control is large are distinguished by the same parameters, including at least longitudinal acceleration, and the control sensitivity is changed depending on the magnitude of the control effect. When the devices are operated simultaneously, it is possible to prevent the control amount from being limited on the side of the device with the greater control effect, while optimizing the total control effect of both control devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の補助舵角と制駆動力の総合制御装置を
示すクレーム対応図、第2図は前後輪舵角制御装置(補
助舵角制御装置の一例)と前後輪駆動力配分制御装置(
制駆動力制御装置の一例)とアクティブサスペンション
制御装置(輪荷重配分制御装置の一例)との同時搭載車
両を示す全体システム図、第3図は前後輪舵角制御装置
の具体例を示す図、第4図は前後輪駆動力配分制御装置
の具体例を示す図、第5図はアクティブサスペンション
制御装置の具体例を示す図、第6図は各制御で制御効果
の大きな車両状態領域を示す領域概念図、第7図は第1
実施例の総合制御コントロラでの制御感度設定処理作動
の流れを示すフローチャート、第8図は(xa’+yc
’)の値に対する補助舵角制御感度と駆動力配分制御感
度の特性マップ図、第9図は制御感度比特性クラフ図、
第10図ま第2実施例の総合制御コントローラでの制御
感度設定処理作動の流れを示すフローチャートである。 a・・・補助舵角制御装置 b・・・割駒動力制御装置 C・・・前後加速度検出手段 d・・−横加速度検圧手段 e・・・総合制御感度設定手段
Fig. 1 is a diagram corresponding to claims showing an integrated control device for auxiliary steering angle and braking/driving force according to the present invention, and Fig. 2 shows a front and rear wheel steering angle control device (an example of an auxiliary steering angle control device) and front and rear wheel drive force distribution control. Device(
An overall system diagram showing a vehicle equipped with a braking/driving force control device (an example of a braking/driving force control device) and an active suspension control device (an example of a wheel load distribution control device); Fig. 4 is a diagram showing a specific example of a front and rear wheel drive force distribution control device, Fig. 5 is a diagram showing a specific example of an active suspension control device, and Fig. 6 is a diagram showing a vehicle state region where each control has a large control effect. Conceptual diagram, Figure 7 is the first
FIG. 8 is a flowchart showing the flow of control sensitivity setting processing operation in the integrated control controller of the embodiment.
Figure 9 is a characteristic map diagram of auxiliary steering angle control sensitivity and driving force distribution control sensitivity with respect to the value of
FIG. 10 is a flowchart showing the flow of control sensitivity setting processing operation in the comprehensive controller of the second embodiment. a... Auxiliary steering angle control device b... Warikoma power control device C... Longitudinal acceleration detection means d... - Lateral acceleration pressure detection means e... Comprehensive control sensitivity setting means

Claims (1)

【特許請求の範囲】 1)前輪または後輪の少なくとも一方の舵角を前輪操舵
時に制御する補助舵角制御装置と、 各輪の制動力または駆動力の少なくとも一方を制御する
制駆動力制御装置と、 車両に作用する前後加速度を検出する前後加速度検出手
段と、 前後加速度検出値の値が大きいほど補助舵角制御感度に
対して制駆動力制御感度を相対的に大きくするように補
助舵角制御感度と制駆動力制御感度を設定する総合制御
感度設定手段と、 を備えている事を特徴とする補助舵角と制駆動力の総合
制御装置。 2)前輪または後輪の少なくとも一方の舵角を前輪操舵
時に制御する補助舵角制御装置と、 各輪の制動力または駆動力の少なくとも一方の配分を制
御する制駆動力制御装置と、 車両に作用する前後加速度を検出する前後加速度検出手
段と、 車両に作用する横加速度を検出する横加速度検出手段と
、 前後加速度検出値の二乗と横加速度検出値の二乗の和を
演算し、この和の値が大きいほど補助舵角制御感度に対
する制駆動力制御感度の比の値が大きくなるように補助
舵角制御感度と制駆動力制御感度を設定する総合制御感
度設定手段と、を備えている事を特徴とする補助舵角と
制駆動力の総合制御装置。
[Scope of Claims] 1) An auxiliary steering angle control device that controls the steering angle of at least one of the front wheels or rear wheels during front wheel steering, and a braking/driving force control device that controls at least one of the braking force or the driving force of each wheel. and a longitudinal acceleration detection means for detecting longitudinal acceleration acting on the vehicle; A comprehensive control device for auxiliary steering angle and braking/driving force, comprising: comprehensive control sensitivity setting means for setting control sensitivity and braking/driving force control sensitivity; 2) an auxiliary steering angle control device that controls the steering angle of at least one of the front wheels or rear wheels during front wheel steering; a braking/driving force control device that controls the distribution of at least one of the braking force or the driving force of each wheel; longitudinal acceleration detection means for detecting the longitudinal acceleration acting on the vehicle; lateral acceleration detection means for detecting the lateral acceleration acting on the vehicle; calculating the sum of the square of the longitudinal acceleration detection value and the square of the lateral acceleration detection value; Comprehensive control sensitivity setting means for setting the auxiliary steering angle control sensitivity and the braking/driving force control sensitivity such that the larger the value, the larger the value of the ratio of the braking/driving force control sensitivity to the auxiliary steering angle control sensitivity. A comprehensive control device for auxiliary steering angle and braking/driving force featuring:
JP10404490A 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force Expired - Fee Related JP3079538B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10404490A JP3079538B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force
GB9108131A GB2245873B (en) 1990-04-18 1991-04-16 Control system for optimizing operation of vehicle performance/safety enhancing systems
US07/686,341 US5297646A (en) 1990-04-18 1991-04-17 Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like
DE4112582A DE4112582C2 (en) 1990-04-18 1991-04-17 Motor vehicle with an active chassis controlled by means of a control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10404490A JP3079538B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force

Publications (2)

Publication Number Publication Date
JPH042557A true JPH042557A (en) 1992-01-07
JP3079538B2 JP3079538B2 (en) 2000-08-21

Family

ID=14370221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10404490A Expired - Fee Related JP3079538B2 (en) 1990-04-18 1990-04-18 Comprehensive control system for auxiliary steering angle and braking / driving force

Country Status (1)

Country Link
JP (1) JP3079538B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412100A (en) * 2004-03-18 2005-09-21 Ford Global Tech Llc Brake-steering a vehicle
JP2006033927A (en) * 2004-07-13 2006-02-02 Nissan Motor Co Ltd Driving force distributer for four-wheel independent drive vehicle
JP2011079442A (en) * 2009-10-07 2011-04-21 Toyota Motor Corp Steering device
JP2014166844A (en) * 2013-02-13 2014-09-11 Honda Motor Co Ltd Four-wheel steered vehicle and torque distribution control methods for four-wheel steered vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896946B2 (en) * 2002-10-29 2007-03-22 日産自動車株式会社 Steering angle control device for vehicle
JP4069921B2 (en) * 2004-10-25 2008-04-02 三菱自動車工業株式会社 Vehicle turning behavior control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412100A (en) * 2004-03-18 2005-09-21 Ford Global Tech Llc Brake-steering a vehicle
US7229139B2 (en) 2004-03-18 2007-06-12 Ford Global Technologies, Llc Control system for brake-steer assisted parking and method therefor
GB2412100B (en) * 2004-03-18 2007-08-08 Ford Global Tech Llc A method for brake-steering a vehicle
JP2006033927A (en) * 2004-07-13 2006-02-02 Nissan Motor Co Ltd Driving force distributer for four-wheel independent drive vehicle
JP2011079442A (en) * 2009-10-07 2011-04-21 Toyota Motor Corp Steering device
JP2014166844A (en) * 2013-02-13 2014-09-11 Honda Motor Co Ltd Four-wheel steered vehicle and torque distribution control methods for four-wheel steered vehicle

Also Published As

Publication number Publication date
JP3079538B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
US5297646A (en) Control system for optimizing operation of vehicle performance/safety enhancing systems such as 4WS, 4WD active suspensions, and the like
KR100622228B1 (en) Driving power control device between right-left wheel for vehicles
CN102753408B (en) The Behavior-Based control device of vehicle
JPS62295714A (en) Suspension for vehicle
CN112406854B (en) Method for controlling side-tipping stability of wheel hub motor-driven off-road vehicle
JPH0468167B2 (en)
JPH042557A (en) Integrated control device for auxiliary steering angle and braking/driving force
JP2913748B2 (en) Comprehensive control device for braking / driving force and wheel load distribution
JPH07164926A (en) Driving force distribution control device of automobile
JP2936640B2 (en) Comprehensive control system for auxiliary steering angle and wheel load distribution
JPH0370633A (en) Torque control device for front and rear wheels in four-wheel drive vehicle
JP2010179841A (en) Turning behavior control device and turning behavior control method
JPS63188512A (en) Vehicle attitude control device
JPH0532113A (en) Car camber angle control device
JP2921311B2 (en) Cooperative control method between driving force movement and four-wheel steering
JPH1086622A (en) Vehicle stability controlling device
JPH03235708A (en) Camber angle control device for vehicle
JPH0415114A (en) Synthetic controller for front and rear wheel drive force distribution and wheel load distribution
JPH0672172A (en) Driving force distributing device for four-wheel drive vehicle with four-wheel steering system
JPH04243651A (en) Brake force control device for vehicle
JPS62198510A (en) Active type suspension control device
JPH03139409A (en) Suspension device for vehicle
JPH045115A (en) Synthetic controller for auxiliary steering angle and wheel load distribution
JPH03169735A (en) Integrated control device for roll rigidity distribution and differential limit force for vehicle
JPH03164316A (en) Integrated control device for roll rigidity distribution and driving force distribution in vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees