JPH01195244A - Manufacture of high tension steel for low temperature use having superior toughness at low temperature - Google Patents

Manufacture of high tension steel for low temperature use having superior toughness at low temperature

Info

Publication number
JPH01195244A
JPH01195244A JP1685188A JP1685188A JPH01195244A JP H01195244 A JPH01195244 A JP H01195244A JP 1685188 A JP1685188 A JP 1685188A JP 1685188 A JP1685188 A JP 1685188A JP H01195244 A JPH01195244 A JP H01195244A
Authority
JP
Japan
Prior art keywords
steel
toughness
cooling
temperature
ifp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1685188A
Other languages
Japanese (ja)
Other versions
JPH08934B2 (en
Inventor
Koichi Yamamoto
広一 山本
Toshiaki Haji
土師 利昭
Hiroshi Mimura
三村 宏
Shuji Aihara
周二 粟飯原
Toshinaga Hasegawa
俊永 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63016851A priority Critical patent/JPH08934B2/en
Publication of JPH01195244A publication Critical patent/JPH01195244A/en
Publication of JPH08934B2 publication Critical patent/JPH08934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To obtain a steel having superior toughness at low temp. as heat- treated by heating a steel having a specified compsn. and contg. Ti oxide grains to a specified temp. and cooling the steel under controlled conditions to form ferrite in the grains. CONSTITUTION:A steel consisting of, by weight, 0.02-0.18% C, 0.03-0.25% Si, 0.4-2.0% Mn, 0.0007-0.0060% S, 0.005-0.03% Ti, 0.0010-0.0040% N, <0.003% Al, 0.015% P and the balance Fe with inevitable impurities and contg. Ti oxide is heated to 1,250 deg.C- the m.p. In the subsequent cooling stage, the steel is held for 50-2,000sec or cooled at 0.07-6 deg.C/sec cooling rate in the temp. range of 1,100-800 deg.C and then the steel is cooled at 30-0.1 deg.C/sec cooling rate in the temp. range of 800-300 deg.C to form ferrite in the grains. The steel may further contain limited amts. of Ni, Cu, Nb, V, Cr, Mo and B.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱間圧延プロセスを省き熱処理ままの低コス
トで、低温靭性の優れた鋼材を製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of producing a steel material with excellent low-temperature toughness at a low cost without a hot rolling process and in an as-heat-treated state.

[従来の技術] 低合金鋼において、1250℃以上の高温に加熱された
場合は、オーステナイト結晶粒が粗大化し、靭性は著し
く低下する。従来は、この靭性を改善するため熱間で制
御圧延しオーステナイト粒の加工再結晶による細粒化に
より達成してきた。
[Prior Art] When low-alloy steel is heated to a high temperature of 1250° C. or higher, austenite crystal grains become coarse and the toughness is significantly reduced. Conventionally, this toughness has been achieved by hot controlled rolling and grain refinement by recrystallization of austenite grains.

また、粗粒オーステナイト組織鋼の靭性の向上策として
、溶接熱影響部(以下HAZと称する)組織を粒内フェ
ライトの生成により微細化し、有効結晶粒の細粒化によ
り靭性を改善する方法の適用が考えられる。
In addition, as a measure to improve the toughness of coarse-grained austenitic steel, we have applied a method of refining the weld heat-affected zone (HAZ) by generating intragranular ferrite and improving toughness by refining the effective grains. is possible.

それは溶鉄のAp脱酸に替わるT1脱酸により、鋼中に
T1酸化物を微細分散させ、溶接時のHAZ部において
、粒内フェライト変態組織(以下IFPと称する)を発
達させることにより、HAZ靭性を著しく改善できるこ
とを、特開昭80−245788号、特開昭80−79
745号、特開昭61117245号、特開昭82−1
842号公報において示したものである。
This is achieved by finely dispersing T1 oxide in the steel through T1 deoxidation, which replaces Ap deoxidation of molten iron, and developing an intragranular ferrite transformation structure (hereinafter referred to as IFP) in the HAZ area during welding, thereby improving HAZ toughness. JP-A-80-245788 and JP-A-80-79 show that
No. 745, JP-A-61117245, JP-A-82-1
This is shown in Publication No. 842.

これらの方法を高温加熱処理される鋼材に適用した結果
、予想どうりの効果が得られた。しかし、その後高温加
熱後の冷却条件と靭性との関係を詳細に調べたところ、
Ti脱酸により、鋼中にTi酸化物を微細分散させた鋼
においても、熱処理条件により、さらに靭性を向上でき
る方法を発見した。
When these methods were applied to steel materials subjected to high-temperature heat treatment, the results were as expected. However, when we later investigated the relationship between the cooling conditions after high-temperature heating and toughness, we found that
We have discovered a method that can further improve the toughness of steel in which Ti oxides are finely dispersed through Ti deoxidation by changing heat treatment conditions.

[発明が解決しようと子る課題] 高温熱処理される鋼の靭性を改善するには、IFPの生
成量をさらに高める必要がある。それには、IFP核析
出物を増加させると同時に、それ自身のIFP生成能を
高める必要がある。この目的を達成するため、まず最初
にIFP核析出物を電子顕微鏡観察により詳細に検討し
た。
[Problems to be Solved by the Invention] In order to improve the toughness of steel subjected to high-temperature heat treatment, it is necessary to further increase the amount of IFP produced. For this purpose, it is necessary to increase IFP nuclear precipitates and at the same time to increase its own IFP generation ability. To achieve this objective, first, IFP nuclear precipitates were examined in detail by electron microscopy.

その結果は第1図に示すように、IFP核は粒子径が0
.1〜3.0−にある主に6〜lO%のMnを固溶した
Ti2O3の分子構造を持つTi酸化物を核に、微細な
MnSの付着した複合体を形成しており、はとんどのT
i酸化物にMnSの付着が見られた。
As shown in Figure 1, the results show that the IFP nucleus has a particle size of 0.
.. It forms a complex with fine MnS attached to the core of Ti oxide with a molecular structure of Ti2O3 containing 6 to 10% Mn as a solid solution. which T
Adhesion of MnS was observed on the i-oxide.

このMnSの付着は1400℃からの冷却過程で生じた
もので、1400℃から直ちに水焼き入れした試料には
MnSの付着はまったく生じない。IFPの核生成には
この再析出MnSが重要な役割をしていると考えられた
ので、第2図に示すような1400℃からの冷却途中の
900℃で1000秒保持し、MnSを強制的に析出さ
せる熱処理を加え、IFPの生成量に及ぼす影響を調べ
た。
This MnS adhesion occurred during the cooling process from 1400°C, and no MnS adhesion occurred in the sample that was immediately water-quenched from 1400°C. It was thought that this reprecipitated MnS played an important role in the nucleation of IFP, so MnS was forcibly removed by holding the temperature at 900°C for 1000 seconds during cooling from 1400°C as shown in Figure 2. The effect of heat treatment on the amount of IFP produced was investigated.

その結果は900℃で保持しない場合は第4図に示すよ
うに、IFPの生成量は少なく、第5図に示す冷却途中
での保持により多量のIFPを生成する。
As a result, when the temperature is not maintained at 900° C., the amount of IFP produced is small, as shown in FIG. 4, and when the temperature is maintained during cooling, as shown in FIG. 5, a large amount of IFP is produced.

それをIFP核生成数で表すと、第3図に示すように、
保持をいれない場合は約3000個/−1保持を加えた
場合は約9000個/mJになり、保持を加えた熱処理
により3倍もその生成数を増すことが判明した。
If this is expressed in terms of IFP nucleation number, as shown in Figure 3,
When retention is not included, the number is about 3000/-1, and when retention is added, it is about 9000/mJ, and it has been found that heat treatment with retention increases the number three times.

このような高温での熱処理を工夫し、MnSを効率的に
析出させることにより、熱処理ままで低温靭性を向上さ
せた、構造物用鋼の開発が可能であるとの結論に達し、
本発明を成したものである。
We reached the conclusion that by devising heat treatment at such high temperatures and efficiently precipitating MnS, it would be possible to develop structural steel with improved low-temperature toughness without undergoing heat treatment.
This is what constitutes the present invention.

[課題を解決するための手段] 本発明は、以上の知見に基づいてなされたものであり、
その要旨は、重量%でC: 0.02〜0.18%、S
 i  : 0.08〜0.25%、Mn : 0.4
〜2.0%、S:0.0007〜0.0060%、Ti
  :o、oos〜0.030%、N : 0.001
0〜0.0040%を含有し、Al : <0.003
%、P < 0.015%に制限し、さらに必要に応じ
てN1<LO%、Cu<1.5%、Nb <0.05%
、V < 0.1%、Cr <t、o%、Mo<0.5
%、Bく0.002%の18または2種以上を含有し、
残部はFeおよび不可避不純物からなり、Ti酸化物粒
子を含有する鋼を1250℃以上、溶融点以下の温度に
加熱し次の冷却過程の1100〜800℃間において5
0〜2000秒保持するか、または、冷却速度0.07
〜b 粒内フェライトが生成する速度30〜0.1℃/see
で冷却することを特徴とする低温靭性の優れた低温用高
張力鋼の製造法である。
[Means for Solving the Problems] The present invention has been made based on the above findings, and
The gist is that in weight percent C: 0.02-0.18%, S
i: 0.08-0.25%, Mn: 0.4
~2.0%, S:0.0007~0.0060%, Ti
:o, oos~0.030%, N: 0.001
Contains 0 to 0.0040%, Al: <0.003
%, P < 0.015%, and if necessary, N1 < LO%, Cu < 1.5%, Nb < 0.05%
, V < 0.1%, Cr < t, o%, Mo < 0.5
%, B 0.002% containing 18 or two or more,
The remainder consists of Fe and unavoidable impurities, and the steel containing Ti oxide particles is heated to a temperature of 1250°C or higher and below the melting point, and then heated to 5°C between 1100 and 800°C during the next cooling process.
Hold for 0-2000 seconds or cooling rate 0.07
~b Rate at which intragranular ferrite is generated: 30 to 0.1°C/see
This is a manufacturing method for low-temperature high-strength steel with excellent low-temperature toughness.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

最初に本発明鋼の基本成分範囲の限定理由について述べ
る。
First, the reason for limiting the basic component range of the steel of the present invention will be described.

まず、Cは鋼の強度を向上させる有効な成分として、添
加するもので、0.02%未満では構造用鋼として必要
な強度が得られず、また、0.18%を超える過剰の添
加は、溶接割れ性、HAZ靭性などを著しく低下させる
ので、上限を0.18%とした。
First, C is added as an effective component to improve the strength of steel, and if it is less than 0.02%, the strength required for structural steel cannot be obtained, and if it is added in excess of 0.18%, it is , weld cracking resistance, HAZ toughness, etc. are significantly reduced, so the upper limit was set at 0.18%.

Siは母材の強度確保、溶鋼の予備脱酸などに必要であ
るが、0.25%を超えると熱処理組織内に硬化組織の
高炭素マルテンサイト(以下M*と称す)を生成し靭性
を著しく低下させる。また、0.03%以下ではTi酸
化物の分散に必要な溶鋼の予備脱酸ができないため、S
t含有量をこの範囲に制限した。
Si is necessary to ensure the strength of the base metal and to preliminarily deoxidize molten steel, but if it exceeds 0.25%, a hardened structure of high carbon martensite (hereinafter referred to as M*) will be formed in the heat-treated structure, reducing toughness. Significantly lower. In addition, if it is less than 0.03%, preliminary deoxidation of molten steel necessary for dispersing Ti oxides cannot be performed, so S
The t content was limited to this range.

Nは含有量が0.0040%を超えるとM*が存在しな
い条件でも母相を脆性させ、靭性を低下させる。
When the content of N exceeds 0.0040%, the matrix becomes brittle even in the absence of M*, reducing toughness.

また、Nが0.0010%以下では鋼中にほとんど窒化
物を生成せず、IFP組織の生成量が減少し靭性が低下
する。
Furthermore, when N is 0.0010% or less, hardly any nitrides are produced in the steel, the amount of IFP structure produced is reduced, and the toughness is lowered.

Mnは母材の強度、靭性の確保には0.4%以上の添加
が必要であるが、溶接部の靭性、割れ性などの許容でき
る範囲で上限を2.0%とした。
Although it is necessary to add Mn in an amount of 0.4% or more to ensure the strength and toughness of the base metal, the upper limit was set to 2.0% within an allowable range such as the toughness and crackability of the welded part.

Sについては、複合体のMnSを析出させるために0.
0007%以上必要であるが、0.0060%超の過剰
の添加は、粗大な硫化物系介在物を形成し、母材の延性
低下と異方性の増加を招くため、0.0007〜0.0
060%とした。
Regarding S, in order to precipitate MnS of the complex, 0.
0.0007% or more is necessary, but excessive addition of more than 0.0060% will form coarse sulfide inclusions, leading to a decrease in ductility and an increase in anisotropy of the base material, so 0.0007 to 0. .0
060%.

TiはT1酸化物とT1窒化物の形成に必須の元素であ
り、0.005%以下では必要とするT1酸化物とT1
窒化物量が得られず、IFP生成量が低減するため0.
005%以上の添加が必要であるが、0.03%超の添
加は、過剰なTi炭化物の析出をともない、析出硬化に
より硬さを上昇させ、靭性低下をもたらすため、0.0
3%以下とした。
Ti is an essential element for the formation of T1 oxide and T1 nitride, and if it is less than 0.005%, it will not form the necessary T1 oxide and T1 nitride.
0.0 because the amount of nitrides cannot be obtained and the amount of IFP generated is reduced.
It is necessary to add 0.05% or more, but addition of more than 0.03% causes precipitation of excessive Ti carbides, increases hardness due to precipitation hardening, and reduces toughness.
It was set to 3% or less.

Pは、凝固偏析による溶接割れ性、靭性などの低下を防
止する上から、極力低減すべきであり、上限を0.01
5%に制限した。
P should be reduced as much as possible in order to prevent deterioration of weld cracking properties, toughness, etc. due to solidification segregation, and the upper limit should be set at 0.01.
It was limited to 5%.

AIは強力な脱酸元素であり、o、ooa%以上の添加
はTi脱酸により形成されるTi酸化物が形成されなく
なり、IFPが°形成されず、靭性の低下がもたらされ
るので、0.003%以下に制限した。
Al is a strong deoxidizing element, and if it is added in an amount of 0.00% or more, Ti oxide formed by Ti deoxidation will not be formed, IFP will not be formed, and the toughness will be reduced. It was limited to 0.003% or less.

以上が本発明鋼の基本成分であるが、母材強度の上昇、
および母材の靭性向上の目的で、N1゜Cu、Nb、V
、Cr、Mo、Bの1種または2種以上を含有すること
ができる。
The above are the basic components of the steel of the present invention.
And for the purpose of improving the toughness of the base material, N1゜Cu, Nb, V
, Cr, Mo, and B.

まず、N1は、母材の強靭性を高める極めて有効な元素
であるが、3.0%を超す添加は、焼き入れ性の増加に
より、IFP組織の形成が抑制されること、M*が生成
されることにより靭性の低下をもたらすため、上限を8
60%とした。
First, N1 is an extremely effective element that increases the toughness of the base metal, but adding more than 3.0% increases hardenability, suppressing the formation of IFP structure, and forming M*. The upper limit was set at 8 to reduce toughness.
It was set at 60%.

Cuは母材の強化のわりには、HAZの硬化が少なく、
有効な元素であるが、応力除去焼鈍による焼き戻し脆性
、溶接割れ性などを考慮して、上限を1.5%とした。
Although Cu strengthens the base material, it hardens the HAZ less.
Although it is an effective element, the upper limit was set at 1.5% in consideration of temper embrittlement caused by stress relief annealing, weld cracking resistance, etc.

Nb、Vは母材の強靭化、粒界フェライトの生成抑制な
どによる靭性の改善などに有効であるが、各成分の上限
を超える過剰の添加は、靭性および硬化性の観点から有
害・となるため、Nb、Vのそれぞれについて、上限を
0.5%、0.1%とした。
Nb and V are effective in improving toughness by strengthening the base material and suppressing the formation of grain boundary ferrite, but excessive addition exceeding the upper limit of each component can be harmful from the viewpoint of toughness and hardenability. Therefore, the upper limits were set to 0.5% and 0.1% for Nb and V, respectively.

Cr、Moは焼き入れ性の向上と析出硬化により、母材
の強化に有効である。また、TMCPのような適切なプ
ロセスを付加することにより、母材の低温靭性の向上に
有効である。
Cr and Mo are effective in strengthening the base material by improving hardenability and precipitation hardening. Furthermore, adding an appropriate process such as TMCP is effective in improving the low-temperature toughness of the base material.

しかし、各成分の上限を超える過剰の添加は、靭性およ
び硬化性の観点から有害となるため、Cr、Moの各々
について、上限を1,0%。
However, since excessive addition exceeding the upper limit of each component is harmful from the viewpoint of toughness and hardenability, the upper limit is set to 1.0% for each of Cr and Mo.

0.5%とした。It was set to 0.5%.

Bは焼き入れ性の向上による母材強度の上昇と、粒界フ
ェライトの成長の抑制による高温熱処理鋼材の靭性向上
が期待されるが、0.002%を超える添加は、Fe 
  (CB)eの析出による靭性低下と、急冷処理での
硬化を招くため、上限を0.002%とした。
B is expected to increase the strength of the base metal by improving hardenability and improve the toughness of high-temperature heat-treated steel materials by suppressing the growth of grain boundary ferrite.
The upper limit was set at 0.002% because the precipitation of (CB)e causes a decrease in toughness and hardening during rapid cooling treatment.

上記に示すように、鋼の成分を限定しても、製造法が適
切でなければ高温加熱処理される鋼の靭性を向上させる
ことはできない。最初に、高温熱処理材の靭性を向上さ
せる基となるIFP核析出物(Ti酸化物)を鋼塊中に
適量、分散させる必要がある。
As shown above, even if the components of steel are limited, it is not possible to improve the toughness of steel subjected to high-temperature heat treatment unless the manufacturing method is appropriate. First, it is necessary to disperse an appropriate amount of IFP nuclear precipitates (Ti oxides), which serve as a base for improving the toughness of the high-temperature heat-treated material, into the steel ingot.

そのTi酸化物の生成方法は、溶鋼の溶存酸素濃度を1
0〜60ppmに予備脱酸後、T1脱酸し、かつ溶鋼を
凝固時の冷却速度20〜400℃/winで鋳造するこ
とにより得られる。
The method for producing Ti oxide is to reduce the dissolved oxygen concentration of molten steel to 1
It is obtained by preliminary deoxidation to 0 to 60 ppm, T1 deoxidation, and casting of molten steel at a cooling rate of 20 to 400° C./win during solidification.

次に本発明法の基本となる熱処理条件の制限理由につい
て説明する。
Next, the reasons for limiting the heat treatment conditions, which are the basis of the method of the present invention, will be explained.

加熱温度を1250℃〜溶融点温度までとしたのは、凝
固過程で析出したMnSの一部を一旦溶解し、次の冷却
過程でTi酸化物に再析出させるためである。
The reason why the heating temperature was set from 1250° C. to the melting point temperature is to once dissolve a part of MnS precipitated during the solidification process and cause it to re-precipitate into Ti oxide during the next cooling process.

このような処理を加えないと、T1酸化物からIFP組
織が生成しないためである。これはT1酸化物へのMn
Sの再析出によって、MnSとオーステナイトとの境界
にMnの希薄領域が形成され、それにより局所的にγ→
α変態点を上昇させ、粒内フェライトの形成が促進させ
るためと考えられる。
This is because if such treatment is not applied, the IFP structure will not be generated from the T1 oxide. This is because Mn to T1 oxide
Due to the redeposition of S, a Mn-poor region is formed at the boundary between MnS and austenite, which locally reduces γ→
This is thought to be due to raising the α transformation point and promoting the formation of intragranular ferrite.

また、次の冷却過程の1100〜800℃間において、
50〜2000秒保持するか、または冷却速度0.07
〜6”C/seeで冷却するとしたのは、MnSの再析
出により形成されたMrl希薄域が高温での保持か、冷
却中に拡散、消失しIFP生成能を失わないために制限
した。
In addition, between 1100 and 800°C in the next cooling process,
Hold for 50-2000 seconds or cooling rate 0.07
The reason for cooling at ~6''C/see was to prevent the Mrl-poor region formed by MnS reprecipitation from being maintained at a high temperature or diffusing and disappearing during cooling, thereby preventing loss of IFP production ability.

さらに、800〜300℃間を、粒内フェライトが生成
する冷却速度30〜0.1 ’C/seeで冷却するこ
ととしたのは、本発明者らの研究によると、IFPはこ
の6速範囲でなければ生成しないので、この範囲に制限
した。
Furthermore, the reason why we decided to cool between 800 and 300 degrees Celsius at a cooling rate of 30 to 0.1'C/see, which generates intragranular ferrite, is that according to the research of the present inventors, IFP is in this 6-speed range. Otherwise, it will not be generated, so I limited it to this range.

[実 施 例] 第1表は、試作鋼の化学成分およびTi酸化物の密度を
表し、発明鋼はTi酸化物を10〜60個/mA含む一
方、比較鋼はT1酸化物はほとんど含まない。
[Example] Table 1 shows the chemical composition and Ti oxide density of the prototype steel. The invention steel contains 10 to 60 Ti oxides/mA, while the comparative steel contains almost no T1 oxide. .

なお、Ti酸化物の密度はT1,0元素の特性X線をコ
ンピューターにより画像解析処理(CMA装置)し求め
た。
The density of the Ti oxide was determined by image analysis processing (CMA device) of characteristic X-rays of the T1,0 element using a computer.

試作鋼は圧延により20w鋼板とし、本発明法の要件を
満たす条件の1300℃で30分間再加熱後、冷却途中
の1■00〜800℃間を1℃/seeの冷却速度で、
さらに800〜300℃間を2℃/seeで冷却した場
合の靭性の変化を調べた。
The prototype steel was made into a 20W steel plate by rolling, and after being reheated for 30 minutes at 1300°C under conditions that meet the requirements of the method of the present invention, it was heated at a cooling rate of 1°C/see between 00 and 800°C during cooling.
Furthermore, changes in toughness when cooling at 2°C/see between 800 and 300°C were investigated.

その結果を第1表に示す。The results are shown in Table 1.

比較鋼11.12はSi含有量が、鋼13.14はTi
含有量が、本発明の制限外であるため、これらの制限以
外の成分がほぼ同一な本発明鋼1に比べ靭性が著しく低
下する。
Comparative steel 11.12 has a Si content, and steel 13.14 has a Ti content.
Since the content is outside the limits of the present invention, the toughness is significantly lower than the steel of the present invention, which has substantially the same components other than these limits.

また、発明鋼の鋼2と比較鋼の鋼15はAN含有量の違
いによるT1酸化物含有量に差があるもので、その靭性
を比較すると、明らかにTi酸化物を含む発明鋼が破面
遷移温度(以下、vTrsと称する)で50℃も低く、
優れた靭性を示す。
In addition, the invention steel Steel 2 and the comparison steel Steel 15 have a difference in T1 oxide content due to the difference in AN content, and when comparing their toughness, it is clear that the invention steel containing Ti oxide has a fracture surface. The transition temperature (hereinafter referred to as vTrs) is as low as 50°C,
Shows excellent toughness.

また、同様に発明鋼の鋼6はAg以外の成分がほぼ同一
の比較鋼の鋼16に比べvTrsで45℃も低く、−9
5℃もの極めて優れた靭性を示す。
Similarly, the invention steel Steel 6 is 45°C lower in vTrs than the comparative steel Steel 16, which has almost the same components other than Ag, and -9
It exhibits extremely excellent toughness of as much as 5°C.

次に、鋼2を用い、冷却途中での保持による靭性向上効
果について示す。
Next, using Steel 2, the effect of improving toughness by holding during cooling will be described.

第2表および第6図に示すように、1100℃において
は200秒から500秒保持によりvTrsは最も低(
、最良の靭性を示し、また900℃においては、500
〜2000秒の保持により、最良の靭性を示すが、それ
ぞれ、これらの保持時間以上では靭性の低下が生じる。
As shown in Table 2 and Figure 6, at 1100°C, vTrs is the lowest (
, exhibiting the best toughness, and at 900°C, 500
Holding for ˜2000 seconds shows the best toughness, but each holding time above these results in a decrease in toughness.

一方、50秒以下の保持では、十分な靭性向上効果が得
られない。
On the other hand, if the holding time is 50 seconds or less, a sufficient effect of improving toughness cannot be obtained.

最後に、冷却速度による靭性向上効果について、第3表
および第7図によって説明する。
Finally, the effect of improving toughness due to cooling rate will be explained with reference to Table 3 and FIG.

鋼2のようにT1酸化物を含む鋼においては、1100
〜800℃間の冷却速度が0.07〜b範囲では、明ら
かに靭性向上効果を得られるが、それを超える範囲では
IFP生成量が低減し目的とする効果を得られない。
In steel containing T1 oxide like Steel 2, 1100
When the cooling rate is in the range of 0.07 to 800° C. to b, the effect of improving toughness can clearly be obtained, but in a range exceeding this, the amount of IFP produced decreases and the desired effect cannot be obtained.

一方、鋼の15のように、T1酸化物をほとんど含まな
い鋼では、効果が期待される6速範囲で冷却しても、ま
ったく靭性向上効果が得られず、靭性も鋼2に比べ著し
く低下している。これの原因はIFP生成能に優れたT
1酸化物を含まないため、IFPがほとんど生成しない
ことに起因している。
On the other hand, with steel that contains almost no T1 oxide, such as Steel 15, even if it is cooled in the 6th speed range where the effect is expected, no toughness improvement effect can be obtained at all, and the toughness is significantly lower than Steel 2. are doing. The reason for this is T, which has excellent IFP generation ability.
This is due to the fact that almost no IFP is generated because it does not contain monooxide.

即ち、本発明の製造法の要件が総て満たされた時に、第
1表に示される鋼6のような熱処理ままでvTrs −
−95℃もの優れた低温靭性を持つ低温靭性用鋼材の製
造が可能になる。
That is, when all the requirements of the manufacturing method of the present invention are satisfied, vTrs −
It becomes possible to manufacture steel materials for low-temperature toughness that have excellent low-temperature toughness of -95°C.

第   3   表 *800℃−300℃間の冷却速度2℃/seeで冷却
し、2mmVノツチシャルピー試験により靭性値を求め
た。
Table 3 *Toughness values were determined by cooling at a cooling rate of 2°C/see between 800°C and 300°C and a 2mmV Notch Charpy test.

[発明の効果] 低合金鋼において、1250℃以上に高温加熱された場
合は、オーステナイト結晶粒が粗大化し、靭性は著しく
低下する。従来は、この靭性を改善するため熱間で制御
圧延し、オーステナイト粒の加工再結晶による細粒化に
より達成してきた。
[Effects of the Invention] When low alloy steel is heated to a high temperature of 1250° C. or higher, austenite crystal grains become coarse and the toughness is significantly reduced. Conventionally, this toughness has been achieved by hot controlled rolling and grain refinement through recrystallization of austenite grains.

本発明はこの圧延の省き、熱処理ままで、経済的に高靭
性鋼を製造することを目的に開発されたものである。
The present invention was developed for the purpose of economically producing high-toughness steel without this rolling process and with heat treatment as is.

粗粒オーステナイト組織鋼の靭性の向上策として、鋼中
にTi酸化物を微細分散させ、その酸化物を核に粒内フ
ェライトを生成させ組織を微細化し、有効結晶粒の細粒
化により靭性を改善する方法の適用が考えられる。
As a measure to improve the toughness of steel with a coarse-grained austenitic structure, Ti oxide is finely dispersed in the steel, and intragranular ferrite is generated using the oxide as a nucleus to refine the structure and improve toughness by refining the effective grains. It is possible to apply methods to improve this.

しかし、熱処理ままで、靭性を向上させるにはさらに、
IFPの生成量を増加さす必要がある。
However, to improve the toughness without heat treatment,
It is necessary to increase the amount of IFP produced.

この目的を達成するためには、IFP核析出物のIFP
生成能をさらに高める必要があり、それには加熱冷却過
程でTi酸化物にMnSを付着させるとIFP生成能が
飛躍的に高まり、効果的である。
To achieve this objective, the IFP of the IFP nuclear precipitate
It is necessary to further increase the production ability, and for this purpose, attaching MnS to Ti oxide during the heating and cooling process dramatically increases the IFP production ability and is effective.

この発明により、圧下比の不足から圧延、鍛造等により
靭性改善効果が期待できない極厚鋼板の靭性向上および
圧延の省略による溶鋼からの直接鋼板製造にも適用でき
、羊の産業上の経済的効果は極めて顕著なものである。
This invention can be applied to improve the toughness of extra-thick steel plates for which rolling, forging, etc. cannot be expected to improve the toughness due to insufficient reduction ratio, and to manufacture steel plates directly from molten steel by omitting rolling, resulting in economical effects on the sheep industry. is extremely remarkable.

【図面の簡単な説明】 第1図は1400℃から冷却中にTi2O3粒子に再析
出した微細MnSの模式図、第2図は熱処理サイクルの
図表、第3図はIFPと保持時間の図表、第4図、第5
図は金属組織の顕微鏡写真、第6図は冷却途中の保持時
間と破面遷移温度との図表、第7図は冷却速度と破面遷
移温度との図表である。 代 理 人  弁理士  茶野木 立 失策1図 !−7e13?M[950°C) 第4図 第5図 vTrx (mc )
[Brief explanation of the drawings] Figure 1 is a schematic diagram of fine MnS reprecipitated on Ti2O3 particles during cooling from 1400°C, Figure 2 is a diagram of heat treatment cycles, Figure 3 is a diagram of IFP and retention time, and Figure 3 is a diagram of IFP and retention time. Figure 4, 5th
The figure is a micrograph of the metallographic structure, FIG. 6 is a graph of retention time during cooling and fracture surface transition temperature, and FIG. 7 is a graph of cooling rate and fracture surface transition temperature. Agent Patent Attorney Tate Chanogi Mistake 1! -7e13? M [950°C) Fig. 4 Fig. 5 vTrx (mc)

Claims (1)

【特許請求の範囲】 1、重量%で C:0.02〜0.18%、 Si:0.03〜0.25%、 Mn:0.4〜2.0%、 S:0.0007〜0.0060%、 Ti:0.005〜0.030%、 N:0.0010〜0.0040% を含有し、 Al:<0.003%、 P<0.015%に制限し、 残部はFeおよび不可避不純物からなる、Ti酸化物粒
子を含有する鋼を1250℃以上、溶融点以下の温度に
加熱し、次の冷却過程の1100〜800℃間において
50〜2000秒保持するか、または、冷却速度0.0
7〜6℃/secで冷却しさらに、800〜300℃間
を、粒内フェライトが生成する冷却速度30〜0.1℃
/secで冷却することを特徴とする低温靭性の優れた
低温用高張力鋼の製造法。 2、重量%で C:0.02〜0.18%、 Si:0.03〜0.25%、 Mn:0.4〜2.0%、 S:0.0007〜0.0060%、 Ti:0.005〜0.030%、 N:0.0010〜0.0040% を含有し、 Al:<0.003%、 P<0.015% に制限し、さらに Ni<3.0%、Cu<1.5%、 Nb<0.05%、V<0.1%、 Cr<1.0%、Mo<0.5%、 B<0.002%、 の1種または2種以上を含有し、残部はFeおよび不可
避不純物からなり、Ti酸化物粒子を含有する鋼を12
50℃以上、溶融点以下の温度に加熱し、次の冷却過程
の1100〜800℃間において50〜2000秒保持
するか、または、冷却速度0.07〜6℃/secで冷
却しさらに、800〜300℃間を、粒内フェライトが
生成する冷却速度30〜0.1℃/secで冷却するこ
とを特徴とする低温靭性の優れた低温用高張力鋼の製造
法。
[Claims] 1. C: 0.02-0.18%, Si: 0.03-0.25%, Mn: 0.4-2.0%, S: 0.0007-0.0007% by weight. Contains 0.0060%, Ti: 0.005~0.030%, N: 0.0010~0.0040%, Al: <0.003%, P <0.015%, and the remainder is Steel containing Ti oxide particles consisting of Fe and unavoidable impurities is heated to a temperature of 1250°C or higher and below the melting point, and held at 1100 to 800°C for 50 to 2000 seconds in the next cooling process, or Cooling rate 0.0
Cool at a rate of 7-6°C/sec, and then cool between 800-300°C at a cooling rate of 30-0.1°C to generate intragranular ferrite.
A method for manufacturing high-strength steel for low-temperature use with excellent low-temperature toughness, which is characterized by cooling at a speed of /sec. 2. C: 0.02-0.18%, Si: 0.03-0.25%, Mn: 0.4-2.0%, S: 0.0007-0.0060%, Ti :0.005~0.030%, N:0.0010~0.0040%, Al:<0.003%, P<0.015%, Ni<3.0%, One or more of the following: Cu<1.5%, Nb<0.05%, V<0.1%, Cr<1.0%, Mo<0.5%, B<0.002%. The remainder consists of Fe and unavoidable impurities, and the steel containing Ti oxide particles is
Heating to a temperature of 50°C or higher and lower than the melting point and holding it for 50 to 2000 seconds between 1100 and 800°C in the next cooling process, or cooling at a cooling rate of 0.07 to 6°C/sec and further cooling to 800°C A method for producing a high-strength steel for low temperature use having excellent low-temperature toughness, characterized by cooling between 300°C and 300°C at a cooling rate of 30 to 0.1°C/sec to generate intragranular ferrite.
JP63016851A 1988-01-29 1988-01-29 Manufacturing method of high-strength steel for low temperature with excellent low temperature toughness Expired - Fee Related JPH08934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63016851A JPH08934B2 (en) 1988-01-29 1988-01-29 Manufacturing method of high-strength steel for low temperature with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63016851A JPH08934B2 (en) 1988-01-29 1988-01-29 Manufacturing method of high-strength steel for low temperature with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH01195244A true JPH01195244A (en) 1989-08-07
JPH08934B2 JPH08934B2 (en) 1996-01-10

Family

ID=11927716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016851A Expired - Fee Related JPH08934B2 (en) 1988-01-29 1988-01-29 Manufacturing method of high-strength steel for low temperature with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JPH08934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083963A (en) * 2016-11-22 2018-05-31 新日鐵住金株式会社 Steel sheet pile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214126A (en) * 1986-03-17 1987-09-19 Sumitomo Metal Ind Ltd Manufacture of high tensile steel superior in cod characteristic at weld zone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214126A (en) * 1986-03-17 1987-09-19 Sumitomo Metal Ind Ltd Manufacture of high tensile steel superior in cod characteristic at weld zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083963A (en) * 2016-11-22 2018-05-31 新日鐵住金株式会社 Steel sheet pile

Also Published As

Publication number Publication date
JPH08934B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JPS629646B2 (en)
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JP2023501564A (en) Austenitic stainless steel containing a large amount of uniformly distributed nano-sized precipitates and method for producing the same
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP2005105322A (en) Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JPS6043433A (en) Manufacture of clad steel plate with superior corrosion resistance and toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP2004218081A (en) Method for producing high-tension steel plate
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH01191765A (en) High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide
JPH01195244A (en) Manufacture of high tension steel for low temperature use having superior toughness at low temperature
JP2000104116A (en) Production of steel excellent in strength and toughness
JPH06279848A (en) Yield point controlled shape steel
JP5145616B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP3825623B2 (en) High-tensile steel with excellent fracture resistance of welds
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
EP2801638A1 (en) Steel material for high-heat-input welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees