JPH01196006A - Quartz optical waveguide film - Google Patents
Quartz optical waveguide filmInfo
- Publication number
- JPH01196006A JPH01196006A JP1950688A JP1950688A JPH01196006A JP H01196006 A JPH01196006 A JP H01196006A JP 1950688 A JP1950688 A JP 1950688A JP 1950688 A JP1950688 A JP 1950688A JP H01196006 A JPH01196006 A JP H01196006A
- Authority
- JP
- Japan
- Prior art keywords
- film
- optical waveguide
- silicon film
- sapphire substrate
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 230000003287 optical effect Effects 0.000 title claims abstract description 49
- 239000010453 quartz Substances 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 42
- 239000010703 silicon Substances 0.000 claims abstract description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 32
- 239000010980 sapphire Substances 0.000 claims abstract description 32
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 239000010408 film Substances 0.000 claims description 80
- 239000000377 silicon dioxide Substances 0.000 claims description 19
- 239000010409 thin film Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 3
- 150000003376 silicon Chemical class 0.000 abstract description 2
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 25
- 239000010410 layer Substances 0.000 description 21
- 239000012792 core layer Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000010419 fine particle Substances 0.000 description 8
- 229910021419 crystalline silicon Inorganic materials 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000004017 vitrification Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007496 glass forming Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RPAJSBKBKSSMLJ-DFWYDOINSA-N (2s)-2-aminopentanedioic acid;hydrochloride Chemical class Cl.OC(=O)[C@@H](N)CCC(O)=O RPAJSBKBKSSMLJ-DFWYDOINSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UOACKFBJUYNSLK-XRKIENNPSA-N Estradiol Cypionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H](C4=CC=C(O)C=C4CC3)CC[C@@]21C)C(=O)CCC1CCCC1 UOACKFBJUYNSLK-XRKIENNPSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、導波形光部品の構成要素である石英系光導波
路の出発材料である石英系光導波膜に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silica-based optical waveguide film that is a starting material for a silica-based optical waveguide that is a component of a waveguide type optical component.
石英系光導波路は、従来、石英ガラス基板あるいはシリ
コン基板上に形成されていた。第6図は、この石英系光
導波路の製造工程を説明する断面図である。第6図にお
いて、1はシリコン基板あるいは石英ガラス基板、2a
はバッファ用ガラス微粒子層、2bはバッファ層、3a
はコア用ガラス微粒子層、3bはコア層、3cはコア路
、4はグリッド層ガラスである。以下、工程を説明する
と、(a)基板1上に5iCQ4(四塩化ケイ素)を主
成分とするガラス形成原料ガスの火炎加水分解反応によ
りバッファ用ガラス微粒子層2a、コア用ガラス微粒子
層3aを順次堆積し、(b)これらのガラス微粒子層を
基板と共に電気炉内で加熱透明化して、バッファ層2b
、コア層3bから成る石英系光導波膜とし、次に(c)
コア層3bの不要部分を反応性イオンエツチング法によ
り除去してリッチ状のコア路3cを形成し、次いで(d
)コア路3cを覆うようにバッファ層と同等の屈折率差
を有するクラッド層ガラス4を堆積する。Conventionally, silica-based optical waveguides have been formed on quartz glass substrates or silicon substrates. FIG. 6 is a cross-sectional view illustrating the manufacturing process of this silica-based optical waveguide. In FIG. 6, 1 is a silicon substrate or quartz glass substrate, 2a
is a glass fine particle layer for buffer, 2b is a buffer layer, 3a is
3b is a core layer, 3c is a core path, and 4 is a grid layer glass. The steps are as follows: (a) A buffer glass fine particle layer 2a and a core glass fine particle layer 3a are sequentially formed on the substrate 1 by a flame hydrolysis reaction of a glass forming raw material gas containing 5iCQ4 (silicon tetrachloride) as a main component. (b) These glass fine particle layers are heated and made transparent together with the substrate in an electric furnace to form a buffer layer 2b.
, a quartz-based optical waveguide film consisting of a core layer 3b, and then (c)
Unnecessary portions of the core layer 3b are removed by reactive ion etching to form a rich core path 3c, and then (d
) A cladding layer glass 4 having a refractive index difference equivalent to that of the buffer layer is deposited to cover the core path 3c.
上記の工程により、0.1dB/cMオーダーの比較的
低損失の石英系光導波路を得ることができるが、わずか
な「曇り」が加熱透明化後の石英系光導波膜内に残ると
いう問題があり、完全に透明な石英系光導波膜を得るに
は、加熱透明化時の最終到達温度を充分高温に設定する
必要があった。しかしながら、1400℃以上の温度で
は、基板が変形するという問題が生じた。そこで、シリ
コン基板あるいは石英ガラス基板に替えて、高温に耐え
るサファイヤ基板を使用するものが提案されている(特
願昭62−83039参照)。Through the above process, it is possible to obtain a silica-based optical waveguide with a relatively low loss on the order of 0.1 dB/cM, but there is a problem that a slight "cloudiness" remains in the silica-based optical waveguide film after it is heated and made transparent. However, in order to obtain a completely transparent quartz-based optical waveguide film, it was necessary to set the final temperature reached at the time of heating and transparency to a sufficiently high temperature. However, at a temperature of 1400° C. or higher, a problem occurred in that the substrate deformed. Therefore, it has been proposed to use a sapphire substrate that can withstand high temperatures in place of the silicon substrate or the quartz glass substrate (see Japanese Patent Application No. 62-83039).
上記提案技術によれば、加熱透明化温度を1400℃以
上とでき、基板を変形させることなく、「曇り」のない
、完全に透明な石英系ガラス膜が得られる。According to the proposed technique, the heating transparency temperature can be set to 1400° C. or higher, and a completely transparent silica-based glass film without "fogging" can be obtained without deforming the substrate.
しかしながら、このようなサファイヤ基板上の石英系光
導波膜では、光導波膜に加工を施して導波形光部品を作
製する際に、光導波膜がサファイヤ基板から往々にして
「はく離」するという問題が生じた。However, with such a quartz-based optical waveguide film on a sapphire substrate, there is a problem that the optical waveguide film often "peels off" from the sapphire substrate when processing the optical waveguide film to fabricate a waveguide type optical component. occurred.
これは、石英系ガラス光導波膜が、サファイヤ基板から
熱膨張係数差に起因する強い応力を受けており、この応
力に、光導波膜と基板との密着力が負けてしまうためと
推察される。This is thought to be because the silica-based glass optical waveguide film receives strong stress from the sapphire substrate due to the difference in thermal expansion coefficient, and the adhesion between the optical waveguide film and the substrate is lost to this stress. .
本発明の目的は、従来技術での上記した諸課題を解決し
、「曇り」のない、基板の変形「そり」を生じない、し
かも基板からの光導波膜のrはく離」のない高品質の石
英ガラス系光導波膜を再現性よく提供することにある。The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to provide a high-quality product that is free from clouding, deformation of the substrate, warping, and peeling of the optical waveguide film from the substrate. The object of the present invention is to provide a silica glass-based optical waveguide film with good reproducibility.
上記目的は、サファイヤ(AQzoi)基板と、この基
板上に形成される石英ガラス(SiO2)系光導波膜と
の間にシリコン(Si)の結晶薄膜あるいは非晶質薄膜
を介在させた構成とすることにより、達成される。The above purpose is to create a structure in which a silicon (Si) crystal thin film or amorphous thin film is interposed between a sapphire (AQzoi) substrate and a silica glass (SiO2) based optical waveguide film formed on this substrate. This is achieved by:
即ち、本発明の本質は、サファイヤ基板、シリコン膜そ
して石英ガラス系光導波膜の構成を採用することにあり
、サファイヤ基板上に直接石英ガラス系光導波膜を形成
す、る従来技術とは、基本的構成を異にするものである
。That is, the essence of the present invention is to adopt a configuration of a sapphire substrate, a silicon film, and a silica glass optical waveguide film, and the conventional technology in which a silica glass optical waveguide film is directly formed on a sapphire substrate is as follows. They have different basic configurations.
高温に耐え得るサファイヤ基板上に、石英系ガラスとの
密着性の良いシリコン膜を形成し、このシリコン膜上に
石英ガラス系光導波膜を形成する構成とすることにより
、シリコン基板を使用した従来技術における「曇り」と
基板の変形「そり」の問題、及びサファイヤ基板を使用
した提案従来技術におけるrはく離」の問題が解決され
る。By forming a silicon film with good adhesion to quartz glass on a sapphire substrate that can withstand high temperatures, and forming a quartz glass optical waveguide film on this silicon film, we are able to overcome the conventional method using a silicon substrate. The problems of "fogging" and deformation of the substrate "warping" in the technology and the problem of r-peeling in the proposed prior art using a sapphire substrate are solved.
第1図は、本発明石英系光導波膜の基本構成を示す断面
図、第2図は前記特願昭62−83039に提案されて
いる石英系光導波膜の断面図である。第1図及び第2図
において、ii、 21はサファイヤ基板、12.22
はバッファ層、13.23はコア層、14はシリコン層
である。第1図のガラス膜より先導波路を作製すること
は、第61図に示した(c)、 (d)と同様の工程に
より、容易である。第1@中のTは、シリコン層14の
膜厚を示す。膜厚Tは典型的には0.1−〜1−である
が、この範囲外でも本発明は有効である。FIG. 1 is a sectional view showing the basic structure of the silica-based optical waveguide film of the present invention, and FIG. 2 is a sectional view of the silica-based optical waveguide film proposed in the aforementioned Japanese Patent Application No. 83039/1983. In Figures 1 and 2, ii, 21 is a sapphire substrate, 12.22
is a buffer layer, 13.23 is a core layer, and 14 is a silicon layer. It is easy to fabricate a leading waveguide from the glass film shown in FIG. 1 by using steps similar to those shown in FIG. 61 (c) and (d). T in the first @ indicates the thickness of the silicon layer 14. Although the film thickness T is typically between 0.1 and 1, the present invention is effective even outside this range.
(1)本発明の一実施例を第3図、第4図により説明す
る。第3図は、本発明による石英系光導波膜(単一モー
ド用)の実施例断面図であり、31はサファイヤ基板、
32はシリコン膜、33は石英系ガラスバッファ層、3
14は石英系ガラスコア層であり、また記号Tはシリコ
ン膜32の膜厚である。サファイヤ基板31の直径は7
5mm 、厚みは0.5mmで、rR面」でも10面」
でもよい。バッファ層33の厚みは20/71I+、コ
ア層34の厚みは8#llである。シリコン膜32はサ
ファイヤ基板31が「R面」の場合、面方位(100)
の結晶シリコン膜が良く整合する。(1) An embodiment of the present invention will be explained with reference to FIGS. 3 and 4. FIG. 3 is a cross-sectional view of an embodiment of the silica-based optical waveguide film (for single mode) according to the present invention, where 31 is a sapphire substrate;
32 is a silicon film, 33 is a quartz-based glass buffer layer, 3
14 is a quartz-based glass core layer, and symbol T is the thickness of the silicon film 32. The diameter of the sapphire substrate 31 is 7
5mm, thickness is 0.5mm, 10 sides even on rR surface.
But that's fine. The thickness of the buffer layer 33 is 20/71I+, and the thickness of the core layer 34 is 8#ll. When the sapphire substrate 31 is "R-plane", the silicon film 32 has a plane orientation (100).
crystalline silicon films are well matched.
シリコン膜32の膜厚Tは0.6I!mである。シリコ
ン層としては、結晶シリコン膜に限定されず、多結晶あ
るいは非晶質のシリコン膜も使用可能である。The thickness T of the silicon film 32 is 0.6I! It is m. The silicon layer is not limited to a crystalline silicon film, and polycrystalline or amorphous silicon films can also be used.
コア層34には屈折率制御用ドーパントとしてTi02
(二酸化チタン)が添加(Gem、(酸化ゲルマニウム
)もドーパントとして使用可能〕されており、コア・ク
ラッド間の比屈折率差ΔはΔ=0.25%に調整されて
いる。バッファ層33及びコア層34は後述する方法に
より、堆積したガラス微粒子膜を1500℃の温度で透
明ガラス化することにより形成した。サファイヤ基板3
1上へのシリコン膜32の形成は、結晶シリコン膜の場
合、CVD(Chemical Vapor Depo
sition :化学的気相析出)法〔参考文献:ジャ
ーナル・オブ・クリスタル◆グロース(J 、 of
Crystal Growth)、 59(1982)
、 485−498)により行い、多結晶あるいは非晶
質のシリコン膜の場合、スパッタ法により行った。The core layer 34 contains Ti02 as a dopant for controlling the refractive index.
(Titanium dioxide) is added (Gem, (germanium oxide) can also be used as a dopant), and the relative refractive index difference Δ between the core and cladding is adjusted to Δ=0.25%.The buffer layer 33 and The core layer 34 was formed by transparently vitrifying the deposited glass fine particle film at a temperature of 1500° C. by the method described below.Sapphire substrate 3
In the case of a crystalline silicon film, the silicon film 32 is formed on the silicon film 1 by CVD (Chemical Vapor Depo
(Chemical vapor deposition) method [Reference: Journal of Crystal Growth (J, of
Crystal Growth), 59 (1982)
, 485-498), and in the case of a polycrystalline or amorphous silicon film, a sputtering method was used.
第4図は、第3図に示した石英系光導波膜を作製するた
めのガラス微粒子堆積装置の模式的構成図である。第4
図において、41はターンテーブル、42は結晶シリコ
ン膜を有するサファイヤ基板(第3図中の31.32の
部分)、43はテーブル駆動装置、44はガラス微粒子
合成トーチ、45はトーチ駆動装置、46は原料ガス供
給装置、47は排気管、48は排気ガス処理装置、49
は中央処理装置である。装置の動作手順は次の通りであ
る。原料ガス供給装置46から合成トーチ44に5iC
j1.を主成分とするガラス原料ガスと、酸素、水素ガ
スを供給し、トーチ先端の酸・水素火炎中でのガラス原
料ガスの火炎加水分解反応によりSin、を主成分とす
るガラス微粒子を合成し、こ九をターンテーブル41上
に配置したシリコン膜付きサファイヤ基板42上に堆積
する。この堆積期間中に、ガラス形成原料ガス中の屈折
率制御用ドーパント(TiO2,あるいはGeCΩ4)
の濃度を変化させることにより、バッファ層とコア層を
区別して形成することができる。FIG. 4 is a schematic diagram of a glass particle deposition apparatus for producing the silica-based optical waveguide film shown in FIG. 3. Fourth
In the figure, 41 is a turntable, 42 is a sapphire substrate having a crystalline silicon film (part 31.32 in FIG. 3), 43 is a table driving device, 44 is a glass particle synthesis torch, 45 is a torch driving device, 46 is a raw material gas supply device, 47 is an exhaust pipe, 48 is an exhaust gas treatment device, 49
is the central processing unit. The operating procedure of the device is as follows. 5iC from the raw material gas supply device 46 to the synthesis torch 44
j1. Synthesize glass fine particles containing Sin as a main component by a flame hydrolysis reaction of the frit gas in an acid/hydrogen flame at the tip of a torch by supplying a frit gas containing as a main component, oxygen, and hydrogen gas, This material is deposited on a silicon film-coated sapphire substrate 42 placed on a turntable 41. During this deposition period, a dopant for controlling the refractive index (TiO2 or GeCΩ4) in the glass forming raw material gas is added.
By changing the concentration of , the buffer layer and the core layer can be formed separately.
以下、具体的な作製条件を示す、実効直径1mのターン
テーブル上に直径75mmのシリコン膜付きサファイヤ
基板を複数枚並べて、まず次の条件でバッファ層を堆積
した。Hereinafter, specific manufacturing conditions will be described. First, a buffer layer was deposited under the following conditions by arranging a plurality of sapphire substrates with silicon films each having a diameter of 75 mm on a turntable having an effective diameter of 1 m.
テーブル回転速度 10rpmトーチ移
動速度 30(21/分原料ガス供給
速度 SiCQ、 100cc/分BCQ、 5
cc/分
PCQ、 5cc/分
堆積時間 50分統御て、更に
20分間、屈折率制御用ドーパントとしてTiCQ4を
lcc/分(GeCΩ4の場合には5cc/分)の割合
で原料ガスに追加して、コア層を堆積した。Table rotation speed 10 rpm Torch movement speed 30 (21/min Raw material gas supply rate SiCQ, 100 cc/min BCQ, 5
cc/min PCQ, 5cc/min deposition time 50 minutes, and for another 20 minutes, TiCQ4 was added to the source gas as a dopant for controlling the refractive index at a rate of lcc/min (5 cc/min in case of GeCΩ4). A core layer was deposited.
このようにして堆積したガラス微粒子膜を基板ごと電気
炉中に入れ、1500℃まで500℃/時の昇温速度で
炉温度を上げ、1500℃で1時間保持することにより
、透明ガラス化した。その後、室温付近まで炉冷するこ
とにより、第3図の石英系光導波膜とした。The thus deposited glass particle film was put into an electric furnace together with the substrate, the furnace temperature was raised to 1500°C at a rate of 500°C/hour, and the film was held at 1500°C for 1 hour to obtain transparent vitrification. Thereafter, the silica-based optical waveguide film shown in FIG. 3 was obtained by cooling in a furnace to around room temperature.
上記のようにして、サファイヤ基板上に、シリコン膜を
介在して作製された石英ガラス系光導波膜は「曇り」が
なく極めて透明であり、またガラス膜の「はく離」もま
ったく見られず、再現性良く、高品質な石英ガラス系光
導波膜が得られた。The silica glass-based optical waveguide film fabricated on the sapphire substrate with a silicon film interposed in the above manner is extremely transparent with no "cloudiness", and no "peeling" of the glass film is observed at all. A high quality silica glass optical waveguide film with good reproducibility was obtained.
本実施例において、極めて透明なガラス膜が得られた要
因は、透明ガラス化時の最高到達温度を1500℃(少
なくとも1400℃以上)としても基板の変形がなかっ
たことであり、ガラス膜の「はく離」の問題が解決され
たのは、石英系ガラス膜とシリコン膜、シリコン膜とサ
ファイヤ基板の密着性の良さに起因するものである。事
実、シリコン結晶の(100)面とサファイヤの(01
12)面の格子定数は良く整合し、原子レベルでの結合
(密着)が形成される。一方、石英ガラス膜とシリコン
膜も同じSi元素をベースとしているために密着性が良
い。In this example, the reason why an extremely transparent glass film was obtained was that there was no deformation of the substrate even when the maximum temperature reached at the time of transparent vitrification was 1500°C (at least 1400°C or higher). The problem of peeling was solved because of the good adhesion between the quartz glass film and the silicon film, and between the silicon film and the sapphire substrate. In fact, the (100) plane of silicon crystal and the (01) plane of sapphire
12) The lattice constants of the planes are well matched, and bonds (adhesion) at the atomic level are formed. On the other hand, since the quartz glass film and the silicon film are also based on the same Si element, they have good adhesion.
(2)本発明の実施において、注目すべき点は、シリコ
ン膜の膜厚の変化である。即ち、堆積したガラス微粒子
膜を高温下で透明化する際に、透明ガラス化雰囲気中の
酸素ガス及びガラス微粒子の組成?あるSin、、B、
03.P、O,、TiO2等からの酸素原子の拡散によ
って、シリコン膜の一部が酸化されてSin、となるこ
とである、第5図は、この酸化される時間と、酸化され
てSio、となった膜厚との関係を、温度をパラメータ
として求めた実験結果である。シリコン膜としては結晶
シリコンの(100)面を使用した場合である。第5図
より、初期膜厚を0.1μとした場合、1500℃。(2) In implementing the present invention, a point to be noted is the change in the thickness of the silicon film. That is, when the deposited glass fine particle film is made transparent at high temperature, the composition of the oxygen gas and glass fine particles in the transparent vitrification atmosphere? A certain Sin,,B,
03. Due to the diffusion of oxygen atoms from P, O, TiO2, etc., a part of the silicon film is oxidized to become Sin. Figure 5 shows the oxidation time and the oxidation to Sio. These are the experimental results obtained by determining the relationship between the film thickness and the film thickness using temperature as a parameter. This is a case where a (100) plane of crystalline silicon is used as the silicon film. From Figure 5, when the initial film thickness is 0.1μ, it is 1500°C.
1時間の透明ガラス化で、結晶シリコン膜は消滅するこ
とになる。しかしながら、このように透明ガラス化後、
シリコン膜が消滅した場合にも、「はく離」は見られず
、シリコン膜の使用による密着性の改善は有効であった
。これは、シリコン膜とサファイヤ膜間の原子レベルの
結合がSiO□化機も有効に作用するためと考えられる
。The crystalline silicon film disappears after one hour of transparent vitrification. However, after transparent vitrification in this way,
Even when the silicon film disappeared, no "peeling" was observed, indicating that the use of the silicon film was effective in improving adhesion. This is considered to be because the bond between the silicon film and the sapphire film at the atomic level also effectively acts as a SiO□ converter.
(3)本発明の実施により、さらに光導波路形成におけ
る寸法精度の改善が実現した。即ち、第6図(0)に示
した光導波路形成時のホトリソブラフイー工程(紫外線
露光)において、サファイヤ基板底面からの紫外線反射
光がシリコン膜の吸収によって遮断されることから、ホ
トレジストのパターン化が精度良く達成でき、結果とし
て第6図のコア路3cを寸法精度良く作製できることと
なった。これは、当初の予想を上まわる本発明の実施に
よる改善点であった。(3) By implementing the present invention, further improvement in dimensional accuracy in optical waveguide formation has been realized. That is, in the photolithography process (ultraviolet exposure) during the formation of the optical waveguide shown in FIG. As a result, the core passage 3c shown in FIG. 6 could be manufactured with high dimensional accuracy. This was an improvement resulting from implementation of the present invention over initial expectations.
本発明によれば、サファイヤ基板上にシリコン膜を介在
して石英系ガラス膜を作製するものであるため、透明ガ
ラス化時の最終到達温度を1400℃以上にでき、「曇
り」のない極めて低損失の石英系光導波膜とすることが
でき、[はく離」の問題も合わせて解決でき、高品質な
光導波膜を安定して作製できる利点がある。また、光導
波路形成のためのホトリソグラフィー工程において、サ
ファイヤ基板底面からの反射光をシリコン膜で遮断でき
るため、光回路の寸法精度を向上できる利点がある。さ
らに、本発明によれば、特にコアとクラッドとの比屈折
率差の大きな先導波路の低損失化を実現しやすいという
利点があり、したがって、光回路全体の寸法を小さくで
きる利点が合わせて生じる。また、サファイヤ基板から
の強い応力にもかかわらず本発明の石英系光導波膜は基
板から「はく離」しないので、応力により光導波路に誘
起される応力複屈折を利用する偏波制御用の導波形光部
品の構成にも本発明の光導波膜を活用できる利点がある
。According to the present invention, since a silica-based glass film is fabricated on a sapphire substrate with a silicon film interposed therebetween, the final temperature reached at the time of transparent vitrification can be 1400°C or higher, resulting in an extremely low temperature without "fogging". It has the advantage of being able to produce a lossy quartz-based optical waveguide film, solving the problem of peeling, and stably producing a high-quality optical waveguide film. Furthermore, in the photolithography process for forming the optical waveguide, reflected light from the bottom surface of the sapphire substrate can be blocked by the silicon film, which has the advantage of improving the dimensional accuracy of the optical circuit. Furthermore, according to the present invention, there is an advantage that it is easy to realize a low loss in a leading waveguide having a particularly large relative refractive index difference between the core and the cladding, and therefore, there is also an advantage that the dimensions of the entire optical circuit can be reduced. . In addition, the silica-based optical waveguide film of the present invention does not "peel off" from the substrate despite strong stress from the sapphire substrate, so it can be used as a waveguide for polarization control that utilizes stress birefringence induced in the optical waveguide by stress. There is an advantage that the optical waveguide film of the present invention can also be utilized in the configuration of optical components.
第1図は本発明石英系光導波膜の基本構成を示す断面図
、第2図は比較のために示す従来技術で提案されている
石英系光導波膜の断面図、第3図は本発明の一実施例の
断面図、第4図は第3図実施例のためのガラス堆積装置
の模式的構成図、第5図は酸化時間と酸化膜厚との関係
曲線実測図、第6図は従来の石英系光導波路の製造工程
を説明する図である。
符号の説明
11、21・・・サファイヤ基板
12、22・・・バッファ層
13、23・・・コア層
14・・・シリコン層
31・・・サファイヤ基板
32・・・シリコン膜
33・・・石英系ガラスバッファ層
34・・・石英系ガラスコア層
42・・・結晶シリコン膜を有するサファイヤ基板44
・・・ガラス微粒子合成トーチ
45・・・トーチ駆動装置
46・・・原料ガス供給装置
48・・・排気ガス処理装置
49・・・中央制御装置
、特許出願人 日本電信電話株式会社代理人弁理士
中 村 純 之 助
第1図
第2図
第3図
第4図
第5図
画質4じ蓼午閣(−1Nυ
第6図
□□□□−じ[に
]乍′
〒テテ
1−−−シリコ〉基体(
あるいに
石英刀゛ラス贋に上長
2b 2b−氏渇1
+ 3b−−−コア1
b
3C−一一ロアY各
4・−クラット’/h”yス
、2b
、jFig. 1 is a cross-sectional view showing the basic structure of the silica-based optical waveguide film of the present invention, Fig. 2 is a cross-sectional view of a silica-based optical waveguide film proposed in the prior art shown for comparison, and Fig. 3 is a cross-sectional view of the invention. FIG. 4 is a schematic diagram of the glass deposition apparatus for the embodiment. FIG. 5 is an actual measurement diagram of the relationship between oxidation time and oxide film thickness. FIG. 2 is a diagram illustrating a manufacturing process of a conventional quartz-based optical waveguide. Explanation of symbols 11, 21... Sapphire substrate 12, 22... Buffer layer 13, 23... Core layer 14... Silicon layer 31... Sapphire substrate 32... Silicon film 33... Quartz Based glass buffer layer 34...Quartz based glass core layer 42...Sapphire substrate 44 having a crystalline silicon film
... Glass particle synthesis torch 45 ... Torch drive device 46 ... Raw material gas supply device 48 ... Exhaust gas treatment device 49 ... Central control device, patent applicant Nippon Telegraph and Telephone Corporation agent patent attorney
Junnosuke Nakamura Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Image quality 4ji Ryogokaku (-1Nυ Fig. 6 〉Base body (also quartz sword, fake upper head 2b 2b - 1 + 3b --- core 1 b 3C-11 lower Y each 4・-crat'/h"ys, 2b, j
Claims (1)
おいて、サフアイヤ(Al_2O_3)基板と、該サフ
アイヤ基板上に形成される石英ガラス(SiO_2)系
光導波膜との間にシリコン(Si)の結晶薄膜あるいは
非晶質薄膜が介在していることを特徴とする石英系光導
波膜。1. In a silica-based optical waveguide film that is a constituent material of a silica-based optical waveguide, silicon (Si) is placed between a sapphire (Al_2O_3) substrate and a quartz glass (SiO_2)-based optical waveguide film formed on the sapphire substrate. A quartz-based optical waveguide film characterized by having a crystal thin film or an amorphous thin film interposed therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63019506A JPH0711606B2 (en) | 1988-02-01 | 1988-02-01 | Quartz optical waveguide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63019506A JPH0711606B2 (en) | 1988-02-01 | 1988-02-01 | Quartz optical waveguide film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01196006A true JPH01196006A (en) | 1989-08-07 |
JPH0711606B2 JPH0711606B2 (en) | 1995-02-08 |
Family
ID=12001259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63019506A Expired - Lifetime JPH0711606B2 (en) | 1988-02-01 | 1988-02-01 | Quartz optical waveguide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0711606B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07196334A (en) * | 1993-02-17 | 1995-08-01 | Canada | Optical fiber with increased photo- sensitivity and its production |
JP2651509B2 (en) * | 1990-06-29 | 1997-09-10 | フォトニック インテグレイション リサーチ,インコーポレイテッド | Optoelectronic device having optical waveguide on metallized substrate and method of forming the optical waveguide |
US7693557B2 (en) * | 2000-12-29 | 2010-04-06 | Nokia Corporation | Method of producing a telephone device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930506A (en) * | 1982-08-12 | 1984-02-18 | Matsushita Electric Ind Co Ltd | Substrate for optical device |
JPS5960405A (en) * | 1982-09-30 | 1984-04-06 | Fujitsu Ltd | Optical waveguide and its manufacture |
-
1988
- 1988-02-01 JP JP63019506A patent/JPH0711606B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5930506A (en) * | 1982-08-12 | 1984-02-18 | Matsushita Electric Ind Co Ltd | Substrate for optical device |
JPS5960405A (en) * | 1982-09-30 | 1984-04-06 | Fujitsu Ltd | Optical waveguide and its manufacture |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2651509B2 (en) * | 1990-06-29 | 1997-09-10 | フォトニック インテグレイション リサーチ,インコーポレイテッド | Optoelectronic device having optical waveguide on metallized substrate and method of forming the optical waveguide |
JPH07196334A (en) * | 1993-02-17 | 1995-08-01 | Canada | Optical fiber with increased photo- sensitivity and its production |
JP3011308B2 (en) * | 1993-02-17 | 2000-02-21 | カナダ | Manufacturing method of optical fiber with increased photosensitivity. |
US7693557B2 (en) * | 2000-12-29 | 2010-04-06 | Nokia Corporation | Method of producing a telephone device |
Also Published As
Publication number | Publication date |
---|---|
JPH0711606B2 (en) | 1995-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3262259B2 (en) | Improved manufacturing method of planar optical waveguide | |
JPH01196006A (en) | Quartz optical waveguide film | |
JPS59126639A (en) | Manufacture of substrate for semiconductor device | |
JPH05345619A (en) | Production of quartz waveguide type optical part | |
JP2002162526A (en) | Optical waveguide and method for producing the same | |
JPS5960405A (en) | Optical waveguide and its manufacture | |
JPS59198407A (en) | Production of optical waveguide film with diffraction grating | |
JP3697155B2 (en) | Silicon dioxide film generation method and optical waveguide generation method | |
JPH02244104A (en) | Glass optical wave guide | |
JP2005037410A (en) | Planar optical waveguide using aerosol process and its manufacturing method | |
JPH0659147A (en) | Optical waveguide and its production | |
JP2588710B2 (en) | Method for manufacturing quartz-based optical waveguide film | |
JPH04147201A (en) | Quartz-based optical waveguide and its manufacture | |
JP2001215352A (en) | Method for manufacturing quartz base glass waveguide having three-dimensional core waveguide | |
JPS6365619B2 (en) | ||
JP4243656B2 (en) | Opaque quartz glass and method for producing the same | |
JP2603652B2 (en) | Optical waveguide manufacturing method | |
JPH07119848B2 (en) | Manufacturing method of quartz optical waveguide | |
JP2003057471A (en) | Method for manufacturing optical waveguide substrate and optical waveguide substrate | |
JPS62217207A (en) | Production of optical waveguide layer | |
JPH02111871A (en) | Production of tantalum oxide-silicon oxide mixed film | |
JPH10104451A (en) | Substrate for optical waveguide and its production | |
JPH0519128A (en) | Production of optical waveguide | |
JPH02203305A (en) | Production of nonlinear light guide | |
JPH0254962A (en) | Semiconductor device and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |