JPH01195231A - Fluidized-bed reducing device for iron ore - Google Patents

Fluidized-bed reducing device for iron ore

Info

Publication number
JPH01195231A
JPH01195231A JP1684988A JP1684988A JPH01195231A JP H01195231 A JPH01195231 A JP H01195231A JP 1684988 A JP1684988 A JP 1684988A JP 1684988 A JP1684988 A JP 1684988A JP H01195231 A JPH01195231 A JP H01195231A
Authority
JP
Japan
Prior art keywords
iron ore
downcomer
furnace
fluidized bed
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1684988A
Other languages
Japanese (ja)
Inventor
Tetsuaki Yamamoto
山本 哲明
Tatsuhiko Egashira
江頭 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1684988A priority Critical patent/JPH01195231A/en
Publication of JPH01195231A publication Critical patent/JPH01195231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To efficiently reduce iron ore in a bent downcomer and to improve the productivity of a fluidized-bed reducing furnace by collecting the iron ore grains generated in the furnace, returning the grains to the furnace through the downcomer, and providing a means for blowing a reducing gas into the downcomer. CONSTITUTION:The iron ore grains discharged from the outlet of the fluidized- bed reducing furnace 1 are collected by a cyclone 2, and stored in a hopper 3. The grains are sent downward to an iron ore feeder 5, then sent downward to an iron ore return device 9 through bent downcomers 6 and 7 while forming a moving bed, and returned to the furnace 1. A reducing gas blowing port 8 is provided at the midway of the downcomer 6. A reducing gas 11 is sent upward in the downcomer 6, and introduced into the furnace 1 from a specified position of the feeder 5 through a lead pipe 10. Meanwhile, a working gas is blown into the feeder 5 from the return device 9, and introduced into the furnace 1 through the lead pipe 10. The solid iron ore grains descend dispersedly in the downcomer 6, and are brought into sufficient contact with the reducing gas ascending in the downcomer 6 and efficiently reduced.

Description

【発明の詳細な説明】 [従来の技術] 鉄鉱石を還元して溶銑を製造するために、高炉を使用す
る方法、シャフト炉で還元した鉄鉱石を電気炉で溶解す
る方法等が従来から採用されている。
[Detailed Description of the Invention] [Prior Art] In order to reduce iron ore to produce hot metal, a method of using a blast furnace, a method of melting iron ore reduced in a shaft furnace in an electric furnace, etc. have been conventionally adopted. has been done.

このような従来の溶銑製造技術に代わるものとして、溶
融還元法が注目を浴びている。この方法で使用する溶融
還元炉は、使用する原料に制約を受けることなく、より
小規模な設備により鉄系合金の溶湯を製造することを目
的として開発されたものである。
As an alternative to such conventional hot metal production techniques, the smelting reduction method is attracting attention. The smelting reduction furnace used in this method was developed for the purpose of producing molten iron-based alloys using smaller-scale equipment without being restricted by the raw materials used.

本発明者等は、先に特開昭61− e4goy号公報に
このような溶融還元法の一つを提案した。
The present inventors previously proposed one of such melt reduction methods in JP-A-61-e4goy.

更に本発明者等は特願昭61−286599号において
、流動層還元炉内に吹出される還元ガスにより高速流動
層、バブリング流動層、充填層の三層が形成されること
より、安定した高速循環流動特性を得る装置を提案した
Furthermore, the present inventors have disclosed in Japanese Patent Application No. 61-286599 that the reducing gas blown into the fluidized bed reduction furnace forms three layers: a high-speed fluidized bed, a bubbling fluidized bed, and a packed bed. A device to obtain circulating flow characteristics was proposed.

第5図はそのフローを示す。FIG. 5 shows the flow.

即ち流動層還元炉に外部粒子循環装置を付設し、流動層
還元炉1の上部に設けられている出口にサイクロン2を
接続し、還元ガス11と同伴し飛散してきた細粒子を捕
捉している。
That is, an external particle circulation device is attached to the fluidized bed reduction furnace, and a cyclone 2 is connected to the outlet provided at the top of the fluidized bed reduction furnace 1 to capture the fine particles that are scattered along with the reducing gas 11. .

サイクロン2の下部には捕捉した粒子を一時溜めるホッ
パー3が接続され、このホッパー3で一時蓄え所定量を
循環切出装置16で流動層還元炉1に戻すものである。
A hopper 3 for temporarily storing the captured particles is connected to the lower part of the cyclone 2, and a predetermined amount of the captured particles is temporarily stored in the hopper 3 and returned to the fluidized bed reduction furnace 1 by a circulating cutting device 16.

一方流動層還元炉1の炉内には複数のガス吹出し口23
.21が形成されている。このガス吹出し口23、21
の中間部にバブリング流動層22を形成し、このバブリ
ング流動層22内に前記外部粒子循環装置の循環出口が
設けられている。
On the other hand, there are a plurality of gas outlets 23 inside the fluidized bed reduction furnace 1.
.. 21 is formed. These gas outlets 23, 21
A bubbling fluidized bed 22 is formed in the middle part of the particle circulation device, and a circulation outlet of the external particle circulation device is provided in this bubbling fluidized bed 22.

また流動層還元炉1の炉底部に充填層17が形成され、
充填層17内に炉底吹込みノズル18が設けられている
In addition, a packed bed 17 is formed at the bottom of the fluidized bed reduction furnace 1,
A furnace bottom blowing nozzle 18 is provided within the packed bed 17 .

図中24は粉鉱石、石灰石等の原料25を流動層還元炉
1に装入するための切出弁、19.26.27は還元ガ
スの吹出し量を調整するための流量調節弁、15は細粒
状の還元鉱の切出弁、20は細粒状の還元鉱の切出弁で
ある。
In the figure, 24 is a cut-off valve for charging raw materials 25 such as fine ore and limestone into the fluidized bed reduction furnace 1, 19, 26, and 27 are flow rate control valves for adjusting the amount of reducing gas blown out, and 15 is a Fine-grained reduced ore cutting valve 20 is a fine-grained reduced ore cutting valve.

次に切出弁から粉鉱石、石灰石等の原料25を流動層還
元炉1に装入し、還元ガス11を流量調節弁19、28
.27を介してガス吹出し口23.21.18より吹込
むと、最上部のガス吹込みノズル23の上方は全てのガ
ス吹込みノズルの吹出し量が加わり、細粒状の原料粒子
の終末速度Utより大きい速度となり、細粒状の原料粒
子は還元ガスと反応しながら流動層還元炉の上方へ飛散
する。
Next, raw materials 25 such as fine ore and limestone are charged into the fluidized bed reduction furnace 1 from the cutting valve, and the reducing gas 11 is passed through the flow rate control valves 19 and 28.
.. When the gas is blown from the gas outlet 23.21.18 through the gas blowing nozzle 27, the blowing amount of all the gas blowing nozzles is added to the uppermost gas blowing nozzle 23, and the final velocity of the fine raw material particles is lower than the final velocity Ut. The speed becomes high, and the fine raw material particles are scattered above the fluidized bed reduction furnace while reacting with the reducing gas.

他方粗粒状の原料は細粒状の原料に比べ終末速度Utが
大きいため、ガス吹出し口23で飛散せず、二ケ所のガ
ス吹出し口23.21間に位置するバブリング流動層2
2で更に風ふるいされ、粗粒子は炉下部の充填層17ま
で下降する。
On the other hand, coarse grained raw materials have a higher terminal velocity Ut than fine grained raw materials, so they do not scatter at the gas outlet 23, and the bubbling fluidized bed 2 located between the two gas outlets 23 and 21
2, the coarse particles descend to the packed bed 17 at the bottom of the furnace.

充填層17内の粗粒子は炉下部に位置する炉底吹込みノ
ズル18により、適正な流量の還元ガスにより還元が確
実になされ、切出弁20から粗粒状の還元鉱が排出され
次工程へ送られる。
The coarse particles in the packed bed 17 are reliably reduced by a proper flow rate of reducing gas through the furnace bottom blowing nozzle 18 located at the bottom of the furnace, and the coarse reduced ore is discharged from the cutting valve 20 to proceed to the next process. Sent.

一方細粒子は流動層還元炉1内で飛散され、炉上部の出
口からサイクロン2で捕捉され、ホッパー3、循環切出
装置1Bを介し、バブリング流動層22に循環させ、再
び還元が行なわれる。
On the other hand, the fine particles are scattered in the fluidized bed reduction furnace 1, captured by the cyclone 2 from the outlet at the top of the furnace, and circulated through the bubbling fluidized bed 22 via the hopper 3 and the circulation cutting device 1B, where they are reduced again.

そして所望の還元を得られた細粒子の還元鉱は、切出弁
15から排出され次工程へ送られる。
The fine-grained reduced ore that has achieved the desired reduction is discharged from the cut-off valve 15 and sent to the next process.

[発明が解決しようとする課H 流動層還元炉に外部粒子循環装置を付設した還元装置に
おいては、流動層還元炉では、還元ガスと鉄鉱石が効果
的に接触反応して還元が行なわれるが、ホッパーと循環
切出装置とを連結する下降管内では還元反応が期待でき
ない。
[Problem to be solved by the invention H In a reduction device in which an external particle circulation device is attached to a fluidized bed reduction furnace, in the fluidized bed reduction furnace, reducing gas and iron ore are effectively catalytically reacted to perform reduction. , a reduction reaction cannot be expected in the downcomer pipe that connects the hopper and the circulating cutting device.

このため下降管内に積極的に還元ガスを吹込んで還元反
応を促進しようとすると、垂直下降管では、第4図(a
)に示すように、該下降管内に大きな気泡の発生により
スラッギングを生じ、粒子下降移送性を阻害し、粒子循
環量のバラツキを生じ、安定した循環流動還元が行なえ
ないばかりか、下降管内での還元反応の促進はできない
For this reason, if you try to actively blow reducing gas into the downcomer to promote the reduction reaction, the vertical downcomer will not work as shown in Figure 4 (a).
), the generation of large bubbles in the downcomer causes slagging, which impedes the downward transport of particles and causes variations in the amount of particle circulation. It cannot promote reduction reactions.

更には、下降管内を上昇し、サイクロン下部からサイク
ロン内へ流入する還元ガスのアップフローにより、該サ
イクロンの捕集効率が悪化し、鉄鉱石の歩留りが悪くな
る。
Furthermore, the upflow of the reducing gas that rises in the downcomer pipe and flows into the cyclone from the lower part of the cyclone deteriorates the collection efficiency of the cyclone, resulting in poor iron ore yield.

スラッギングを防止するため傾斜下降管を採用する方法
があるが、この方法では、吹込んだ還元ガスが第4図(
b)に示すように、傾斜下降管上方を鉄鉱石と相別され
て流れるため、良好な固気接触反応が行なわれないため
、還元が効率的に行なわれない。
There is a method of using an inclined downcomer pipe to prevent slagging, but in this method, the injected reducing gas is
As shown in b), since the iron ore flows above the inclined downcomer separately from the iron ore, a good solid-gas contact reaction is not carried out, and therefore reduction is not carried out efficiently.

また傾斜下降管においてもサイクロンへのアップフロー
は防げない。
Moreover, upflow to the cyclone cannot be prevented even in an inclined downcomer pipe.

そこで本発明は外部粒子循環装置の下降管においても、
効率的かつ安定的に鉄鉱石を還元する鉄鉱石流動層還元
装置を提供するものである。
Therefore, the present invention also applies to the downcomer pipe of the external particle circulation device.
The present invention provides an iron ore fluidized bed reduction device that efficiently and stably reduces iron ore.

[課題を解決するための手段] 本発明は流動層還元炉1の出口に流動層還元炉1内で発
生する鉄鉱石粒子を捕集するサイクロン2を配設する。
[Means for Solving the Problems] In the present invention, a cyclone 2 is provided at the outlet of the fluidized bed reduction furnace 1 to collect iron ore particles generated within the fluidized bed reduction furnace 1.

次に鉄鉱石粒子を切出す鉄鉱石切出装置5を前記サイク
ロン2に連結する。そしてこの鉄鉱石切出装置5を連結
して、鉄鉱石粒子を移送する屈曲下降管6.7を設ける
Next, an iron ore cutting device 5 for cutting out iron ore particles is connected to the cyclone 2. A bent descending pipe 6.7 is provided to connect the iron ore extraction device 5 and transport the iron ore particles.

次にこの屈曲下降管6,7に鉄鉱石粒子を前記流動層還
元炉1に返送する鉄鉱石返送装置9を連結する。そして
前記屈曲下降管6および/又は鉄鉱石切出装置5等鉄鉱
石粒子を移送する装置と流動層還元炉1とを導圧管10
にて連結する。
Next, an iron ore return device 9 for returning iron ore particles to the fluidized bed reduction furnace 1 is connected to the bent downcomers 6 and 7. Then, the device for transferring iron ore particles such as the bent downcomer pipe 6 and/or the iron ore cutting device 5 and the fluidized bed reduction furnace 1 are connected to the pressure conduit 10.
Connect at.

[作  用] 流動層還元炉1内に発生した鉄鉱石粒子は、流動層還元
炉1の出口に配設したサイクロン2により捕集する。捕
集した鉄鉱石粒子は、サイクロン2に連結した鉄鉱石切
出装置5に移送し、この切出装置5から屈曲下降管6.
7を介して鉄鉱石返送装置9へと移送し、流動層還元炉
1内に返送する。
[Function] Iron ore particles generated in the fluidized bed reduction furnace 1 are collected by the cyclone 2 disposed at the outlet of the fluidized bed reduction furnace 1. The collected iron ore particles are transferred to an iron ore cutting device 5 connected to the cyclone 2, and from this cutting device 5 to a bent downcomer pipe 6.
The iron ore is transferred to the iron ore return device 9 via the iron ore 7, and then returned to the fluidized bed reduction furnace 1.

詳述すると前記鉄鉱石切出装置5から排出し、屈曲下降
管6,7に流出した鉄鉱石粒子群は、第4図(C)に示
すように屈曲下降管6の屈曲部において、鉄鉱石粒子群
は分散現象により、分散しながら下降し、かつ屈曲下降
管6内に吹込まれた還元ガスは、大きな気泡になること
なく上昇するため、鉄鉱石は安定降下し良好な固気接触
反応により効率的に還元される。
To be more specific, the iron ore particles discharged from the iron ore extraction device 5 and flowing out into the bent downcomer pipes 6 and 7 are separated into iron ore particles at the bent part of the bent downcomer pipe 6, as shown in FIG. 4(C). The group descends while dispersing due to the dispersion phenomenon, and the reducing gas blown into the bent downcomer pipe 6 rises without forming large bubbles, so the iron ore descends stably and is efficient due to a good solid-gas contact reaction. will be returned to you.

また、屈曲下降管6内を上昇する還元ガスは屈曲下降管
6、鉄鉱石切出装置5等に配設した導圧管10を経て、
流動層還元炉1内に流入することにより、サイクロンの
粒子捕集効率の悪化を防げるため、積極的に還元ガスを
屈曲下降管6内に吹込める。
Further, the reducing gas rising in the bent downcomer pipe 6 passes through the pressure pipe 10 disposed in the bent downcomer pipe 6, the iron ore cutting device 5, etc.
By flowing into the fluidized bed reduction furnace 1, deterioration of the particle collection efficiency of the cyclone can be prevented, so that the reducing gas can be actively blown into the bent downcomer pipe 6.

更に、屈曲下降管の傾斜部では、傾斜効果により鉄鉱石
に加わる粉体が軽減され、かつ、屈曲部では鉄鉱石粒子
群の衝突分散効果により粒子運動が活発となり、スティ
ッキングの発生を防ぎ、鉄鉱石の下降移送性および循環
流動性が保たれるため、安定した循環流動還元が行なえ
る。
Furthermore, at the inclined part of the bent downcomer pipe, the powder added to the iron ore is reduced due to the slope effect, and at the bent part, particle movement becomes active due to the impact and dispersion effect of iron ore particles, preventing the occurrence of sticking and dispersing the iron ore. Since the downward transportability and circulating fluidity of the stones are maintained, stable circulating fluidic reduction can be performed.

なお、屈曲下降管6途中に複数のガス吹込口8と、複数
の固気分離器12を設け、該固気分離器12と流動層還
元炉1とを導圧管10で連結したものにあっては、良質
の還元ガスによって屈曲下降管6内の鉄鉱石を還元でき
、該屈曲下降管6内を上昇するガス流速を抑えられ、鉄
鉱石の下降移送性が安定する。
Note that a plurality of gas inlets 8 and a plurality of solid-gas separators 12 are provided in the middle of the bent downcomer pipe 6, and the solid-gas separators 12 and the fluidized bed reduction furnace 1 are connected by a pressure impulse pipe 10. The iron ore in the bent downcomer pipe 6 can be reduced by high-quality reducing gas, the gas flow rate rising in the bent downcomer pipe 6 can be suppressed, and the downward transportability of the iron ore can be stabilized.

[実 施 例] 第1図において流動層還元炉1には、鉄鉱石が炉内を飛
散する程度まで空塔速度を大きくして、還元ガス11を
吹込む。これにより飛散した鉄鉱石粒子は、排ガスとと
もに流動層還元炉1の出口から排出される。
[Example] In FIG. 1, a reducing gas 11 is blown into a fluidized bed reduction furnace 1 at a superficial velocity increased to such an extent that iron ore is scattered within the furnace. The scattered iron ore particles are discharged from the outlet of the fluidized bed reduction furnace 1 together with the exhaust gas.

この排出された鉄鉱石粒子は、流動層還元炉1の出口に
設けられたサイクロン2で捕集され、該サイクロン2の
下方に配置しているホッパー3に一時的に蓄えられる。
The discharged iron ore particles are collected by a cyclone 2 provided at the outlet of the fluidized bed reduction furnace 1 and temporarily stored in a hopper 3 located below the cyclone 2.

次いで、鉄鉱石粒子はホッパー3から鉄鉱石切出装置5
に流下し、該鉄鉱石切出装置5から切出された鉄鉱石粒
子は、屈曲下降管6.7内を、移動層を形成して鉄鉱石
返送装置9に流下し、該鉄鉱石返送装置9により流動層
還元炉1内に戻される。
Next, the iron ore particles are transferred from the hopper 3 to the iron ore cutting device 5.
The iron ore particles cut out from the iron ore cutting device 5 form a moving layer in the bent downcomer pipe 6.7 and flow down to the iron ore return device 9. is returned to the fluidized bed reduction furnace 1.

一方、屈曲下降管6の途0中に設けた還元ガス吹込口8
から吹込まれた還元ガス11は、屈曲下降管6内を上昇
し、鉄鉱石切出装置5の所定の位置から導圧管10を経
て、流動層還元炉1内に流入する。
On the other hand, a reducing gas inlet 8 provided in the middle of the bent downcomer pipe 6
The reducing gas 11 blown from the iron ore extraction device 5 rises in the bent downcomer pipe 6 and flows into the fluidized bed reduction furnace 1 from a predetermined position of the iron ore cutting device 5 via the pressure impulse pipe 10.

また、鉄鉱石切出装置5に鉄鉱石返送装置9から吹込ま
れた作動ガスも導圧管10を経て流動層還元炉1に流入
する。
Furthermore, the working gas blown into the iron ore cutting device 5 from the iron ore return device 9 also flows into the fluidized bed reduction furnace 1 via the pressure guiding pipe 10 .

このとき、鉄鉱石粒子は屈曲下降管6内を分散下降しな
がら、還元ガス吹込口8から吹込まれ屈曲下降管6内を
上昇する還元ガスと、良好な固気接触を行い、効率的に
還元する。
At this time, the iron ore particles disperse and descend within the bent downcomer pipe 6, making good solid-gas contact with the reducing gas blown in from the reducing gas inlet 8 and rising within the bent downcomer pipe 6, resulting in efficient reduction. do.

このようにして、鉄鉱石粒子は、流動層還元炉1と外部
粒子循環経路との間を循環しながら還元する。ここで、
屈曲下降管は、傾斜管と傾斜管が屈曲部でもって連続し
た下降管のことを言い、屈曲部形状には、限定されない
In this way, the iron ore particles are reduced while circulating between the fluidized bed reduction furnace 1 and the external particle circulation path. here,
A bent downcomer refers to a downcomer pipe in which two inclined pipes are connected at a bent part, and the shape of the bent part is not limited.

サイクロン2の下方にあるホッパー3および該ホッパー
3と鉄鉱石切出装置5を連結している下降管4には、流
下する鉄鉱石が充填され粉体によるシールが行われてお
り、かつ、屈曲下降管6の途中から吹込まれた還元ガス
および鉄鉱石切出装置5、鉄鉱石返送装置9に作動ガス
として吹込まれたガスは、導圧管10を経て流動層還元
炉1へ流入するため、サイクロン2下部からアップフロ
ーしないため、サイクロン2の粒子捕集効率に対して悪
影響を与えない。
A hopper 3 located below the cyclone 2 and a downcomer pipe 4 connecting the hopper 3 and the iron ore extraction device 5 are filled with flowing iron ore and sealed with powder, and are bent downward. The reducing gas injected from the middle of the pipe 6 and the gas injected into the iron ore extraction device 5 and the iron ore return device 9 as working gas flow into the fluidized bed reduction furnace 1 via the impulse pipe 10, so that the lower part of the cyclone 2 Since there is no upflow from the cyclone 2, there is no adverse effect on the particle collection efficiency of the cyclone 2.

吹込まれたガスを導圧管で逃がすことは、サイクロン2
と鉄鉱石切出装置5との粉体シールを軽減することは言
うまでもない。
Cyclone 2 allows the injected gas to escape through the impulse pipe.
Needless to say, powder sealing between the iron ore cutting device 5 and the iron ore extraction device 5 is reduced.

また、屈曲下降管7においても粉体シールが行われてお
り、流動層還元炉1下部から吹込まれた流動還元ガスが
、粒子循環経路へ流れこみ、該流動層還元炉1の操業・
に対する悪影響を与えない。
In addition, powder sealing is also performed in the bent downcomer pipe 7, and the fluidized reducing gas blown from the lower part of the fluidized bed reduction furnace 1 flows into the particle circulation path, and the fluidized bed reduction furnace 1 is operated and
has no adverse effect on

第2図は、第1図における屈曲下降管6の途中に複数の
還元ガス吹込口8と複数の固気分離器12を設け、該固
気分離器12と流動層還元炉1とを、導圧管10で連結
した実施例を示す。
FIG. 2 shows that a plurality of reducing gas inlets 8 and a plurality of solid-gas separators 12 are provided in the middle of the bent downcomer pipe 6 in FIG. An example in which the parts are connected by a pressure pipe 10 is shown.

還元ガス吹込口8から吹込まれた還元ガスは、固気分離
器12で鉄鉱石と分離され、導圧管10を経て流動層還
元炉1へ流入する。
The reducing gas injected from the reducing gas inlet 8 is separated from iron ore in a solid-gas separator 12, and flows into the fluidized bed reduction furnace 1 via a pressure impulse pipe 10.

このとき還元ガスの流れは、圧力調節弁13.14をそ
れぞれ調節することにより制御する。
At this time, the flow of the reducing gas is controlled by adjusting the pressure regulating valves 13, 14, respectively.

第3図は、鉄鉱石切出装置の1例として、第1図におけ
る鉄鉱石切出装置5の詳細を示す。
FIG. 3 shows details of the iron ore extraction device 5 in FIG. 1 as an example of an iron ore extraction device.

第1図に示すホッパー3と鉄鉱石切出装置5を連結する
下降管4内に蓄えられた鉄鉱石すは、作動ガスa′に吹
飛ばされることにより切出される。
Iron ore stored in a downcomer pipe 4 connecting a hopper 3 and an iron ore cutting device 5 shown in FIG. 1 is cut out by being blown away by working gas a'.

屈曲下降管6を上昇してきた還元ガスaと、該作動ガス
a′は空間部Cにおいて固気分離され、ガスのみが導圧
管10を経て流動層還元炉1内に流入する。また、第2
図における固気分離器12に前記鉄鉱石切出装置5を採
用しても良い。
The reducing gas a that has ascended through the bent downcomer pipe 6 and the working gas a' are separated into solid and gas in the space C, and only the gas flows into the fluidized bed reduction furnace 1 through the pressure impulse pipe 10. Also, the second
The iron ore extraction device 5 may be used as the solid-gas separator 12 in the figure.

[発明の効果] 以上に説明したように本発明は鉄鉱石流動層還元装置の
粒子循環系の粒子下降管内の還元反応のデッドスペース
の有効利用ができ、還元装置の生産性が向上する。
[Effects of the Invention] As described above, the present invention makes it possible to effectively utilize the dead space of the reduction reaction in the particle downcomer of the particle circulation system of the iron ore fluidized bed reduction apparatus, thereby improving the productivity of the reduction apparatus.

また、スラッギングおよびスティッキングによる粗大ク
ラスターの生成がないので、粒子移送量が安定し、循環
2および還元率のコントロールが安定し、還元装置とし
ての制御性が向上する。
Furthermore, since there is no generation of coarse clusters due to slagging and sticking, the amount of particles transferred is stabilized, control of circulation 2 and reduction rate is stabilized, and controllability as a reduction device is improved.

更には、サイクロン下からのガスのアップフローがない
ため、サイクロンでの捕集効率が良く成品歩留りが向上
する。
Furthermore, since there is no upflow of gas from below the cyclone, the collection efficiency in the cyclone is high and the product yield is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の鉄鉱石流動層還元装置の基本的構成
の説明図、第2図は本発明の下降管部の詳細説明図、g
83図は鉄鉱石切出装置の説明図、第4図(a) 、(
b) 、(c)は、それぞれ垂直下降管、傾斜下降管、
屈曲下降管におけるガス流れを示す作用の説明図、第5
図は、従来の鉄鉱石流動層還元装置の説明図である。 1・・・流動層還元炉    2・・・サイクロン3・
・・ホッパー      4・・・下降管5・・・鉄鉱
石切出装置   6.7・・・屈曲下降管8・・・還元
ガス吹込口   9・・・鉄鉱石返送装置10・・・導
圧管       it・・・還元ガス12・・・固気
分離器     13.14・・・圧力調節弁式 理 
人  弁理士  茶野木 立 夫第5図
FIG. 1 is an explanatory diagram of the basic configuration of the iron ore fluidized bed reduction apparatus of the present invention, and FIG. 2 is a detailed explanatory diagram of the downcomer section of the present invention.
Figure 83 is an explanatory diagram of the iron ore extraction device, Figure 4 (a), (
b) and (c) are vertical downcomers, inclined downcomers, respectively;
Explanatory diagram of the action showing gas flow in a bent downcomer, No. 5
The figure is an explanatory diagram of a conventional iron ore fluidized bed reduction apparatus. 1...Fluidized bed reduction furnace 2...Cyclone 3.
... Hopper 4 ... Downcomer pipe 5 ... Iron ore cutting device 6.7 ... Bent downcomer pipe 8 ... Reducing gas inlet 9 ... Iron ore return device 10 ... Impulse pipe it. ...Reducing gas 12...Solid gas separator 13.14...Pressure control valve type
Person Patent Attorney Tatsuo Chanoki Figure 5

Claims (1)

【特許請求の範囲】 1、流動層還元炉(1)の出口に流動層還元炉(1)内
で発生する鉄鉱石粒子を捕集するサイクロン(2)を配
設し、該サイクロン(2)に前記鉄鉱石粒子を切出す鉄
鉱石切出装置(5)を連結し、該鉄鉱石切出装置(5)
に鉄鉱石粒子を移送する屈曲下降管(6)を連結し、該
屈曲下降管(6)、(7)に前記鉄鉱石粒子を流動層還
元炉(1)内に返送する鉄鉱石返送装置(9)を連結す
るとともに、前記屈曲下降管(6)、(7)および/又
は鉄鉱石切出装置(5)等鉄鉱石粒子を移送する装置と
、流動層還元炉(1)とを導圧管(10)で連結したこ
とを特徴とする鉄鉱石流動層還元装置。 2、屈曲下降管(6)、(7)の所定の位置に還元ガス
吹込口(8)と固気分離器(12)とを配設したことを
特徴とする特許請求の範囲第1項記載の鉄鉱石流動層還
元装置。
[Claims] 1. A cyclone (2) for collecting iron ore particles generated in the fluidized bed reduction furnace (1) is disposed at the outlet of the fluidized bed reduction furnace (1), and the cyclone (2) An iron ore cutting device (5) for cutting out the iron ore particles is connected to the iron ore cutting device (5).
A bent downcomer pipe (6) for transferring iron ore particles is connected to the iron ore return device (6) for returning the iron ore particles to the fluidized bed reduction furnace (1) to the bent downcomer pipes (6) and (7). 9), and a device for transferring iron ore particles such as the bent downcomer pipes (6), (7) and/or the iron ore cutting device (5), and the fluidized bed reduction furnace (1) are connected to the pressure pipe (1). 10) An iron ore fluidized bed reduction apparatus, characterized in that the iron ore fluidized bed reduction apparatus is connected to 2. Claim 1, characterized in that a reducing gas inlet (8) and a solid-gas separator (12) are arranged at predetermined positions of the bent downcomer pipes (6) and (7). iron ore fluidized bed reduction equipment.
JP1684988A 1988-01-29 1988-01-29 Fluidized-bed reducing device for iron ore Pending JPH01195231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1684988A JPH01195231A (en) 1988-01-29 1988-01-29 Fluidized-bed reducing device for iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1684988A JPH01195231A (en) 1988-01-29 1988-01-29 Fluidized-bed reducing device for iron ore

Publications (1)

Publication Number Publication Date
JPH01195231A true JPH01195231A (en) 1989-08-07

Family

ID=11927660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1684988A Pending JPH01195231A (en) 1988-01-29 1988-01-29 Fluidized-bed reducing device for iron ore

Country Status (1)

Country Link
JP (1) JPH01195231A (en)

Similar Documents

Publication Publication Date Title
JP2006511704A (en) Heat treatment method and plant for sulfide ore
JPH01195231A (en) Fluidized-bed reducing device for iron ore
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JP2562172B2 (en) Iron ore fluidized bed reduction device
JPH01111808A (en) Iron ore fluidized bed reduction apparatus
CN1061688C (en) Method of charging metalliferous material into smelting-gasification zone
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPH01195215A (en) Fluidized-bed reducing device for iron ore
JP2613616B2 (en) Circulating fluidized bed reactor for powder
WO1999032666A1 (en) Two step twin-single fluidized bed type pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
JPH09159371A (en) Outside particle circulating device for circulating fluidized bed reducing device
JPS59100205A (en) Method and facilities for manufacturing sponge iron particleand liquefied pig iron directly from massy iron ore
JP2765734B2 (en) Operation method of iron bath reactor
JPH01111810A (en) Iron ore fluidized bed reduction apparatus
JPH01247518A (en) Outside circulating type fluidized bed furnace
JPH0723491B2 (en) Circulating fluidized bed preliminary reduction device
JPH0610021A (en) Fluidized bed reducing device and operating method thereof
JPS6357710A (en) Method and apparatus for circulating flow reduction of ores
JPH01247988A (en) External circulation type fluidized-bed furnace
JPH0649520A (en) Fluidized bed furnace
AU1693499A (en) Complex fluidized bed type fine iron ore reducing apparatus, and method therefor
JPS62228868A (en) Fluidized bed furnace with out-of-core circulating mechanism
JPH04301023A (en) Operation method for circulating fluidized bed reduction apparatus
JP2000503353A (en) Method for producing liquid pig iron or steel pre-products from iron-containing materials
JPH0328307A (en) Fluidized bed type pre-reduction furnace for iron or nonferrous ore