JP2515364B2 - Wheel camber angle control device - Google Patents

Wheel camber angle control device

Info

Publication number
JP2515364B2
JP2515364B2 JP63022602A JP2260288A JP2515364B2 JP 2515364 B2 JP2515364 B2 JP 2515364B2 JP 63022602 A JP63022602 A JP 63022602A JP 2260288 A JP2260288 A JP 2260288A JP 2515364 B2 JP2515364 B2 JP 2515364B2
Authority
JP
Japan
Prior art keywords
steering
camber angle
suspension
wheel
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63022602A
Other languages
Japanese (ja)
Other versions
JPH01197109A (en
Inventor
博路 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63022602A priority Critical patent/JP2515364B2/en
Publication of JPH01197109A publication Critical patent/JPH01197109A/en
Application granted granted Critical
Publication of JP2515364B2 publication Critical patent/JP2515364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/067Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper characterised by the mounting on the vehicle body or chassis of the spring and damper unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/001Arrangements for attachment of dampers
    • B60G13/003Arrangements for attachment of dampers characterised by the mounting on the vehicle body or chassis of the damper unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/006Attaching arms to sprung or unsprung part of vehicle, characterised by comprising attachment means controlled by an external actuator, e.g. a fluid or electrical motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • B60G2204/4106Elastokinematic mounts
    • B60G2204/41062Elastokinematic mounts hydromounts; interconnected mounts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/81Interactive suspensions; arrangement affecting more than one suspension unit front and rear unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/22Magnetic elements
    • B60G2600/26Electromagnets; Solenoids

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車輪キャンバ角制御装置に係り、詳しくは車
両の操向状態に応じて前輪側および後輪側の懸架装置間
でロール剛性の配分を変化させ、車両の運動性能を向上
させた車輪キャンバ角制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wheel camber angle control device, and more particularly to distribution of roll rigidity between front wheel side suspension devices and rear wheel side suspension devices according to a steering state of a vehicle. The invention relates to a wheel camber angle control device in which the vehicle movement performance is improved by changing

(従来の技術) 近時、自動車等の車両においては、高速直進性能およ
び高速旋回性能等の運動性能が高度に要求されている。
このため、例えば懸架装置を工夫することにより車輪の
キャンバ角変化を抑制制御するような車輪キャンバ角制
御装置が提案されている(実開昭60−130108号公報等参
照)。
(Prior Art) In recent years, vehicles such as automobiles are highly required to have high-speed straight-line performance and high-speed turning performance.
For this reason, for example, a wheel camber angle control device has been proposed which controls the camber angle change of the wheel by devising a suspension device (see Japanese Utility Model Laid-Open No. 60-130108).

この装置は、第5、6図に示すように、サスペンショ
ンメンバ1、トランスバースリンク2、ストラット3、
マウントインシュレータ4およびトランスバースリンク
ブッシュ5等からなるストラット式のサスペンション6
によって構成されており、ストラット3およびマウント
インシュレータ4の軸線が交叉するようマウントインシ
ュレータ4を車体7に装着している。したがって、車両
旋回中のローリングにより接地した車輪8に対して車体
7が下降し、トランスバースリンク2が揺動してストラ
ット3が車体7に対して持ち上げられると、マウントイ
ンシュレータ4がばね定数の低い剪断方向(第6図の中
心線C方向)に変形され、ストラット3の上端部が車両
内方に移動されるようになっている。このため、第6図
の仮想線で示すようなトランスバースリング2の揺動に
よる車輪8のキャンバ角変化が補正され、旋回性能を向
上させるようにしている。
As shown in FIGS. 5 and 6, this device includes a suspension member 1, a transverse link 2, struts 3,
Strut type suspension 6 including mount insulator 4 and transverse link bush 5
The mount insulator 4 is mounted on the vehicle body 7 so that the axes of the struts 3 and the mount insulator 4 intersect with each other. Therefore, when the vehicle body 7 descends with respect to the wheel 8 grounded by rolling while the vehicle is turning, the transverse link 2 swings and the strut 3 is lifted with respect to the vehicle body 7, the mount insulator 4 has a low spring constant. It is deformed in the shearing direction (the direction of the center line C in FIG. 6), and the upper end of the strut 3 is moved inward of the vehicle. Therefore, the camber angle change of the wheels 8 due to the swing of the transverse ring 2 as shown by the phantom line in FIG. 6 is corrected, and the turning performance is improved.

(発明が解決しようとする課題) しかしながら、このような従来の車輪キャンバ角制御
装置にあっては、車体7のロール角に基づくマウントイ
ンシュレータ4のコンプライアンスを利用して車輪8の
キャンバ角を補正する構成となっていたため、高速旋回
等により車体7に大きな横向加速度が加わる場合、後輪
が滑り易い車両においてはハンドルを切る際の回頭性は
良いが切り戻しの際の収束性が悪くなり、前輪が滑りに
くい車両においては逆に収束性は良いが回頭性が悪くな
っていた。すなわち、車両の前輪側および後輪側のサス
ペンション間でロール剛性の配分が一定であるため、こ
の配分が後輪側で低すぎたり高すぎたりすると旋回中の
回頭性と収束性の双方の安定性を確保することが困難と
なり、高速旋回時等の操縦安定性が低下してしまうとい
う問題点があった。
(Problems to be Solved by the Invention) However, in such a conventional wheel camber angle control device, the camber angle of the wheel 8 is corrected by using the compliance of the mount insulator 4 based on the roll angle of the vehicle body 7. Because of the configuration, when a large lateral acceleration is applied to the vehicle body 7 due to high-speed turning or the like, in a vehicle in which the rear wheels are slippery, the turning performance is good when turning the steering wheel, but the convergence when returning is poor, and the front wheels are On the other hand, in a non-slip vehicle, the convergence was good but the turning performance was poor. In other words, the distribution of roll rigidity is constant between the front wheel and rear wheel suspensions of the vehicle, so if this distribution is too low or too high on the rear wheel side, both turning and convergence during turning will be stable. It becomes difficult to secure the stability, and there is a problem that the steering stability is deteriorated when turning at high speed.

(発明の目的) そこで本発明は、車両の操向状態に応じて前輪側およ
び後輪側の懸架装置間でロール剛性の配分を変化させる
ことにより、特に、旋回時の回頭性と収束性を両立さ
せ、車両の運動性能および操縦安定性を向上させること
を目的としている。
(Object of the Invention) Therefore, according to the present invention, by changing the distribution of roll rigidity between the suspension devices on the front wheel side and the rear wheel side in accordance with the steering state of the vehicle, in particular, the turning property and the convergence property during turning are improved. It is aimed at achieving both compatibility and improving the dynamic performance and steering stability of the vehicle.

(課題を解決するための手段) 本発明は、上記の目的を達成するために、前輪側の懸
架装置に設けられ、該懸架装置のロール剛性を変化させ
ることができる第1剛性可変手段と、後輪側の懸架装置
に設けられ、該懸架装置のロール剛性を変化させること
ができる第2剛性可変手段と、操舵角速度の変化から操
舵ハンドルの切り増しおよび切り戻しを検出する操向状
態検出手段と、操向状態検出手段からの検出情報に基づ
いて、操舵ハンドルの切り増し時には前輪側の懸架装置
のロール剛性を増大させるとともに後輪側の懸架装置の
ロール剛性を減小させ、操舵ハンドルの切り戻し時には
前輪側の懸架装置のロール剛性を減小させるとともに後
輪側の懸架装置のロール剛性を増大させるよう前記第1
剛性可変手段および第2剛性可変手段の作動を制御する
制御手段と、を備え、操舵ハンドルの切り増し時には前
輪のキャンバ角をネガティブ方向に、後輪のキャンバ角
をポジティブ方向にそれぞれ制御し、操舵ハンドルの切
り戻し時には前輪のキャンバ角をポジティブ方向に、後
輪のキャンバ角をネガティブ方向にそれぞれ制御するよ
うにしている。
(Means for Solving the Problem) In order to achieve the above-mentioned object, the present invention is provided with a front wheel-side suspension device, and a first rigidity varying device capable of changing roll rigidity of the suspension device, Second rigidity changing means provided in the suspension device on the rear wheel side and capable of changing the roll rigidity of the suspension device, and steering state detecting means for detecting an increase or a return of the steering wheel from a change in the steering angular velocity. On the basis of the detection information from the steering state detecting means, when the steering handle is turned on, the roll rigidity of the suspension device on the front wheel side is increased and the roll rigidity of the suspension device on the rear wheel side is reduced to reduce the steering wheel rigidity. At the time of switching back, the roll rigidity of the suspension device on the front wheel side is reduced and the roll rigidity of the suspension device on the rear wheel side is increased.
A steering means for controlling the camber angle of the front wheels in the negative direction and the camber angle of the rear wheels in the positive direction when the steering wheel is turned. When the steering wheel is turned back, the camber angle of the front wheels is controlled in the positive direction and the camber angle of the rear wheels is controlled in the negative direction.

(作用) 本発明では、操向状態検出手段からの検出情報に基づ
いて、制御手段により第1剛性可変手段および第2剛性
可変手段の作動が制御され、操舵ハンドルの切り増し時
には前輪側の懸架装置のロール剛性が増大されるととも
に後輪側の懸架装置のロール剛性が減小され、操舵ハン
ドルの切り戻し時には前輪側の懸架装置のロール剛性が
減小されるとともに後輪側の懸架装置のロール剛性が増
大される。そして、操舵ハンドルの切り増し時には前輪
のキャンバ角がネガティブ方向に、後輪のキャンバ角が
ポジティブ方向にそれぞれ制御され、操舵ハンドルの切
り戻し時には前輪のキャンバ角がポジティブ方向に、後
輪のキャンバ角がネガティブ方向にそれぞれ制御され
る。したがって、車両の操向状態に応じて前輪側および
後輪側の懸架装置間でロール剛性の配分が変化され、特
に旋回時等の回頭性および収束性の双方が安定するよう
キャンバ角が制御される。この結果、車両の運動性能お
よび操縦安定性が向上する。
(Operation) In the present invention, the operation of the first stiffness varying means and the second stiffness varying means is controlled by the control means based on the detection information from the steering state detecting means, and the suspension on the front wheel side is performed when the steering wheel is further turned. As the roll rigidity of the device is increased, the roll rigidity of the suspension device on the rear wheel side is reduced, and when the steering handle is turned back, the roll rigidity of the suspension device on the front wheel side is decreased and the roll rigidity of the suspension device on the rear wheel side is reduced. Roll rigidity is increased. When the steering wheel is turned further, the camber angle of the front wheels is controlled in the negative direction and the camber angle of the rear wheels is controlled in the positive direction.When the steering wheel is turned back, the camber angle of the front wheels is controlled in the positive direction and the camber angle of the rear wheels is controlled. Are controlled in the negative direction. Therefore, the distribution of roll rigidity is changed between the suspensions on the front and rear wheels in accordance with the steering state of the vehicle, and the camber angle is controlled so that both the turning performance and the convergence performance during turning are stable. It As a result, the dynamic performance and steering stability of the vehicle are improved.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be described with reference to the drawings.

第1、2図は本発明の第1実施例を示す図であり、第
1実施例は本発明をマクファーソンストラット方式の懸
架装置に適用したものである。
1 and 2 are views showing a first embodiment of the present invention, and the first embodiment is an application of the present invention to a suspension system of a MacPherson strut system.

第1図において、11はサスペンションメンバ、12はト
ランスバースリンク、13はストラットであり、トランス
バースリンク12は車両内方側の内端部でサスペンション
メンバ11に上下方向の揺動可能に支持されている。スト
ラット13はトランスバースリンク12の外端部に連結され
た下端部13aとマウントインシュレータ14およびブラケ
ット15を介して車体16に連結された上端部13bとを有し
ており、ストラット13の下端部13aはさらに前輪17Fある
いは後輪17Rのアクスルハウジング(図示していない)
に取り付けられている。これらサスペンションメンバ1
1、トランスバースリンク12、ストラット13、マウント
インシュレータ14およびブラケット15等は前輪17Fおよ
び後輪17Rに対応して複数設けられ、フロントサスペン
ション18(前輪17F側の懸架装置)およびリヤサスペン
ション19(後輪17R側の懸架装置)を構成している。
In FIG. 1, reference numeral 11 is a suspension member, 12 is a transverse link, and 13 is a strut. The transverse link 12 is supported by the suspension member 11 at its inner end portion so as to be vertically swingable. There is. The strut 13 has a lower end 13a connected to the outer end of the transverse link 12 and an upper end 13b connected to the vehicle body 16 via the mount insulator 14 and the bracket 15, and the lower end 13a of the strut 13 is provided. Is the front wheel 17F or rear wheel 17R axle housing (not shown)
Attached to. These suspension members 1
1, a plurality of transverse links 12, struts 13, mount insulators 14, brackets 15 and the like are provided corresponding to the front wheels 17F and the rear wheels 17R, and the front suspension 18 (suspension device on the front wheel 17F side) and the rear suspension 19 (rear wheels). 17R side suspension system).

また、マウントインシュレータ14は内部に非圧縮性流
体等が封入された流体封入式のものであり、例えばスト
ラット13の上端部13bを挟んで対称に配置された複数の
流体室14a、14b等を有している。マウントインシュレー
タ14の流体室14a、14bは配管21を介して互いに接続さ
れ、この配管21の管路上に設けられた電磁式バルブ22の
開閉によって互いに連通および遮断されるようになって
おり、マウントインシュレータ14は流体室14a、14b間の
連通および遮断によってそのマウント剛性を変化させる
ようになっている。また、フロントサスペンション18に
設けられた左右一対の電磁式バルブ22は後述する制御手
段からの制御信号V1によって開閉制御され、リヤサスペ
ンション19に設けられた左右一対の電磁式バルブ22は制
御手段からの制御信号V2によって開閉制御されるように
なっており、各一対の電磁式バルブ22が左右のマウント
インシュレータ14のマウント剛性を変化させることによ
りフロントサスペンション18およびリヤサスペンション
19のロール剛性を変化させることができるようになって
いる。すなわち、フロントサスペンション18に設けられ
た左右一対のマウントインシュレータ14、配管21および
電磁式バルブ22によってフロントサスペンション18のロ
ール剛性を変化させることができる第1剛性可変手段23
が構成されており、リヤサスペンション19に設けられた
左右一対のマウントインシュレータ14、配管21および電
磁式バルブ22によってリヤサスペンション19のロール剛
性を変化させることができる第2剛性可変手段24が構成
されている。
Further, the mount insulator 14 is a fluid-filled type in which an incompressible fluid or the like is enclosed, and has, for example, a plurality of fluid chambers 14a, 14b symmetrically arranged with the upper end portion 13b of the strut 13 interposed therebetween. are doing. The fluid chambers 14a and 14b of the mount insulator 14 are connected to each other via a pipe 21, and are opened and closed by an electromagnetic valve 22 provided on the pipe line of the pipe 21 to communicate with and cut off from each other. The mount rigidity of the fluid chamber 14 is changed by connecting and disconnecting the fluid chambers 14a and 14b. Further, the pair of left and right electromagnetic valves 22 provided on the front suspension 18 are controlled to be opened and closed by a control signal V 1 from a control means described later, and the pair of left and right electromagnetic valves 22 provided on the rear suspension 19 are controlled by the control means. The opening / closing control is performed by a control signal V 2 of each of the front suspension 18 and the rear suspension by changing the mount rigidity of the left and right mount insulators 14 by each pair of electromagnetic valves 22.
The roll rigidity of 19 can be changed. That is, the first rigidity varying means 23 capable of changing the roll rigidity of the front suspension 18 by the pair of left and right mount insulators 14, the pipe 21 and the electromagnetic valve 22 provided in the front suspension 18.
And a pair of left and right mount insulators 14 provided on the rear suspension 19, a pipe 21 and an electromagnetic valve 22 constitute a second rigidity varying means 24 capable of changing the roll rigidity of the rear suspension 19. There is.

25は操向状態検出手段であり、操向状態検出手段25は
操舵角速度センサ26および横向加速度センサ27からな
る。操舵角速度センサ26は図外の操舵ハンドルの操舵角
度を検出し、検出情報である操舵角速度信号を制御手
段28に与える。この操舵角速度信号は、例えば操舵ハ
ンドルの操舵方向が右の場合はプラス、操舵方向が左の
場合はマイナスである。また、横向加速度センサ27はフ
ロントサスペンション18のサスペンションメンバ11に装
着されており、横向加速度センサ27は旋回時等を車体16
に作用する横向加速度を検出し、検出情報である横向加
速度信号を制御手段28に与える。この横向加速度信号
は右旋回中に車体16に作用する横向加速度をプラス、
左旋回中に車体16に作用する横向加速度をマイナスとし
ている。そして、これらの検出信号、から車両の操
向状態である旋回方向および操舵方向(舵角の切増し方
向あるいは切戻し方向等)等が検出できるようにしてい
る。
Reference numeral 25 is a steering state detecting means, and the steering state detecting means 25 comprises a steering angular velocity sensor 26 and a lateral acceleration sensor 27. The steering angular velocity sensor 26 detects a steering angle of a steering wheel (not shown) and gives a steering angular velocity signal which is detection information to the control means 28. This steering angular velocity signal is, for example, positive when the steering direction of the steering handle is right, and is negative when the steering direction is left. Further, the lateral acceleration sensor 27 is attached to the suspension member 11 of the front suspension 18, and the lateral acceleration sensor 27 is used for turning the vehicle body 16 when turning.
The lateral acceleration acting on the is detected, and the lateral acceleration signal which is the detected information is given to the control means. This lateral acceleration signal adds the lateral acceleration that acts on the vehicle body 16 during a right turn,
The lateral acceleration acting on the vehicle body 16 during a left turn is negative. Then, from these detection signals, the turning direction and steering direction (steering angle increasing direction, returning direction, etc.), which are the steering states of the vehicle, can be detected.

制御手段28はマイクロコンピュータおよびスイッチ回
路等からなり、操向状態検出手段25からの操舵角速度信
号および横向加速度信号に基づいて上述の制御信号
V1、V2を出力するよう制御手段28のマイクロコンピュー
タには所定のプログラムが記憶されている。すなわち、
制御手段28は操向状態検出手段25からの検出情報に基づ
いて各電磁式バルブ22の開を促し、第1剛性可変手段23
および第2剛性可変手段24の作動を制御するようになっ
ており、制御手段28に制御される第1剛性可変手段23お
よび第2剛性可変手段24により、操舵ハンドルの切り増
し時にはフロントサスペンション18のロール剛性を増大
させるとともにリヤサスペンション19のロール剛性を減
小させ、操舵ハンドルの切り戻し時にはフロントサスペ
ンション18のロール剛性を減小させるとともにリヤサス
ペンション19のロール剛性を増大させるようになってい
る。そして、旋回中の車体16がローリングする際、操舵
ハンドルの切り増し時には、マウントインシュレータ14
のコンプライアンスによる前輪17Fのキャンバ角変化を
ロール剛性を増大させることにより抑制してネガティブ
方向(車両内方に倒れる方向)に、後輪17Rのキャンバ
角変化をロール剛性を減小させることにより促してポジ
ティブ方向(車両に外方に倒れる方向)にそれぞれ制御
し、操舵ハンドルの切り戻し時には、マウントインシュ
レータ14のコンプライアンスによる前輪17Fのキャンバ
角変化をロール剛性を減小させることにより促してポジ
ティブ方向に、後輪17Rのキャンバ角変化をロール剛性
を増大させることにより抑制してポジティブ方向にそれ
ぞれ制御するようになっている。
The control means 28 is composed of a microcomputer, a switch circuit, etc., and is based on the steering angular velocity signal and the lateral acceleration signal from the steering state detection means 25, and the above-mentioned control signal
A predetermined program is stored in the microcomputer of the control means 28 so as to output V 1 and V 2 . That is,
The control means 28 urges each electromagnetic valve 22 to open based on the detection information from the steering state detection means 25, and the first rigidity varying means 23.
The operation of the second stiffness varying means 24 is controlled, and the first stiffness varying means 23 and the second stiffness varying means 24 controlled by the control means 28 control the front suspension 18 when the steering wheel is turned. The roll rigidity of the rear suspension 19 is reduced while the roll rigidity of the rear suspension 19 is reduced, and the roll rigidity of the rear suspension 19 is increased when the steering handle is turned back. When the vehicle body 16 is turning and the steering wheel is turned, the mount insulator 14
By suppressing the camber angle change of the front wheel 17F due to the compliance of the roll wheel by increasing the roll rigidity, the camber angle change of the rear wheel 17R is promoted in the negative direction (direction inclining inward of the vehicle) by reducing the roll rigidity. Controls in the positive direction (direction in which the vehicle leans outward), and when the steering wheel is turned back, the camber angle change of the front wheel 17F due to the compliance of the mount insulator 14 is promoted in the positive direction by reducing the roll rigidity. The change in camber angle of the rear wheel 17R is suppressed by increasing the roll rigidity and is controlled in the positive direction.

次に、作用を説明する。 Next, the operation will be described.

操向状態検出手段25からの操舵角速度信号および横
向加速度信号が制御手段28に与えられると、制御手段
28により所定時間毎に第2図に示すような処理が実行さ
れる。まず、操舵角速度信号および横向加速度信号
の値が把握され、次いで、両信号の積が求められて以下
に述べる操向状態A、Bのどちらであるかが判別され
る。
When the steering angular velocity signal and the lateral acceleration signal from the steering state detecting means 25 are given to the control means 28, the control means
By 28, the processing as shown in FIG. 2 is executed every predetermined time. First, the values of the steering angular velocity signal and the lateral acceleration signal are grasped, and then the product of both signals is obtained to determine which of the steering states A and B is described below.

いま、例えば、直進走行(前進)中の車両が右あるい
は左に操向される場合、操舵ハンドルが右に操舵される
と、操舵角速度信号がプラス(>0)に変化するとと
もに横向加速度信号が0からプラスに変化し、左に操
舵されると、操舵角速度信号がマイナス(<0)に変
化するとともに横向加速度信号yが0からマイナスに変
化する。この場合、両信号値の積は常時プラス(>0)
あるいは0(=0のとき)となり、操向状態Aと判別
される。次いで、右あるいは左に操舵された後に旋回し
ている車両が直進方向に操向(切り戻し)される場合、
操舵ハンドルが左に切り戻されると、操舵角速度信号
がマイナス(<0)に変化して横向加速度信号がプラ
ス(右旋回中)のままとなり、右に切り戻されると、操
舵角速度信号がプラス(>0)に変化して横向加速度
信号がマイナス(左旋回中)のままとなる。この場
合、両信号値の積は常時マイナス(<0)となり、制御
手段28によって操向状態Bと判別される。さらに、切り
戻しが完了して車両が直進走行したり、舵角一定で保舵
される場合(θ=0のとき)は、操向状態Bと判別され
る。
Now, for example, when a vehicle traveling straight ahead (forward) is steered to the right or left, when the steering wheel is steered to the right, the steering angular velocity signal changes to plus (> 0) and the lateral acceleration signal changes. When it changes from 0 to plus and is steered to the left, the steering angular velocity signal changes to minus (<0) and the lateral acceleration signal y changes from 0 to minus. In this case, the product of both signal values is always positive (> 0)
Alternatively, it becomes 0 (when = 0), and the steering state A is determined. Then, when the vehicle turning after being steered to the right or left is steered (returned) in a straight direction,
When the steering wheel is turned back to the left, the steering angular velocity signal changes to minus (<0), the lateral acceleration signal remains positive (while turning right), and when turned back to the right, the steering angular velocity signal becomes positive. It changes to (> 0) and the lateral acceleration signal remains negative (while turning left). In this case, the product of both signal values is always negative (<0), and the control means 28 determines that the steering state is B. Further, when the vehicle is traveling straight ahead after the turning back is completed or the vehicle is held at a constant steering angle (when θ = 0), the steering state B is determined.

次いで、制御手段28によって操向状態A、B、すなわ
ち、操舵ハンドルを切っているか切り戻している(保舵
状態を含む)かが判別されると、制御手段28から第1剛
性可変手段23および第2剛性可変手段24に制御信号V1
V2が出力される。このとき、判別結果が操向状態Aであ
る場合には制御信号V1により第1剛性可変手段23の電磁
式バルブ22が閉じるとともに制御信号V2により第2剛性
可変手段24の電磁式バルブ22が開き、一方、判別結果が
操向状態Bである場合には制御信号V1により第1剛性可
変手段23の電磁式バルブ22が開くとともに制御信号V2
より第2剛性可変手段24の電磁式バルブ22が閉じる。し
たがって、操舵ハンドルを切り増している際には、フロ
ントサスペンション18のロール剛性が増大されて前輪17
Fのキャンバ角がネガティブ方向に制御され、リヤサス
ペンション19のロール剛性が減小されて後輪17Rのポジ
ティブ方向のキャンバ角変化が促される。また、操舵ハ
ンドルを切り戻しあるいは保舵している際には、フロン
トサスペンション18のロール剛性が減小されて前輪17F
のポジティブ方向のキャンバ角変化が促され、リヤサス
ペンション19のロール剛性が増大されて後輪17Rのキャ
ンバ角がネガティブ方向に制御される。このため、車両
を旋回させるために操舵ハンドルを切ると、テールスラ
イドを容易にして車両の回頭性を促進するよう車輪のキ
ャンバ角が制御され、操舵ハンドルを切り戻すと、テー
ルの流れを抑制して収束性を促進するよう車輪のキャン
バ角が制御される。
Next, when the control means 28 determines the steering states A and B, that is, whether the steering wheel is turned or turned back (including the steering holding state), the control means 28 causes the first stiffness varying means 23 and The control signal V 1 is sent to the second stiffness varying means 24,
V 2 is output. At this time, when the determination result is the steering state A, the electromagnetic valve 22 of the first rigidity varying means 24 is closed by the control signal V 1 and the electromagnetic valve 22 of the second rigidity varying means 24 is closed by the control signal V 2 . On the other hand, when the discrimination result is the steering state B, the electromagnetic valve 22 of the first stiffness varying means 23 is opened by the control signal V 1 and the electromagnetic type of the second stiffness varying means 24 is opened by the control signal V 2 . Valve 22 closes. Therefore, when the steering wheel is being increased, the roll rigidity of the front suspension 18 is increased and the front wheels 17
The camber angle of F is controlled in the negative direction, the roll rigidity of the rear suspension 19 is reduced, and the camber angle of the rear wheel 17R in the positive direction is promoted. Also, when the steering wheel is turned back or held, the roll rigidity of the front suspension 18 is reduced and the front wheels 17F
The change in the camber angle in the positive direction is promoted, the roll rigidity of the rear suspension 19 is increased, and the camber angle of the rear wheel 17R is controlled in the negative direction. Therefore, when the steering wheel is turned to turn the vehicle, the camber angle of the wheels is controlled so that the tail slide is facilitated and the turning performance of the vehicle is promoted.When the steering wheel is turned back, the tail flow is suppressed. The camber angle of the wheels is controlled so as to promote convergence.

このように、本実施例においては、車両の操向状態に
応じてフロントサスペンション18およびリヤサスペンシ
ョン19間でロール剛性の配分が変化され、特に高速旋回
時等の回頭性および収束性の双方が安定するよう車輪の
キャンバ角が制御されるので、車両の運動性能および操
縦安定性が向上する。さらに、従来、限界操向付近の領
域で操縦性と安定性を両立させることが非常に困難であ
ったが、旋回中の操舵において、切り増し時のコントロ
ールモーメントと切り戻し(カウンターステアを含む)
時の復元モーメントを共に大きくすることができるの
で、ドリフト走行を含む限界領域での操縦性が格段に向
上する。
As described above, in the present embodiment, the distribution of roll rigidity is changed between the front suspension 18 and the rear suspension 19 in accordance with the steering state of the vehicle, and in particular, both the turning ability and the convergence ability during high-speed turning are stable. Since the camber angle of the wheels is controlled so that the vehicle motion performance and steering stability are improved. Furthermore, it has been very difficult to achieve both maneuverability and stability in the area near the limit steering in the past, but when steering during turning, the control moment and reverting (including countersteering) when turning up are included.
Since the restoring moment at the time can be increased together, the maneuverability in the limit region including drift running is significantly improved.

第3、4図は本発明の第2実施例を示す図であり、同
図において、フロントサスペンション18のサスペンショ
ンメンバ11とトランスバースリンク12の連結部2箇所に
はそれぞれ流体封入ブッシュ31が設けられている。各流
体封入ブッシュ31は連結ボルト12aを挟んでトランスバ
ースリンク12の長手方向両側に配置された二つの流体室
31a、31bを有しており、流体室31a、31bには非圧縮性流
体等が封入されている。また、両流体封入ブッシュ31は
第1実施例と同様な配管32および電磁式バルブ33と共に
第1剛性可変手段34を構成しており、第1剛性可変手段
34は制御手段28からの制御信号V1により車両旋回中トラ
ンスバースリンク12に作用する圧縮荷重および引張荷重
に対して左右一対の流体封入ブッシュ31の剛性を増減さ
せ、フロントサスペンション18のロール剛性を変化させ
ることができる。なお、リヤサスペンション19にも第1
剛性可変手段34と同様な第2剛性可変手段(図示してい
ない)が設けられており、これらにより制御手段28から
の制御信号V1、V2を受けて車両の操向状態に応じてフロ
ントサスペンション18およびリヤサスペンション19のロ
ール剛性の配分が変化されるので、第1実施例と同様の
効果が得られる。
FIGS. 3 and 4 are views showing a second embodiment of the present invention. In FIG. 3, a fluid sealing bush 31 is provided at each of two connecting portions of the suspension member 11 of the front suspension 18 and the transverse link 12. ing. Each fluid enclosing bush 31 has two fluid chambers arranged on both sides in the longitudinal direction of the transverse link 12 with the connecting bolt 12a interposed therebetween.
The fluid chambers 31a and 31b are filled with incompressible fluid or the like. Further, both fluid-filled bushes 31 constitute the first stiffness varying means 34 together with the pipe 32 and the electromagnetic valve 33 similar to those in the first embodiment.
A control signal V 1 from the control means 28 increases / decreases the rigidity of the pair of left and right fluid-filled bushes 31 with respect to the compressive load and the tensile load acting on the transverse link 12 during vehicle turning, thereby increasing the roll rigidity of the front suspension 18. Can be changed. In addition, the rear suspension 19 is also the first
A second stiffness varying means (not shown) similar to the stiffness varying means 34 is provided, which receives the control signals V 1 and V 2 from the control means 28 and receives the front signal in accordance with the steering state of the vehicle. Since the distribution of roll rigidity of the suspension 18 and the rear suspension 19 is changed, the same effect as that of the first embodiment can be obtained.

(効果) 本発明によれば、操向状態検出手段からの検出情報に
基づいて、制御手段により第1剛性可変手段および第2
剛性可変手段の作動を制御し、操舵ハンドルの切り増し
時には前輪側の懸架装置のロール剛性を増大させるとと
もに後輪側の懸架装置のロール剛性を減小させ、操舵ハ
ンドルの切り戻し時には前輪側の懸架装置のロール剛性
を減小させるとともに後輪側の懸架装置のロール剛性を
増大させ、そして、操舵ハンドルの切り増し時には前輪
のキャンバ角をネガティブ方向に、後輪のキャンバ角を
ポジティブ方向にそれぞれ制御し、操舵ハンドルの切り
戻し時には前輪のキャンバ角をポジティブ方向に、後輪
のキャンバ角をネガティブ方向にそれぞれ制御している
ので、車両の操向状態に応じて前輪側および後輪側の懸
架装置間でロール剛性の配分を変化させ、特に高速旋回
時等の回頭性および収束性の双方が安定するようキャン
バ角を制御することができる。この結果、車両の運動性
能および操縦安定性を向上させることができる。
(Effect) According to the present invention, the first stiffness varying means and the second stiffness varying means are controlled by the control means based on the detection information from the steering state detecting means.
By controlling the operation of the rigidity varying means, the roll rigidity of the suspension system on the front wheel side is increased when the steering wheel is increased, and the roll rigidity of the suspension system on the rear wheel side is reduced. The roll rigidity of the suspension system is reduced and the roll rigidity of the suspension system on the rear wheel side is increased, and when the steering wheel is increased, the camber angle of the front wheel is set in the negative direction and the camber angle of the rear wheel is set in the positive direction. When the steering wheel is turned back, the front wheel camber angle is controlled in the positive direction and the rear wheel camber angle is controlled in the negative direction.Therefore, depending on the steering state of the vehicle, the front wheel side and the rear wheel side are suspended. By changing the distribution of roll rigidity between the devices, the camber angle can be controlled so that both the turning and convergence properties are stable, especially during high-speed turning. Can. As a result, the dynamic performance and steering stability of the vehicle can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1、2図は本発明に係る車輪キャンバ角制御装置の第
1実施例を示す図であり、第1図はその概略構成図、第
2図はその制御手段の制御フローチャート、第3、4図
は本発明に係る車輪キャンバ角制御装置の第2実施例を
示す図であり、第3図はその概略構成図、第4図はその
要部斜視図、第5、6図は従来例を示す図であり、第5
図はその概略構成図、第6図はその要部断面図である。 17F……前輪、 17R……後輪、 18……フロントサスペンション(前輪側の懸架装置)、 19……リヤサスペンション(後輪側の懸架装置)、 23、34……第1剛性可変手段、 24……第2剛性可変手段、 25……操向状態検出手段、 28……制御手段。
FIGS. 1 and 2 are diagrams showing a first embodiment of a wheel camber angle control device according to the present invention. FIG. 1 is a schematic configuration diagram thereof, FIG. FIG. 1 is a diagram showing a second embodiment of a wheel camber angle control device according to the present invention, FIG. 3 is a schematic configuration diagram thereof, FIG. 4 is a perspective view of its essential parts, and FIGS. It is a figure which shows,
FIG. 6 is a schematic configuration diagram thereof, and FIG. 6 is a cross-sectional view of its main part. 17F …… front wheel, 17R …… rear wheel, 18 …… front suspension (front wheel side suspension), 19 …… rear suspension (rear wheel side suspension), 23,34 …… first stiffness varying means, 24 ...... Second rigidity changing means, 25 ...... Steering state detecting means, 28 ...... Control means.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】前輪側の懸架装置に設けられ、該懸架装置
のロール剛性を変化させることができる第1剛性可変手
段と、 後輪側の懸架装置に設けられ、該懸架装置のロール剛性
を変化させることができる第2剛性可変手段と、 操舵角速度の変化から操舵ハンドルの切り増しおよび切
り戻しを検出する操向状態検出手段と、 操向状態検出手段からの検出情報に基づいて、操舵ハン
ドルの切り増し時には前輪側の懸架装置のロール剛性を
増大させるとともに後輪側の懸架装置のロール剛性を減
小させ、操舵ハンドルの切り戻し時には前輪側の懸架装
置のロール剛性を減小させるとともに後輪側の懸架装置
のロール剛性を増大させるよう前記第1剛性可変手段お
よび第2剛性可変手段の作動を制御する制御手段と、を
備え、 操舵ハンドルの切り増し時には前輪のキャンバ角をネガ
ティブ方向に、後輪のキャンバ角をポジティブ方向にそ
れぞれ制御し、 操舵ハンドルの切り戻し時には前輪のキャンバ角をポジ
ティブ方向に、後輪のキャンバ角をネガティブ方向にそ
れぞれ制御するようにしたことを特徴とする車輪キャン
バ角制御装置。
1. A first rigidity varying means provided on a suspension device on a front wheel side and capable of changing roll rigidity of the suspension device; and a roll rigidity of the suspension device provided on a suspension device on a rear wheel side. Second rigidity varying means that can be changed, steering state detecting means that detects whether steering wheel is further turned or turned back based on a change in steering angular velocity, and steering wheel based on detection information from the steering state detecting means When the steering wheel is turned up, the roll rigidity of the suspension system on the front wheel side is increased and the roll rigidity of the suspension system on the rear wheel side is reduced, and when the steering wheel is turned back, the roll rigidity of the suspension system on the front wheel side is reduced and Control means for controlling the operation of the first rigidity varying means and the second rigidity varying means so as to increase the roll rigidity of the suspension device on the wheel side, Sometimes the front wheel camber angle is controlled in the negative direction and the rear wheel camber angle is controlled in the positive direction.When the steering wheel is turned back, the front wheel camber angle is controlled in the positive direction and the rear wheel camber angle is controlled in the negative direction. A wheel camber angle control device characterized by the above.
JP63022602A 1988-02-02 1988-02-02 Wheel camber angle control device Expired - Lifetime JP2515364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022602A JP2515364B2 (en) 1988-02-02 1988-02-02 Wheel camber angle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022602A JP2515364B2 (en) 1988-02-02 1988-02-02 Wheel camber angle control device

Publications (2)

Publication Number Publication Date
JPH01197109A JPH01197109A (en) 1989-08-08
JP2515364B2 true JP2515364B2 (en) 1996-07-10

Family

ID=12087388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022602A Expired - Lifetime JP2515364B2 (en) 1988-02-02 1988-02-02 Wheel camber angle control device

Country Status (1)

Country Link
JP (1) JP2515364B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071158A (en) * 1989-08-28 1991-12-10 Toyota Jidosha Kabushiki Kaisha Fluid pressure type active suspension responsive to change of rate of change of vehicle height or change of acceleration of vehicle body
JPH0737205B2 (en) * 1989-09-05 1995-04-26 トヨタ自動車株式会社 Fluid pressure active suspension
JPH03231013A (en) * 1990-02-05 1991-10-15 Mitsubishi Motors Corp Camber angle control device for wheel
JP3017512B2 (en) * 1990-04-27 2000-03-13 アイシン精機株式会社 Vehicle roll control device
KR100440113B1 (en) * 2001-07-04 2004-07-12 현대자동차주식회사 Suspension system of vehicles
DE102004014576A1 (en) * 2004-03-25 2005-10-13 Zf Friedrichshafen Ag Method and chassis arrangement for driving stability control of a motor vehicle
KR100680389B1 (en) * 2004-12-15 2007-02-08 현대자동차주식회사 Wheel alignment and vehicle height adjusting apparatus
JP2011207284A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle
JP2011207285A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle
JP2011207286A (en) * 2010-03-29 2011-10-20 Equos Research Co Ltd Control device for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973312A (en) * 1982-10-18 1984-04-25 Mazda Motor Corp Suspension of car
JPS6050018A (en) * 1983-08-30 1985-03-19 Toyota Motor Corp Camber angle control device for vehicle

Also Published As

Publication number Publication date
JPH01197109A (en) 1989-08-08

Similar Documents

Publication Publication Date Title
US4722544A (en) Mounting assembly for unsteerable wheels
JP4821454B2 (en) Vehicle travel control device
US4765650A (en) Vehicle rear suspension
US4621830A (en) Automotive suspension system
JP2515364B2 (en) Wheel camber angle control device
US5098118A (en) Vehicle suspension system for steerable wheels
JP3167127B2 (en) Vehicle suspension device
JPH01266007A (en) Rear suspension for vehicle
JPH0771888B2 (en) Attitude control device for vehicle
JPH03114978A (en) Rear wheel suspension device for rear wheel steering vehicle
JP2569714B2 (en) Rear suspension for vehicles
JPH0747824A (en) Rear suspension device
JPS624621A (en) Controlling device for shock absorber
JPH03284403A (en) Suspension device for vehicle
JPH02216309A (en) Suspension device for vehicle
JPH037205Y2 (en)
JPH023503A (en) Independent suspension for steering wheel
JPH0521443Y2 (en)
JPH05213027A (en) Suspension control device
JPS6150810A (en) Suspension of automobile
JPH0657490B2 (en) Stabilizers used in automobiles
JP3826597B2 (en) Shock absorber control device
JPH03208713A (en) Suspension device for vehicle
JPS61287806A (en) Suspension having variable stiffness
JP2526724B2 (en) Vehicle caster angle control device