JPH01196512A - Robot vision - Google Patents

Robot vision

Info

Publication number
JPH01196512A
JPH01196512A JP2234888A JP2234888A JPH01196512A JP H01196512 A JPH01196512 A JP H01196512A JP 2234888 A JP2234888 A JP 2234888A JP 2234888 A JP2234888 A JP 2234888A JP H01196512 A JPH01196512 A JP H01196512A
Authority
JP
Japan
Prior art keywords
mirror
photoelectric conversion
light source
camera
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2234888A
Other languages
Japanese (ja)
Inventor
Mitsutaka Kawada
河田 允孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2234888A priority Critical patent/JPH01196512A/en
Publication of JPH01196512A publication Critical patent/JPH01196512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain plane image information and information on distance simultaneously with one camera, by providing a photoelectric conversion camera for 2D images, a laser light source for measuring distance by trigonometry and a rotary mirror. CONSTITUTION:A photoelectric conversion camera 101 for 2D images, a laser light source 103 and a mirror 102 are arranged. First, a laser light from the laser light source 103 is made to irradiate the surface of an object 105 while being oscillated through the mirror 102 and reflected light thereof is incident into the photoelectric conversion camera 101 for 2D images through another mirror 102 to obtain a plane image information of the object 105. Here, the mirror 102 is rotated repeatedly with a motor 104 or the like. Moreover, a distance to the surface of the object 105 is calculated using the theory of trigonometry by the reflected light of the laser beam received with the photoelectric conversion camera 101.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ロボットの腕等に取付けられ、ロボットが取
扱う物体の穴位置、コーナー位置等を光学的に測定する
ロボットビジョンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a robot vision system that is attached to a robot's arm or the like and optically measures hole positions, corner positions, etc. of objects handled by the robot.

〔従来の技術〕[Conventional technology]

従来、この種のロボットビジョンとして2次元カメラを
用い、2値画像の演算処理により単純形状部品の重心、
角の位置や傾き及び穴の位11ヲ検出するものがあった
Conventionally, a two-dimensional camera is used for this type of robot vision, and the center of gravity of a simple shaped part is determined by arithmetic processing of a binary image.
There was one that could detect the position and inclination of corners and the position of holes.

一方、板の凹凸、反シなどを検出する場合は2次元カメ
ラでは困難で、レーザ光源と1次元センサーを用いた三
角測量ぶ理による距離センサーが用いられてい念。
On the other hand, it is difficult to detect irregularities and scratches on a board using a two-dimensional camera, so a distance sensor based on the triangulation principle using a laser light source and a one-dimensional sensor is used.

最近は、板や小物部品の検査や位置検出のみでなく、組
立工程における寸法測定や組立作業にもロボットビジョ
ンを用いようとする要望が高まっ九〇 この九めに、上述し九2次元カメラおよびレーザ光源と
1次元センサー等の従来の要素技術を個々に組合せて寸
法測定もできるロボットビジョンを実現しようとする試
みがなされている。
Recently, there has been an increasing demand for using robot vision not only for inspection and position detection of plates and small parts, but also for dimension measurement and assembly work in the assembly process. Attempts are being made to realize robot vision that can also measure dimensions by individually combining conventional elemental technologies such as a laser light source and a one-dimensional sensor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の要素技術を個々に組合わせたロボットビジョンで
は、物をつかみ、移動し、挿入するなどをするロボット
ハンド上に種々の機材を取シ付けることになシ、ロボッ
トハンドの操作性を害するという欠点がある。まt、こ
のように機能別の処理装置を用いる場合は、データ間の
つなが9がなく、コストパフォーマンスもよくないとい
う欠点がある。
In robot vision, which combines conventional elemental technologies individually, it is difficult to attach various equipment to the robot hand that grasps, moves, and inserts objects, which impairs the operability of the robot hand. There are drawbacks. However, when using processing devices for each function in this way, there is a drawback that there is no connection 9 between data and the cost performance is not good.

〔課題f:解決するtめの手段〕[Problem f: tth means of solving the problem]

本発明のロボットビジョンは、2次元画像用の光TIK
 i1%カメラと、レーザ光源と、このレーザ光源から
のレーザビームを反射して測定物体上に振らし前記レー
ザビームの前記測定物体からの反射光を前記光電変換カ
メラに入射させるミラーと、このミラーを反復回転させ
る手段とを含み、前記光電変換カメラにより前記測定物
体の平面画像情報を得るとともに前記光電変換カメラが
受光する前記レーザビームの反射光により三角法の原理
に基づいて前記測定物体の表面までの距離を得ることを
特徴とする。
The robot vision of the present invention uses optical TIK for two-dimensional images.
an i1% camera, a laser light source, a mirror that reflects a laser beam from the laser light source onto a measurement object and causes the reflected light of the laser beam from the measurement object to enter the photoelectric conversion camera; and this mirror. the surface of the measurement object based on the principle of trigonometry using the reflected light of the laser beam received by the photoelectric conversion camera. It is characterized by obtaining the distance to.

〔実力に例〕 次に、本発明について、1面を参照して説明する。[Example based on ability] Next, the present invention will be explained with reference to the first page.

第1図は、本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

101は2次元CCD力Jう、I U 3はレーザ光3
X、losは測定物、107は画像処理装置である。
101 is a two-dimensional CCD force, IU3 is a laser beam 3
X and los are measurement objects, and 107 is an image processing device.

まず、距離測定動作としては、レーザ光源103からの
レーザビームを測定物105に照射し、この反射光を2
次元CCDカメラ101で受光し、この係号から、画像
処理装置1t107において三角法の原理により2次元
CCDカメラ101の前面から物体105の表面までの
距@を出力する。第1図実施例においては、さらにレー
ザビームを反射するミラー102’eモーター104に
より反復回転させることにより、レーザビームをミラー
102を中心に測定物体105上の水平方向の走査線1
09に走査しながら水平走f線109上の測定物体10
5の表面の距離を連続して測定する。
First, as a distance measurement operation, a laser beam from the laser light source 103 is irradiated onto the measurement object 105, and this reflected light is
The light is received by the dimensional CCD camera 101, and from this coefficient, the image processing device 1t107 outputs the distance from the front of the two-dimensional CCD camera 101 to the surface of the object 105 using the principle of trigonometry. In the embodiment shown in FIG. 1, the mirror 102'e that reflects the laser beam is rotated repeatedly by the motor 104, so that the laser beam is directed along the horizontal scanning line 105 on the measurement object 105 with the mirror 102 as the center.
Measurement object 10 on horizontal scanning f-line 109 while scanning at 09
Continuously measure the distance of the surface of 5.

次に、測定物体の穴の位置を平面的に測定する平面画像
検出動作としては、光源108の光を測定物体105に
照射し、この像を2次元CCDカメラ101により撮像
し、この信号から、画像処理装置107において、測定
物体109の2次元画像の特徴値を出力する。
Next, as a planar image detection operation to planarly measure the position of the hole in the measurement object, the measurement object 105 is irradiated with light from the light source 108, this image is captured by the two-dimensional CCD camera 101, and from this signal, The image processing device 107 outputs feature values of a two-dimensional image of the measurement object 109.

第1図における1点鎖線内の構成部分を一体小型化して
ロボットの腕に取付ける。又、ミラー102の回転は、
画像処理装置107の制御下でモータ駆動回路106及
びモータ104にょシ、駆動される。ミラー102の回
転角は、ミラー102の回転角を測定するエンコーダ1
10の信号を、画像処理装置107に入力し同期をとる
。さらに、平面画像検出動作時に2次元CCDカメラ1
01に入射するレーザ光点をなく【7tい時は、ミラー
102を大巾に振り、シャフタ111を閉じる。又距離
測定と平面測定の領域を調整する之めに、補足レンズ1
12を使用する。
The components within the dashed-dotted line in FIG. 1 are integrally miniaturized and attached to the arm of the robot. Moreover, the rotation of the mirror 102 is
The motor drive circuit 106 and the motor 104 are driven under the control of the image processing device 107. The rotation angle of the mirror 102 is determined by the encoder 1 that measures the rotation angle of the mirror 102.
10 signals are input to the image processing device 107 for synchronization. Furthermore, during the planar image detection operation, the two-dimensional CCD camera 1
When the laser beam spot entering the laser beam 01 is eliminated, the mirror 102 is swung wide and the shutter 111 is closed. In addition, in order to adjust the distance measurement and plane measurement areas, supplementary lens 1 is used.
Use 12.

第2図は、本実施例による距離測定および平面画像検出
の対象の一例とする測定物体201の斜視図である。ラ
ンダムに供給されるワークである測定物体201につい
て、高さの異なる突起204203のうち必ず突起20
2が位置する矢印205の方向に合わせてロボットヲ移
動させること。その突起202の巾及び高さを測定する
こと、さらに、穴204の長径と位1itffi測定す
ること。この後、矢印205に合わせてワーク201を
Dボットフィンガーでつかむことが要望される場合の、
突起202の巾及び高さの測定と穴204の長径と位置
の測定における本実施例の適用全説明する。
FIG. 2 is a perspective view of a measurement object 201 that is an example of a target for distance measurement and planar image detection according to this embodiment. Regarding the measurement object 201, which is a workpiece that is randomly supplied, the protrusion 20 out of the protrusions 204203 with different heights is always selected.
To move the robot in accordance with the direction of arrow 205 where 2 is located. Measure the width and height of the protrusion 202, and also measure the major axis and position of the hole 204. After this, when it is desired to grasp the workpiece 201 with the D-bot fingers in accordance with the arrow 205,
The application of this embodiment to the measurement of the width and height of the protrusion 202 and the length and position of the hole 204 will be fully explained.

この場合、これらを高精度かつ高速に行う九め口 に、lポットハンドに取シつけ九本実施例の複合ロボッ
トビジョンで、、42図に示す点線の方向に走査し、距
離測定及び平面測定を行う。
In this case, in order to carry out these operations with high precision and high speed, the compound robot vision of the nine embodiments, which is attached to the l-pot hand, scans in the direction of the dotted line shown in Fig. 42, and measures distances and planes. I do.

第3図は、画像処理装置1f107における1次元処理
、即ち、突起202の高さと巾測定を、又、2次元処理
、即ち、穴204の径と位置測定を行う処理について説
明しtものである。
FIG. 3 explains one-dimensional processing in the image processing device 1f107, that is, measuring the height and width of the protrusion 202, and two-dimensional processing, that is, processing that measures the diameter and position of the hole 204. .

1次元処理における、2次元CCDカメ、2101の画
像を第3図(11に示す。この1次元処理で行う距離測
定では、三角法の原理によりレーザ照射光の反射光点の
2次元CCDカメラ101の受光角が2次元CCDカメ
ラ101の前面と測定物体201の表面この距離値によ
り変化する定め、レーザ反射光点が第3図(1)に示す
画像上の一定のマスク301内の垂直方向のいずれかの
位置にて受光される。
The image of the two-dimensional CCD camera 2101 in one-dimensional processing is shown in FIG. The acceptance angle of the front surface of the two-dimensional CCD camera 101 and the surface of the measurement object 201 is determined to change depending on the distance value, and the laser reflected light point is located in the vertical direction within a certain mask 301 on the image shown in FIG. 3(1). The light is received at any position.

このtめ、実際の距離値とマスク301内の受光位置こ
の対応表金子め記憶させておけば、マスク301内の受
光位lft対応表で変換することにより測定物体201
0表面までの距離値が得られる。
If you memorize this correspondence table between the actual distance value and the light receiving position in the mask 301, you can convert it using the light receiving position lft correspondence table in the mask 301.
The distance value to the 0 surface is obtained.

実際の測定値を2次元CCDカメラ101による測定物
体201の2次元画像である第3図(2)に対応して第
3図(3)(横方向はレーザビームを振る水平方向を示
し、縦方向が2次元CCDカメラからの距離)に示す。
The actual measured values are shown in FIG. 3 (3) corresponding to FIG. The direction is the distance from the two-dimensional CCD camera).

第3図(3)に示すように距離の変化から突起202の
高さ3−03、及び巾304が測定される。
As shown in FIG. 3(3), the height 3-03 and width 304 of the protrusion 202 are measured from the change in distance.

第3図(2)に示す2次元処理における、2次元αシカ
メラ101の画像について、穴径測定は、2次元CCD
カメラ101からの画像データ金2値化し、この画像か
ら、穴204を切シ出し、この重心位置座標306と長
径307が測定される。
In the two-dimensional processing shown in FIG. 3(2), the hole diameter measurement is performed using the two-dimensional CCD
Image data from the camera 101 is converted into gold binarization, a hole 204 is cut out from this image, and its center of gravity position coordinates 306 and major axis 307 are measured.

〔発明の効果〕〔Effect of the invention〕

2次元画像用の光電変換カメラと三角法による距離測定
用のレーザ光源、ミラー等を設けることによりs 1次
元センサーを用いることなく、1つの2次元画像用の光
電変換カメラで平面画像情報と距離の測定をすることが
できる。
By providing a photoelectric conversion camera for two-dimensional images, a laser light source, a mirror, etc. for distance measurement using trigonometry, one photoelectric conversion camera for two-dimensional images can obtain planar image information and distance without using a one-dimensional sensor. can be measured.

従って、少い構成要素で平面画像情報および距離の測定
と複合的な用途に使用でき、ロボットハンド等に取)付
けてもロボットハンドの操作性を損ねることがないとい
う効果がある。
Therefore, it can be used for multiple purposes including plane image information and distance measurement with a small number of components, and even when attached to a robot hand, the operability of the robot hand is not impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は第1図に
示す実施例の対象の一例としての測定物体の斜視図、第
3図(1)〜(3)はそれぞれ第1図に示す2次元CC
Dカメニア101の1次元処理における画像、2次元処
理における画像および距離測定の結果を示す図である。 101・・・・・・2次元CCDカメラ、102・・・
・・・ミラー、103・・・・・・レーザ光源、104
・・・・・・モータ、106・・・・・・モータ駆動回
路、107・・・・・・画像処理装置、108・・・・
・・光源、11O・・・・・・エンコーダ。 代理人 弁理士  内 原   音 第1 国 Iどニ ミラー μす:r−サ光シ犀 うθ5 第づ 図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a perspective view of a measuring object as an example of the object of the embodiment shown in FIG. 1, and FIGS. 2D CC shown in Figure 1
3 is a diagram showing an image in one-dimensional processing, an image in two-dimensional processing, and distance measurement results of the D Camenia 101. FIG. 101...Two-dimensional CCD camera, 102...
... Mirror, 103 ... Laser light source, 104
...Motor, 106...Motor drive circuit, 107...Image processing device, 108...
...Light source, 11O...Encoder. Agent Patent Attorney Uchihara Oto 1 Country I Doni Mirror μ: r-sakoshisaiu θ5 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)2次元画像用の光電変換カメラと、レーザ光源と
、このレーザ光源からのレーザビームを反射して測定物
体上に振らし前記レーザビームの前記測定物体からの反
射光を前記光電変換カメラに入射させるミラーと、この
ミラーを反復回転させる手段とを含み、前記光電変換カ
メラにより前記測定物体の平面画像情報を得るとともに
前記光電変換カメラが受光する前記レーザビームの反射
光により三角法の原理に基づいて前記測定物体の表面ま
での距離を得ることを特徴とするロボットビジョン。
(1) A photoelectric conversion camera for two-dimensional images, a laser light source, a laser beam from the laser light source is reflected and directed onto a measurement object, and the reflected light of the laser beam from the measurement object is reflected by the photoelectric conversion camera. and a means for repeatedly rotating the mirror, the photoelectric conversion camera obtains planar image information of the measurement object, and the photoelectric conversion camera receives reflected light of the laser beam to perform the principle of trigonometry. A robot vision system characterized in that the distance to the surface of the measurement object is obtained based on the following.
JP2234888A 1988-02-01 1988-02-01 Robot vision Pending JPH01196512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234888A JPH01196512A (en) 1988-02-01 1988-02-01 Robot vision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234888A JPH01196512A (en) 1988-02-01 1988-02-01 Robot vision

Publications (1)

Publication Number Publication Date
JPH01196512A true JPH01196512A (en) 1989-08-08

Family

ID=12080164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234888A Pending JPH01196512A (en) 1988-02-01 1988-02-01 Robot vision

Country Status (1)

Country Link
JP (1) JPH01196512A (en)

Similar Documents

Publication Publication Date Title
US5362970A (en) Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5164579A (en) Method and apparatus for electro-optically determining the dimension, location and attitude of objects including light spot centroid determination
US6480287B2 (en) Three dimensional scanning system
US4674869A (en) Method and apparatus for electro-optically determining dimension, location and altitude of objects
US5280179A (en) Method and apparatus utilizing an orientation code for automatically guiding a robot
JPS60185108A (en) Method and device for measuring body in noncontacting manner
JP2004504586A (en) A method for contactless measurement of object geometry.
JP2669223B2 (en) Optical sensor device for rendezvous docking
JP2956657B2 (en) Distance measuring device
JPH0914921A (en) Non-contact three-dimensional measuring instrument
JPH01196512A (en) Robot vision
JPS60117102A (en) Welding-seam profile-detecting apparatus
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
KR100240259B1 (en) Apparatus for measuring three dimension using spherical lens and laser scanner
JPH0791930A (en) Three-dimensional scanner
JP2812716B2 (en) Sensor device for automatic alignment measurement
JP2001317922A (en) Optical shape measuring device
JPH0334563B2 (en)
JPH05215528A (en) Three-dimensional shape measuring apparatus
JPS61189405A (en) Non-contacting shape measuring instrument
JPH07209573A (en) 3-d vision camera
JPH0238806A (en) Constitution of optical distance sensor for detecting surface state
JP2866566B2 (en) 3D shape input device
JPH02276908A (en) Three-dimensional position recognizing device
JPS59169793A (en) Industrial robot