JPH01196814A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01196814A
JPH01196814A JP63023069A JP2306988A JPH01196814A JP H01196814 A JPH01196814 A JP H01196814A JP 63023069 A JP63023069 A JP 63023069A JP 2306988 A JP2306988 A JP 2306988A JP H01196814 A JPH01196814 A JP H01196814A
Authority
JP
Japan
Prior art keywords
impurity
silicon
polycrystalline silicon
film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63023069A
Other languages
Japanese (ja)
Inventor
Yuji Yamanishi
山西 雄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63023069A priority Critical patent/JPH01196814A/en
Publication of JPH01196814A publication Critical patent/JPH01196814A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate selective formation of an impurity region and formation of an electrode in the impurity region, by a method wherein a window is opened in a silicon oxide film, a polycrystalline silicon film is formed thereon, and an impurity is doped therein in the process of evaporation of the impurity. CONSTITUTION:A polycrystalline silicon film 14 is formed by evaporation on a window formed in a silicon oxide film 13 which is formed on a semiconductor substrate 12. An impurity is evaporated from above the film 14 at a high temperature and is doped in silicon. Since the impurity is diffused at a high speed through a particle boundary in the polycrystalline silicon differently from that in single crystal silicon, a time for the high-temperature evaporation is substantially the same as in the case when the polycrystalline silicon is absent. Thereby selective formation of an impurity region and formation of an electrode in the impurity region are facilitated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の電極とシリコンの接触部分に利
用できる半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device that can be used for a contact portion between an electrode and silicon of a semiconductor device.

従来の技術 従来は第4図(a) 、 (b)の工程順断面図で示さ
れるような製造工程が実用されており、まず、第2図(
a)に示したように、半導体基板2の表面に形成された
シリコン酸化膜1に窓を開口し、ここに高濃度不純物領
域3を形成し、次に第2図(b)に示したように、アル
ミニウム電極4を形成し熱処理をほどこし、アルミニウ
ムーシリコンの共晶を形成する。
2. Description of the Related Art Conventionally, the manufacturing process shown in the step-by-step cross-sectional views of FIGS. 4(a) and 4(b) has been put into practice.
As shown in FIG. 2(a), a window is opened in the silicon oxide film 1 formed on the surface of the semiconductor substrate 2, and a high concentration impurity region 3 is formed therein. Then, an aluminum electrode 4 is formed and heat treated to form an aluminum-silicon eutectic.

発明が解決しようとする課題 上記のような方法を用いる場合、これを、バイポーラト
ランジスタのエミッタの形成に利用しようとすると、第
4図(b)のコンタクト窓5を形成しないと、第5図の
ように、エミッターベース接合部にまで、アルミニウム
ーシリコン共晶部11がすすみ、エミッターベース間の
もれ電流を増大させることになる。そこで、エミツタ窓
の上に多結晶シリコンを蒸着し、その上からイオン注入
にて不純物をドープさせる方法があるが、この場合、熱
処理後の不純物の分布において、シリコン表面の不純物
濃度は多結晶シリコン中よりも低(なり、エミッタ注入
効率は低(なる。また、イオン注入による不純物ドープ
では多結晶シリコン部分の抵抗を下げるには限界があり
、これはシリコンに同等の不純物をドープさせた場合よ
りも高くなる。そしてこの傾向はコンタクト窓の面債が
小さ(なるほど太き(なる。
Problems to be Solved by the Invention When the above method is used to form the emitter of a bipolar transistor, if the contact window 5 shown in FIG. 4(b) is not formed, the problem shown in FIG. 5 will occur. As a result, the aluminum-silicon eutectic portion 11 extends to the emitter-base junction, increasing the leakage current between the emitter and base. Therefore, there is a method of depositing polycrystalline silicon on the emitter window and doping impurities from above by ion implantation, but in this case, in the impurity distribution after heat treatment, the impurity concentration on the silicon surface is In addition, there is a limit to lowering the resistance of the polycrystalline silicon part with impurity doping by ion implantation, which is lower than when silicon is doped with an equivalent impurity. This tendency also means that the surface bond of the contact window becomes smaller (the thicker it becomes).

課題を解決するための手段 本発明は、半導体基板上に形成されたシリコン酸化膜に
窓をあける工程とこの上に多結晶シリコン膜を形成する
工程と、前記半導体基板表面に不純物を高温蒸着し、か
つ、この蒸着中に前記不純物を前記多結晶シリコン膜お
よびその下の前記半導体基板にドープさせる工程をそな
えた半導体装置の製造方法である。
Means for Solving the Problems The present invention comprises the steps of forming a window in a silicon oxide film formed on a semiconductor substrate, forming a polycrystalline silicon film thereon, and depositing impurities at high temperature on the surface of the semiconductor substrate. and a step of doping the polycrystalline silicon film and the semiconductor substrate thereunder with the impurity during the vapor deposition.

作用 本発明によると、多結晶シリコン膜内での不純物拡散が
高速に進行する結果、この多結晶シリコン膜とその直下
の半導体基板表面の不純物濃度がほぼ同等になり、不純
物領域の選択形成ならびに同領域への電極形成が容易で
ある。
According to the present invention, as a result of rapid impurity diffusion within the polycrystalline silicon film, the impurity concentrations of the polycrystalline silicon film and the surface of the semiconductor substrate immediately below it become approximately the same, making it possible to selectively form impurity regions and to It is easy to form electrodes in the area.

実施例 −つぎに、本発明を実施例により詳述する。第1図(a
)に示すように、半導体基板12上に形成したシリコン
酸化膜13に形成した窓の上に多結晶シリコン膜14を
蒸着形成する。次に、第1図(b)に示すように、その
上から不純物を高温蒸着しシリコン中へ不純物をドープ
させる。多結晶シリコン中は単結晶シリコンとはことな
り粒界中を不純物が高速度で拡散するため、高温蒸着の
時間は多結晶シリコンがない場合とほぼ同じである。第
2図(a)には、特性曲線(域)16は多結晶シリコン
膜14を通して高温蒸着によって不純物をドープした場
合の不純物分布レベルを示し、特性曲線(域)17は半
導体基板(シリコン)12表面の不純物分布のレベルを
示した。多結晶シリコン膜中の不純物濃度とシリコン表
面の不純物濃度とはほぼ等しい。
Examples - Next, the present invention will be explained in detail with reference to examples. Figure 1 (a
), a polycrystalline silicon film 14 is deposited on a window formed in a silicon oxide film 13 formed on a semiconductor substrate 12. Next, as shown in FIG. 1(b), impurities are deposited on top of the silicon at a high temperature to dope the impurities into the silicon. In polycrystalline silicon, unlike in single-crystalline silicon, impurities diffuse at high speed through grain boundaries, so the high-temperature evaporation time is approximately the same as in the case without polycrystalline silicon. In FIG. 2(a), a characteristic curve (area) 16 shows the impurity distribution level when impurities are doped through the polycrystalline silicon film 14 by high-temperature vapor deposition, and a characteristic curve (area) 17 shows the impurity distribution level when the impurity is doped through the polycrystalline silicon film 14. It shows the level of impurity distribution on the surface. The impurity concentration in the polycrystalline silicon film and the impurity concentration on the silicon surface are approximately equal.

また、第1図には図示していないが、多結晶シリコン膜
14上にアルミニウム電極を形成しても、最も濃度の高
い部分は、アルミニウムーシリコン共晶によってなくな
ることはなく、その分布状態は、第2図(b)のように
、最表部のアルミニウム電極18、アルミニウムーシリ
コン共晶19の下層分布がそのまま維持できる。
Although not shown in FIG. 1, even if an aluminum electrode is formed on the polycrystalline silicon film 14, the highest concentration portion will not disappear due to the aluminum-silicon eutectic, and its distribution will change. As shown in FIG. 2(b), the lower layer distribution of the outermost aluminum electrode 18 and the aluminum-silicon eutectic 19 can be maintained as is.

第3図には本発明をPNP高周波バイポーラトランジス
タに利用した例を示した。この例では、最表部にアルミ
ニウム電極22を有するが、多結晶シリコン23を介し
た高温蒸着はエミッタ25部分に使用し、不純物源には
BN蒸着を用いた。
FIG. 3 shows an example in which the present invention is applied to a PNP high frequency bipolar transistor. In this example, an aluminum electrode 22 is provided on the outermost surface, but high-temperature vapor deposition via polycrystalline silicon 23 is used for the emitter 25 portion, and BN vapor deposition is used as an impurity source.

これにより、エミッターベース接合深さ0.3μmを達
成し、しゃ断層波数3GHzを達成した。なお、第3図
中、24は酸化シリコン膜、26はベース領域、27は
グラフトベース領域、28は半導体基板によるコレクタ
領域である。
As a result, an emitter-base junction depth of 0.3 μm and a cut-off layer wavenumber of 3 GHz were achieved. In FIG. 3, 24 is a silicon oxide film, 26 is a base region, 27 is a graft base region, and 28 is a collector region made of a semiconductor substrate.

発明の効果 本発明を用いることによりエミッタのコンタクト用の窓
をエミッタの内側に形成せずにすみ、また、シリコン表
面(エミッタ表面)の高濃度不純物領域をなくすことな
しに、電極であるアルミニウムとシリコンとの共晶を形
成することができた。
Effects of the Invention By using the present invention, it is not necessary to form a window for contacting the emitter inside the emitter, and it is possible to eliminate the need to form a window for contacting the emitter inside the emitter. It was possible to form a eutectic with silicon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明実施例を概略的に示
す工程順断面図、第2図(a) 、 (b)はそれぞれ
、本発明実施例で得られる半導体装置の不純物分布特性
図、第3図は本発明の他の実施例で得られた半導体装置
の断面図、第4図(a)、(b)は従来例の工程順断面
図、第5図は従来装置の断面図である。 1.6,13.24・・・・・・酸化シリコン膜、2゜
8.12.28・・・・・・半導体基板、3,15・・
・・・・高濃度領域、4.10.18.22・・・・・
・アルミニウム電極、5・・・・・・コンタクト窓、7
,26・・・・・・ベース領域、9,25・・・・・・
エミッタ領域、11.19・・・・・・アルミニウムー
シリコン共晶、14,16゜20.23・・・・・・多
結晶シリコン、17.21・・・・・・シリコン、27
・・・・・・グラフトベース領域。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 第2図 (α) χφ
FIGS. 1(a) and (b) are cross-sectional views schematically showing an example of the present invention in the order of steps, and FIGS. 2(a) and (b) are impurity distributions of a semiconductor device obtained in an example of the present invention, respectively. 3 is a sectional view of a semiconductor device obtained in another embodiment of the present invention, FIGS. 4(a) and 4(b) are sectional views of a conventional example in the order of steps, and FIG. 5 is a sectional view of a conventional device. FIG. 1.6, 13.24...Silicon oxide film, 2°8.12.28...Semiconductor substrate, 3,15...
...High concentration area, 4.10.18.22...
・Aluminum electrode, 5...Contact window, 7
, 26... base area, 9, 25...
Emitter region, 11.19...Aluminum-silicon eutectic, 14,16°20.23...Polycrystalline silicon, 17.21...Silicon, 27
...Graft base area. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 (α) χφ

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に形成された酸化シリコン膜に窓をあけ
る工程とこの上に多結晶シリコン膜を形成する工程と、
上記半導体基板表面に不純物を高温蒸着し、蒸着中に前
記不純物を前記多結晶シリコン膜及びその下の前記半導
体基板へドープさせる工程からなる半導体装置の製造方
法。
a step of opening a window in a silicon oxide film formed on a semiconductor substrate; a step of forming a polycrystalline silicon film thereon;
A method for manufacturing a semiconductor device comprising the steps of: depositing an impurity on the surface of the semiconductor substrate at high temperature; and doping the impurity into the polycrystalline silicon film and the semiconductor substrate thereunder during the deposition.
JP63023069A 1988-02-02 1988-02-02 Manufacture of semiconductor device Pending JPH01196814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023069A JPH01196814A (en) 1988-02-02 1988-02-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023069A JPH01196814A (en) 1988-02-02 1988-02-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01196814A true JPH01196814A (en) 1989-08-08

Family

ID=12100113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023069A Pending JPH01196814A (en) 1988-02-02 1988-02-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01196814A (en)

Similar Documents

Publication Publication Date Title
JPH01196814A (en) Manufacture of semiconductor device
US4837608A (en) Double gate static induction thyristor and method for manufacturing the same
US3791884A (en) Method of producing a pnp silicon transistor
JPH0291932A (en) Manufacture of semiconductor device
JPH021934A (en) Manufacture of bipolar semiconductor device
JPS63102325A (en) Manufacture of semiconductor device
JPS60175452A (en) Manufacture of transistor
JPS6011459B2 (en) Method for manufacturing a diffused semiconductor device
JPS60136372A (en) Manufacture of semiconductor device
JPS59145520A (en) Manufacture of semiconductor device
JPH03135030A (en) Semiconductor device and manufacture thereof
JPS5947458B2 (en) How to form a resistor
JP2929206B2 (en) Method for manufacturing semiconductor device
JPS61136267A (en) Bipolar semiconductor device
JPH01144679A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPS59113619A (en) Manufacture of semiconductor device
JPH0684926A (en) Bipolar transistor and its production
JPS6020570A (en) Manufacture of semiconductor device
JPS60198813A (en) Diffusion of impurity to semiconductor
JPH03188679A (en) Manufacture of semiconductor device
JPS62260365A (en) Manufacture of semiconductor device
JPH03147333A (en) Semiconductor device
JPS59125620A (en) Manufacture of semiconductor device
JPH02148850A (en) Manufacture of bipolar transistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050422

A131 Notification of reasons for refusal

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050603

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A02