JPH01197011A - Apparatus for measuring outer diameter of pipe and straightening bend - Google Patents

Apparatus for measuring outer diameter of pipe and straightening bend

Info

Publication number
JPH01197011A
JPH01197011A JP2336388A JP2336388A JPH01197011A JP H01197011 A JPH01197011 A JP H01197011A JP 2336388 A JP2336388 A JP 2336388A JP 2336388 A JP2336388 A JP 2336388A JP H01197011 A JPH01197011 A JP H01197011A
Authority
JP
Japan
Prior art keywords
tube
outer diameter
pipe
sensor
straightening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2336388A
Other languages
Japanese (ja)
Other versions
JPH0753294B2 (en
Inventor
Katsuyuki Takeuchi
克行 竹内
Toshio Toshima
敏雄 戸島
Mitsuru Funahashi
舟橋 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63023363A priority Critical patent/JPH0753294B2/en
Publication of JPH01197011A publication Critical patent/JPH01197011A/en
Publication of JPH0753294B2 publication Critical patent/JPH0753294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce cost of installation of the measuring and straightening apparatus by providing the pipe rotating device, disposing a sensor part capable of moving up and down and its scaling part and performing measuring the outer diameter and straightening the bend. CONSTITUTION:A pair of rotating devices 15 to hold an object pipe 1 horizontally and to rotate around the shaft center are disposed on the front and rear in the shaft center direction. Then, a laser projecting part 5 and receiving part 6 screwed to a pair of supporting shafts 3, 4 respectively to be enabled moving up and down are provided and driven by a driving device 7. The pipe 1 is set to the rotating device 15, the outer diameter of the pipe 1 is measured at plural positions by a sensor part driving device 9 and optical axes 8a, 8b of both sensor parts 8, and the outer diameter, out-of-roundness, straightness are computed by a control device 16. Further, a hydraulic ram 12 is moved to straighten the bend of the pipe 1 through a truck 14. By this method, the apparatus for measuring the outer diameter and straightening the bend of the pipe 1 is integrated and each size becomes common to reduce the cost of installation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は管外径計測および曲がり矯正を行う装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for measuring the outer diameter of a tube and straightening the bend.

従来の技術 従来、鋳造された管は、真円性、および真直性にばらつ
きを有しており、このために管の径を計測する装置が各
管の呼び径に応じてそれぞれ別途に設けられていた。
Conventional technology Conventionally, cast pipes have variations in roundness and straightness, and for this reason, separate devices have been installed to measure the diameter of each pipe, depending on the nominal diameter of each pipe. was.

発明が解決しようとする問題点 上記従来の構成によれば、管の径を計測する装置を各管
の呼び径ごとに設けるために、設備費が高くなる問題が
あった。
Problems to be Solved by the Invention According to the above-mentioned conventional configuration, a device for measuring the diameter of the pipe is provided for each nominal diameter of the pipe, which causes a problem of high equipment costs.

本発明は上記問題点を解決するもので、あらゆる径の管
に対応して管の外径を測定することができ、しかも容易
に矯正を行うことができる管外径計測および曲がり矯正
を行う装置を提供することを目的とする。
The present invention solves the above-mentioned problems, and is an apparatus for measuring the outer diameter of a pipe and straightening a bend, which can measure the outer diameter of a pipe of any diameter, and can easily straighten the pipe. The purpose is to provide

問題点を解決するための手段 上記問題点を解決するために、本発明は、対象管を水平
方向に支持するとともに、管軸心まわりに回転させる回
転装置と、管の上方に位置して管軸心方向に移動自在に
設けられ、管を下方に押圧する矯正装置と、管軸心方向
に沿って複数配置される管外径計測装置と、この管外径
計測装置に設けられ、水平でかつ管軸心と直交する方向
の光軸を形成し、上下に一対配置されるセンサ部と、両
センサ部を上下に離間させて、上方に位置する光軸を管
上端縁に対応させるとともに、下方に位置する光軸を管
下端縁に対応させるセンサ部駆動装置と、両センサ部の
間の距離を測定するスケール部と、回転装置および矯正
装置の駆動を制御するとともに、センサ部およびスケー
ル部で検出される値にもとづいて対象管の真円性および
真直性を判断する制御装置とを備えた構成としたもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a rotating device that horizontally supports the target tube and rotates it around the tube axis, and a rotating device that is located above the tube. A straightening device that is movable in the axial direction and presses the tube downward; a plurality of tube outer diameter measuring devices arranged along the tube axial direction; and forming an optical axis in a direction perpendicular to the tube axis, a pair of sensor sections arranged above and below, and both sensor sections being vertically separated so that the optical axis located above corresponds to the upper edge of the tube, A sensor part driving device that makes the optical axis located below correspond to the lower edge of the tube, a scale part that measures the distance between both sensor parts, and a sensor part and a scale part that control the driving of the rotation device and the straightening device. and a control device that determines the roundness and straightness of the target tube based on the values detected by.

作用 上記構成において、センサ部駆動装置によりセンサ部を
適当に離間させ、回転装置上に配置された対象管の管上
端縁と管下端縁にそれぞれセンサ部の光軸を対応させる
。したがって、複数種類の外径が異なる管に対応して、
管外径の計測を行う。
Operation In the above configuration, the sensor parts are appropriately spaced apart by the sensor part driving device, and the optical axis of the sensor part is made to correspond to the upper end edge and the lower end edge of the target tube, respectively, which are arranged on the rotating device. Therefore, in response to multiple types of pipes with different outer diameters,
Measure the outside diameter of the pipe.

そして、計測された値から制御装置で、対象管の真円性
および真直性を判断する。そして、制御装置で算出され
た矯正必要位置および矯正必要量にもとづいて、回転装
置および矯正装置を駆動し、矯正装置による押圧によっ
て対象管を適宜に矯正する。
Then, the control device determines the roundness and straightness of the target tube based on the measured values. Then, based on the correction required position and correction amount calculated by the control device, the rotating device and the correction device are driven, and the target tube is appropriately corrected by pressure from the correction device.

実施例 以下、本発明の一実施例を図面に基づいて説明する。第
1図〜第2図において、水平方向に配置される対象管1
の管軸心方向に沿って複数の管外径計測装置2が設けら
れている。この管外径計測装置2は、管軸心を介して左
右の位置に立設された一対の支軸3.4と、一方の支軸
3に螺合して上下一対配置されるレーザ投光部5と、他
方の支軸4に螺合して上下一対がそれぞれレーザ投光部
5に対向して配置されるレーザ受光部6と、両支軸3.
4に連動連結された駆動装置7とを備えている。そして
、レーザ投光部5とレーザ受光部6とによってセンサ部
8が形成されており、このセンサ部8の光軸8aは、水
平でかつ管軸心と直交する方向に形成される。また、支
軸3.4と駆動装置7とでセンサ部駆動装置9が形成さ
れており、このセンサ部駆動装置9は支軸3.4の回転
により、両センサ部8を離間させて、上方に位置する光
軸8aを対象管lの管上端縁に対応させるとともに、下
方に位置する光軸8bを対象管lの管下端縁に対応させ
るように構成されている。そして、センサ部駆動装置9
は凹型フレーム10に設けられて゛おり、凹型フレーム
10の重直辺10aに沿って移動するリニアスケール1
1が上部のセンサ部8のレーザ投光部5に取付けられて
いる。また、このリニアスケール11は両センサ部8の
間の距離を測定するようになされている。そして、対象
管lの上方に位置して油圧ラム12が配置されており、
油圧ラム12は、管軸心方向に沿って設けられたガイド
レール13に案内されて走行する台$14に支持されて
いる。そして、対象管1を下方で支持し、かつ管軸心ま
わりに回転させる回転装置15が管軸心方向の前後に一
対配置されている。そして、両センサ部8は制御装置1
6に電気的に接続されており、この制御装置16には、
油圧ラム12の変位を検出する変位計17と油圧ラム1
2の負荷を検出するロードセル18とが動歪計19を介
して電気的に接続されている。また、制御装@16には
、センサ部駆動装置9がドライブ回路20を介して電気
的に接続され、リニアスケール11がカウンター回路2
1を介して電気的に接続されている。さらに、制御装置
16には、油圧ラム12を作動させる油圧ポンプ22の
送油管23の途中に介在されたサーボバルブ24が、電
気的に接続されている。そして、制御装@16には、モ
ニター26とディスクドライブ27とプリンター28と
が接続されており、ディスクドライブ27でデータを保
存し、プリンター28で結果を出力する。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. In Figs. 1 and 2, the target pipe 1 is arranged horizontally.
A plurality of tube outer diameter measuring devices 2 are provided along the tube axis direction. This pipe outer diameter measuring device 2 consists of a pair of support shafts 3.4 erected at left and right positions across the pipe axis, and a pair of upper and lower laser beams that are screwed onto one of the support shafts 3. part 5, a laser light receiving part 6 which is screwed onto the other support shaft 4 and is disposed with a pair of upper and lower parts facing the laser projecting part 5, and both support shafts 3.
4 and a drive device 7 operatively connected to the drive unit 4. A sensor section 8 is formed by the laser projecting section 5 and the laser receiving section 6, and the optical axis 8a of the sensor section 8 is horizontal and perpendicular to the tube axis. Further, the sensor section drive device 9 is formed by the support shaft 3.4 and the drive device 7, and the sensor section drive device 9 moves the two sensor sections 8 apart by the rotation of the support shaft 3.4 and moves upward. The optical axis 8a located below corresponds to the upper edge of the target tube l, and the optical axis 8b located below corresponds to the lower edge of the target tube l. Then, the sensor unit driving device 9
is provided on the concave frame 10, and the linear scale 1 moves along the vertical side 10a of the concave frame 10.
1 is attached to the laser projecting section 5 of the upper sensor section 8. Further, this linear scale 11 is designed to measure the distance between both sensor sections 8. A hydraulic ram 12 is disposed above the target pipe l,
The hydraulic ram 12 is supported by a stand $14 that runs while being guided by a guide rail 13 provided along the tube axis direction. A pair of rotating devices 15 that support the target tube 1 below and rotate it around the tube axis are arranged at the front and rear in the tube axis direction. Both sensor sections 8 are connected to the control device 1.
6, and this control device 16 includes:
A displacement gauge 17 that detects the displacement of the hydraulic ram 12 and a hydraulic ram 1
A load cell 18 for detecting the load of No. 2 is electrically connected via a dynamic strain meter 19. Further, the sensor unit driving device 9 is electrically connected to the control device @16 via the drive circuit 20, and the linear scale 11 is connected to the counter circuit 2.
They are electrically connected via 1. Furthermore, a servo valve 24 interposed in the middle of an oil feed pipe 23 of a hydraulic pump 22 that operates the hydraulic ram 12 is electrically connected to the control device 16 . A monitor 26, a disk drive 27, and a printer 28 are connected to the control device @16, and the disk drive 27 stores data and the printer 28 outputs results.

以下、上記構成における作用について説明する。Hereinafter, the effects of the above configuration will be explained.

まず、対象管1を回転装置15の上に配置し、センサ部
駆動装置9により両センサ部8を離間させ、上方に位置
する光軸8aを対象管lの管上端縁に対応させるととも
に、下方に位置する光軸8bを対象管1の管下端縁に対
応させる。このとき、第3図に示すように、レーザ投光
部5から投光されるレーザ光は、上下方向に所定巾をも
って投光され、一部が対象管lに遮られてレーザ受光部
6に到達する。そして、この状態における両センサ部8
の間の距離であるセンサ位iX。を、リニアスケール1
1とカウンター回路21とで検出し、その値を制御装置
16に送って記憶する。次に、回転装置15により対象
管1を回転させながら、上方に位置するレーザ受光部6
で受光される上部センサ出力x1と、下方に位置するし
゛−ザ受光部6で受光される下部センサ出力x2とが制
御装置16に送られる。そして、下記に示す計算が制御
装置16において演算される。
First, the target tube 1 is placed on the rotating device 15, and both sensor sections 8 are separated by the sensor section drive device 9, so that the optical axis 8a located above corresponds to the upper edge of the target tube 1, and the lower The optical axis 8b located at is made to correspond to the lower end edge of the target tube 1. At this time, as shown in FIG. 3, the laser beam projected from the laser projecting section 5 is projected with a predetermined width in the vertical direction, and a portion is blocked by the target tube l and reaches the laser receiving section 6. reach. Both sensor sections 8 in this state
sensor position iX, which is the distance between , linear scale 1
1 and the counter circuit 21, and sends the value to the control device 16 and stores it. Next, while rotating the target tube 1 with the rotation device 15, the laser light receiving section 6 located above is rotated.
The upper sensor output x1 received by the laser light receiving section 6 located below and the lower sensor output x2 received by the laser light receiving section 6 located below are sent to the control device 16. Then, the calculation shown below is performed in the control device 16.

すなわち、真円性を判断する値として、外径d二XO−
Xi −X2 平均径d =J、 d+ / N 楕円R= dm□−dmin が計算される。また、真直性を判断する値としての曲り
量(BEND) Bを求める式は、Y = d/ 2 
十Xz ”” (Xo  XI  X2 )/ 2+X
2= XO/ 2 +(X2  X+ )/ 2ここで
X2− Xl = zとすると B ” (Ymax Y、n1n)/2 =CZmax
  Zmto)/’である。また、このとき局方向にお
ける楕円位置および曲がり位置も算出される。尚、計測
は対象管lが1回転する間において行われる。ちなみに
、第4図は外径dの計測処理結果の一例を示すものであ
り、この図においては、ANGLEが27s(deg)
のときに、外径dが最大外径d mraxの169.2
4(1圃)となり、ANGLEが194 (deg )
のときに、外径dが最小外径d minの168.51
 (mm) となる。そして、算出された平均径d1楕
円R1曲がり量Bから真円性および伸直性を判断し、餐
品としての良否を判定するとともに、良品については、
さらに矯正の要否を判定する。そして、矯正の必要があ
ると判定した場合には、制御装置16から発せられる矯
正指令に基づいて、回転装置15が駆動され、曲がり量
が最大となる位置を1下方向に向けて対象管1が配置さ
れる。そして、台車14の走行により油圧ラム12を移
動させ、矯正を行う位置に対応させる。次に、油圧ラム
12を作動させて、対象管1に試負荷を与える。このと
き、変位計17と、ロードセル18と、動歪計19とで
計測される荷重とたわみの関係は、第5図に示すように
なる。すなわち、荷重−たわみ曲線Xの傾向が直線PQ
として表わされる。
In other words, the outer diameter d2XO-
Xi −X2 average diameter d = J, d+ / N ellipse R = dm□−dmin is calculated. Also, the formula for determining the amount of bend (BEND) B, which is a value for determining straightness, is Y = d/2
10Xz ”” (Xo XI X2) / 2+X
2= XO/ 2 + (X2 X+ )/ 2 Here, if X2-
Zmto)/'. At this time, the ellipse position and bending position in the station direction are also calculated. Note that the measurement is performed while the target tube I rotates once. By the way, Fig. 4 shows an example of the measurement processing result of the outer diameter d, and in this figure, ANGLE is 27s (deg).
When , the outer diameter d is 169.2 of the maximum outer diameter d mrax
4 (1 field) and ANGLE is 194 (deg)
When , the outer diameter d is the minimum outer diameter d min of 168.51
(mm). Then, the roundness and straightness are determined from the calculated average diameter d1 ellipse R1 bending amount B, and the quality of the food item is determined.
Furthermore, it is determined whether or not correction is necessary. If it is determined that correction is necessary, the rotating device 15 is driven based on the correction command issued from the control device 16, and the target tube is moved downward by 1° to the position where the amount of bending is maximum. is placed. Then, the hydraulic ram 12 is moved by the traveling of the truck 14 to correspond to the position where correction is to be performed. Next, the hydraulic ram 12 is operated to apply a trial load to the target pipe 1. At this time, the relationship between the load and deflection measured by the displacement meter 17, load cell 18, and dynamic strain meter 19 is as shown in FIG. In other words, the tendency of the load-deflection curve X is a straight line PQ
It is expressed as

そして、矯正必要量に見合った永久たわみをδd=OT
として、TからPQに平行な直線eを求める。
Then, the permanent deflection commensurate with the amount of correction required is δd=OT
, find a straight line e parallel to PQ from T.

次に、油圧ラム12により本矯正に見合う負荷を対象管
1に加える。すなわち、荷重−たわみ曲線X′が4と交
わる点Sで負荷を停止して除荷する。このことにより、
永久たわみδe = OTIが発生し、このときδez
δd となる。そして、再度計測を行い、矯正不要と判
定されるまで上記動作を繰返す。ちなみに、第6図は上
記した動作のフローチャート図である。したがって、こ
の実施例によれば、複数種類の対象管lに対応して管外
径の計測および、計測結果に基づいた矯正を行うことが
できる。
Next, a load commensurate with the main straightening is applied to the target pipe 1 by the hydraulic ram 12. That is, the load is stopped and unloaded at the point S where the load-deflection curve X' intersects 4. Due to this,
Permanent deflection δe = OTI occurs, and at this time δez
δd. Then, the measurement is performed again and the above operation is repeated until it is determined that no correction is necessary. Incidentally, FIG. 6 is a flowchart of the above-mentioned operation. Therefore, according to this embodiment, it is possible to measure the outer diameter of a plurality of types of target tubes 1 and perform correction based on the measurement results.

発明の効果 以上述べたごとく、本発明によれば、センサ部を適当に
離間させることにより、外径が異なる複数種類の対象管
に対応して管外径の計測を行うことができる。そして、
計測された値から制御装置にて対象管の真円性および真
直性を判断し、矯正装置による抑圧によって矯正するこ
とができる。
Effects of the Invention As described above, according to the present invention, by appropriately spacing the sensor sections, it is possible to measure the outer diameter of a plurality of tubes having different outer diameters. and,
The control device determines the roundness and straightness of the target tube from the measured values, and the tube can be corrected by compression using the correction device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、第2図は
第1・図のA−A矢視図、第3図は計測状態を示す図、
第4図は計測処理結果を示す図、第5図は矯正作用を示
す図、第6図は本発明の一実施例の手順を示すフローチ
ャート図である。 1・・・対象管、2・・・管外径計測装置、5・・・レ
ーザ投光部、6・・・レーザ受光部、8・・・センサ部
、9・・・センサ部駆動装置、11・・・リニアスケー
ル、12・・・油圧ラム、15・・・回転装置、16・
・・制御装置。
Fig. 1 is an overall configuration diagram showing one embodiment of the present invention, Fig. 2 is a view taken along the line A-A in Fig. 1, and Fig. 3 is a diagram showing a measurement state.
FIG. 4 is a diagram showing the measurement processing results, FIG. 5 is a diagram showing the correction action, and FIG. 6 is a flow chart diagram showing the procedure of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Target pipe, 2...Pipe outer diameter measuring device, 5...Laser emitter, 6...Laser light receiver, 8...Sensor part, 9...Sensor part drive device, 11... Linear scale, 12... Hydraulic ram, 15... Rotating device, 16...
··Control device.

Claims (1)

【特許請求の範囲】[Claims] 1、対象管を水平方向に支持するとともに、管軸心まわ
りに回転させる回転装置と、管の上方に位置して管軸心
方向に移動自在に設けられ、管を下方に押圧する矯正装
置と、管軸心方向に沿って複数配置される管外径計測装
置と、この管外径計測装置に設けられ、水平でかつ管軸
心と直交する方向の光軸を形成し、上下に一対配置させ
るセンサ部と、両センサ部を上下に離間させて、上方に
位置する光軸を管上端縁に対応させるとともに、下方に
位置する光軸を管下端縁に対応させるセンサ部駆動装置
と、両センサ部の間の距離を測定するスケール部と、回
転装置および矯正装置の駆動を制御するとともに、セン
サ部およびスケール部で検出される値にもとづいて対象
管の真円性および真直性を判断する制御装置とを備えた
ことを特徴とする管外径計測および曲がり矯正を行う装
置。
1. A rotation device that supports the target tube in the horizontal direction and rotates it around the tube axis, and a straightening device that is located above the tube and is movable in the tube axis direction and presses the tube downward. , a plurality of tube outer diameter measuring devices arranged along the tube axis direction, and a pair of tube outer diameter measuring devices installed on the tube outer diameter measuring devices that form a horizontal optical axis in a direction perpendicular to the tube axis, and arranged in pairs above and below. a sensor part driving device which vertically separates both sensor parts so that the optical axis located above corresponds to the upper edge of the tube and the optical axis located below corresponds to the lower edge of the tube; A scale unit that measures the distance between the sensor units, controls the drive of the rotation device and the straightening device, and determines the roundness and straightness of the target tube based on the values detected by the sensor unit and the scale unit. A device for measuring the outer diameter of a pipe and correcting bending, characterized by comprising a control device.
JP63023363A 1988-02-02 1988-02-02 Device for measuring pipe outer diameter and straightening Expired - Lifetime JPH0753294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023363A JPH0753294B2 (en) 1988-02-02 1988-02-02 Device for measuring pipe outer diameter and straightening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023363A JPH0753294B2 (en) 1988-02-02 1988-02-02 Device for measuring pipe outer diameter and straightening

Publications (2)

Publication Number Publication Date
JPH01197011A true JPH01197011A (en) 1989-08-08
JPH0753294B2 JPH0753294B2 (en) 1995-06-07

Family

ID=12108484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023363A Expired - Lifetime JPH0753294B2 (en) 1988-02-02 1988-02-02 Device for measuring pipe outer diameter and straightening

Country Status (1)

Country Link
JP (1) JPH0753294B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489555A (en) * 2011-12-08 2012-06-13 常州耐尔特精密工具有限公司 Bent pipe straightening device
CN104807421A (en) * 2015-04-10 2015-07-29 西北工业大学 Automatic detection device for relative position of component after forming of tow belt forming
US9283605B2 (en) 2010-05-05 2016-03-15 Greenlee Textron Inc. Pivoting conduit bender
CN106623511A (en) * 2017-01-20 2017-05-10 盐城工学院 Hydraulic straightening equipment and system
CN107649543A (en) * 2017-10-26 2018-02-02 郑州友联智能装备有限公司 A kind of gun tube intelligent correction system
CN113579009A (en) * 2021-07-23 2021-11-02 青岛中车四方轨道车辆有限公司 Fan impeller static balance detection and correction equipment and use method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971108U (en) * 1982-11-05 1984-05-15 新日本製鐵株式会社 Optical high-precision dimension measuring device
JPS6032531A (en) * 1983-08-03 1985-02-19 Fanuc Ltd Ac electric machine and manufacture thereof
JPS61108425A (en) * 1984-10-31 1986-05-27 Nissho Seikou Kk Shape correcting device of annular body
JPS61149810A (en) * 1984-12-24 1986-07-08 Nippon Steel Corp Measuring instrument for external diameter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971108U (en) * 1982-11-05 1984-05-15 新日本製鐵株式会社 Optical high-precision dimension measuring device
JPS6032531A (en) * 1983-08-03 1985-02-19 Fanuc Ltd Ac electric machine and manufacture thereof
JPS61108425A (en) * 1984-10-31 1986-05-27 Nissho Seikou Kk Shape correcting device of annular body
JPS61149810A (en) * 1984-12-24 1986-07-08 Nippon Steel Corp Measuring instrument for external diameter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10449587B2 (en) 2010-05-05 2019-10-22 Greenlee Tools, Inc. Pivoting conduit bender
US11400503B2 (en) 2010-05-05 2022-08-02 Greenlee Tools, Inc. Circuit for conduit bender
US9283605B2 (en) 2010-05-05 2016-03-15 Greenlee Textron Inc. Pivoting conduit bender
US9375773B2 (en) 2010-05-05 2016-06-28 Textron Innovations Inc. Circuit for conduit bender
US11858028B2 (en) 2010-05-05 2024-01-02 Greenlee Tools, Inc. Method of bending a conduit
US10478881B2 (en) 2010-05-05 2019-11-19 Greenlee Tools, Inc. Circuit for conduit bender
CN102489555A (en) * 2011-12-08 2012-06-13 常州耐尔特精密工具有限公司 Bent pipe straightening device
CN104807421A (en) * 2015-04-10 2015-07-29 西北工业大学 Automatic detection device for relative position of component after forming of tow belt forming
CN106623511B (en) * 2017-01-20 2019-11-05 盐城工学院 A kind of hydraulic flattening equipment and system
CN106623511A (en) * 2017-01-20 2017-05-10 盐城工学院 Hydraulic straightening equipment and system
CN107649543A (en) * 2017-10-26 2018-02-02 郑州友联智能装备有限公司 A kind of gun tube intelligent correction system
CN107649543B (en) * 2017-10-26 2023-09-29 郑州万达重工股份有限公司 Intelligent gun barrel correction system
CN113579009A (en) * 2021-07-23 2021-11-02 青岛中车四方轨道车辆有限公司 Fan impeller static balance detection and correction equipment and use method thereof
CN113579009B (en) * 2021-07-23 2023-09-08 青岛中车四方轨道车辆有限公司 Fan impeller static balance detection and correction equipment and using method thereof

Also Published As

Publication number Publication date
JPH0753294B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
US3776010A (en) Device for helically deforming a band to form a tube
KR100869512B1 (en) Leveler and method for controlling as the same
JPH01197011A (en) Apparatus for measuring outer diameter of pipe and straightening bend
CN107457454A (en) A kind of complete tuber of self correction numerical control
JP2949429B2 (en) Automatic roll groove alignment
JP3860810B2 (en) Pipe manufacturing equipment
EP0388096A1 (en) Mill roll adjustment
KR102364870B1 (en) The rolling mill and the control method of the rolling mill
JP3696733B2 (en) Rolling shape control method and rolling shape control device for cold rolled sheet
JP3055838B2 (en) Method of detecting and adjusting position of work roll of rolling mill and rolling mill
JPH06142719A (en) Centering measuring instrument for piercing mill
JP5441421B2 (en) Method and apparatus for correcting meander in continuous steel strip process line
EP0493775B1 (en) Guide device for shape rolling
JP2015202515A (en) Corrector and steel plate correction method
JP3567801B2 (en) Method and apparatus for forming square steel pipe
JP2001191102A (en) Method and device for manufacturing steel tube
JPS5939419A (en) Bend setting device of pipe and bar material
KR20010062790A (en) Calibrating method for a universal roll stand
JPS62107911A (en) Method of cutting weld bead on inner surface of steel pipe and device therefor
JPH07120226A (en) Measuring instrument for shape steel dimension
CN117606389A (en) Straightness measuring method and equipment for profile pultrusion
JPS61189809A (en) Rolling-mill equipment
JPS5919023A (en) Manufacture of spiral steel pipe
JPH0829354B2 (en) Tube straightening method
KR20200064813A (en) Position adjusting apparatus and rolling facility having thereof