JPH01195220A - Melting and reducing furnace - Google Patents
Melting and reducing furnaceInfo
- Publication number
- JPH01195220A JPH01195220A JP1987488A JP1987488A JPH01195220A JP H01195220 A JPH01195220 A JP H01195220A JP 1987488 A JP1987488 A JP 1987488A JP 1987488 A JP1987488 A JP 1987488A JP H01195220 A JPH01195220 A JP H01195220A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- raw material
- partition wall
- chamber
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002844 melting Methods 0.000 title abstract description 12
- 230000008018 melting Effects 0.000 title abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 67
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 238000005192 partition Methods 0.000 claims abstract description 20
- 238000003723 Smelting Methods 0.000 claims description 15
- 239000012768 molten material Substances 0.000 claims description 7
- 239000007789 gas Substances 0.000 abstract description 32
- 239000002893 slag Substances 0.000 abstract description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 7
- 239000001301 oxygen Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 239000000155 melt Substances 0.000 abstract 3
- 238000012216 screening Methods 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 27
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000007664 blowing Methods 0.000 description 7
- 239000000428 dust Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000003245 coal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金属の溶融還元において装入する原料の飛散
による損失を防止した溶融還元炉に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a smelting and reducing furnace that prevents loss of charged raw materials due to scattering during the smelting and reduction of metals.
溶融還元炉においては、炉内に塊状または粉状にした鉄
鉱石1石炭1石灰等の原料を投入し、酸素ガスを吹込み
ながら石炭を燃焼させ、さらに炉内を撹拌させつつ還元
反応をさせて溶銑を得るものである。In a smelting reduction furnace, raw materials such as lumped or powdered iron ore 1 coal 1 lime are put into the furnace, the coal is burned while oxygen gas is blown in, and a reduction reaction is caused while the inside of the furnace is stirred. It is used to obtain hot metal.
この投入方法では、例えば粉状の原料を炉上から投入す
ると、高温の排気ガスによって原料が飛散し、原料の歩
留りが悪くなるので、通常粉状原料はキャリヤガスと共
に例えば底吹き羽目から金属浴もしくはスラグ浴中へ吹
込み、塊状の原料は炉上に設置された上部原料投入装置
から投入されることが一般的であり、粉状塊状の区分は
1mm近傍に設定される。このようにして排気ガスなど
によって粉状の原料が排気ダクトから飛散するのを防止
するようにしている。In this charging method, for example, if powdered raw materials are charged from the top of the furnace, the raw materials will be scattered by high-temperature exhaust gas and the yield of raw materials will be poor. Alternatively, it is common to blow raw materials into a slag bath, and the bulk raw materials are charged from an upper raw material charging device installed on the furnace, and the size of the powdery lumps is set to be around 1 mm. In this way, the powdered raw material is prevented from being scattered from the exhaust duct by exhaust gas or the like.
このような操業をおこなう方法として、例えば特開昭6
1−199009号公報において開示されている溶融還
元製鉄法の技術がある。これは投入する原料の篩分けを
行ない、所定サイズ以下の粉状原料は給粉装置から炉内
の金属浴もしくはスラグ浴へ吹込み、塊状原料は炉上か
ら投入することによって、操業において粉状原料の飛散
を防止する方法について開示している。As a method for carrying out such operations, for example,
There is a technique of smelting reduction iron manufacturing method disclosed in Japanese Patent No. 1-199009. This sieves the input raw materials, blowing powdered raw materials smaller than a predetermined size into the metal bath or slag bath in the furnace from the powder feeder, and inputting lumpy raw materials from above the furnace. Discloses a method for preventing scattering of raw materials.
ところでそれぞれの原料を篩分けて炉内に投入するには
、節分は装置を必要とし、また粉状原料を圧送しこれを
金属浴中などに吹込むには、圧縮器、分配器等の設備を
必要とするだけでなく、配管などには摩耗対策を考慮す
る必要があるなど、設備費が高価になるという問題点が
あった。However, in order to sieve each raw material and feed it into the furnace, Setsubun requires equipment, and in order to force feed the powdered raw materials and blow them into a metal bath, equipment such as a compressor and distributor are required. In addition to this, there was a problem in that equipment costs were high, such as the need to take measures against wear on piping, etc.
本発明は上記問題点を解決し、原料を飛散することなく
投入して歩留りを向上させる溶融還元炉を提供する。The present invention solves the above-mentioned problems and provides a smelting reduction furnace in which raw materials can be charged without scattering and the yield can be improved.
本発明は、溶融還元炉の炉内上部空間を仕切り、かつ下
部は炉内溶融物の循環を可能とした仕切壁を設け、該仕
切壁で形成される1室を反応室とし、他の室を原料供給
室としたことを特徴とする溶融還元炉であり、また前記
仕切壁の両側部に炉内溶融物が炉週辺に副って循環可能
となる空隙を設けた色っで′あう。The present invention partitions the upper space in the furnace of a smelting reduction furnace, and the lower part is provided with a partition wall that enables circulation of the molten material in the furnace, one chamber formed by the partition wall is used as a reaction chamber, and the other chamber is This is a smelting reduction furnace characterized by having a raw material supply chamber, and a space provided on both sides of the partition wall to allow the molten material in the furnace to circulate along the sides of the furnace. .
本発明の作用を第1図および第2図に基づいて説明する
。The operation of the present invention will be explained based on FIGS. 1 and 2.
第1図は本発明による溶融還元炉1の略側面図であり、
第2図は第1図のx−x’断面図である。FIG. 1 is a schematic side view of a melting reduction furnace 1 according to the present invention,
FIG. 2 is a sectional view taken along line xx' in FIG. 1.
炉1内には溶融金属浴3および溶融スラグ浴2が存在す
る。原料10は炉1の斜上もしくは上方より投入され、
ランス6から吹き込まれる酸素と原料中の炭材との燃焼
熱により鉄鉱石の還元が促進され、炉l内で発生する排
ガスが排気ダクト11から炉外へ排出される。Inside the furnace 1 there is a molten metal bath 3 and a molten slag bath 2. The raw material 10 is charged from the diagonal or upper part of the furnace 1,
The reduction of the iron ore is promoted by the oxygen blown in from the lance 6 and the combustion heat of the carbonaceous material in the raw material, and the exhaust gas generated in the furnace 1 is discharged from the exhaust duct 11 to the outside of the furnace.
ここで、本例の溶融還元炉1では原料10の供給部分と
、ランス6からの酸素の供給部とを区分できるように、
炉頂部50から溶融スラグ浴2に浸漬できる位置までの
長さの仕切壁7を設置した構造となっており、この原料
供給部分を原料供給室5、酸素の供給部分を反応室4と
称することにする。Here, in the melting reduction furnace 1 of this example, the supply part of the raw material 10 and the supply part of oxygen from the lance 6 can be separated.
It has a structure in which a partition wall 7 having a length from the furnace top 50 to a position where it can be immersed in the molten slag bath 2 is installed, and this raw material supply part is referred to as the raw material supply chamber 5, and the oxygen supply part is referred to as the reaction chamber 4. Make it.
反応室4において、原料10として供給され、スラグ浴
2中に懸濁している炭材が、ランス6から吹き込まれる
酸素と燃焼反応を起こし、燃焼熱を生ずる。この熱を還
元熱として、炭材と同様にスラグ浴中に存在する鉄鉱石
が溶融還元される。In the reaction chamber 4, the carbonaceous material supplied as the raw material 10 and suspended in the slag bath 2 undergoes a combustion reaction with oxygen blown in from the lance 6, producing combustion heat. This heat is used as reduction heat to melt and reduce the iron ore present in the slag bath as well as the carbonaceous material.
この際、炉内ではco、co□等を含む多量のガスが発
生することになるが、前述の通り、仕切壁7によって、
原料供給室5が反応室4すなわち、排ガスの発生部分と
が区切られているために、供給した原料10が排ガスと
ともに炉外へ排出されることはない。At this time, a large amount of gas including co, co□, etc. will be generated in the furnace, but as mentioned above, the partition wall 7
Since the raw material supply chamber 5 is separated from the reaction chamber 4, that is, the part where exhaust gas is generated, the supplied raw material 10 is not discharged out of the furnace together with the exhaust gas.
ここで反応室4において効率よく還元反応を生じさせる
ためには、原料供給室5に供給された原料10を効率よ
く反応室4へ移動させる必要がある。この方法は種々前
えられその例は後述するが、第1,2図においては、こ
の原料10の移動を円滑に行うために、仕切壁7の両端
に空隙7aを設け、炉内の溶融物を炉周壁に浴って回転
させる例を示した。炉内溶融物の回転循環流れを生じさ
せるため、炉腹部の反応室4側に循環ガス吹き込みノズ
ル9を設置し、炉内にガスを吹き込むことによって溶融
物に回転循環流を与えるものであり、原料供給室5に供
給された原料がこの回転循環流によって反応室4に導入
され、還元反応後の原料骨の希薄となったスラグが原料
供給室5に移動する。この回転流は、本方法のように循
環ガスによってもよいが、炉体に回転磁界を作用させる
方法をとってもよい。In order to efficiently cause the reduction reaction in the reaction chamber 4, it is necessary to efficiently move the raw material 10 supplied to the raw material supply chamber 5 to the reaction chamber 4. Various methods have been used for this method, examples of which will be described later. In FIGS. 1 and 2, gaps 7a are provided at both ends of the partition wall 7 to allow the molten material in the furnace to move smoothly. An example is shown in which the rotor is rotated around the furnace wall. In order to generate a rotating circulation flow of the molten material in the furnace, a circulating gas blowing nozzle 9 is installed on the reaction chamber 4 side of the furnace belly, and by blowing gas into the furnace, a rotating circulation flow is given to the molten material. The raw material supplied to the raw material supply chamber 5 is introduced into the reaction chamber 4 by this rotating circulation flow, and the slag, which has become a diluted raw material bone after the reduction reaction, moves to the raw material supply chamber 5. This rotating flow may be generated by circulating gas as in the present method, but it may also be generated by applying a rotating magnetic field to the furnace body.
以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第3図および第4図は、第1の実施例の溶融還元炉11
である。これはスラグ浴18の中位に下面が位置するよ
うに仕切壁12を設け、原料供給室13の上部には原料
供給バンカー14を設け、また反応室15の上部にはラ
ンス16と底部には底吹羽口17を設け、さらに原料供
給室13のスラグ浴18位置に反応室15方向に向けて
循環ガス吹込み用ノズル19を取付けた構造である。こ
れは循環ガス吹込み用ノズル19がら吹き込まれた循環
ガスにより原料の懸濁したスラグを反応室15側に円滑
に移動させるもので、吹き込まれた循環ガスは原料供給
室13を通過し、反応室15側にて上昇浮上するために
、排気ガスと共に排出され、原料供給室13でのガス発
生はない。3 and 4 show the melting reduction furnace 11 of the first embodiment.
It is. A partition wall 12 is provided so that the lower surface is located in the middle of the slag bath 18, a material supply bunker 14 is provided at the top of the material supply chamber 13, a lance 16 is provided at the top of the reaction chamber 15, and a lance 16 is provided at the bottom of the reaction chamber 15. It has a structure in which a bottom blowing tuyere 17 is provided, and a nozzle 19 for blowing circulating gas is attached at the slag bath 18 position of the raw material supply chamber 13 toward the reaction chamber 15. This is to smoothly move the slag in which the raw material is suspended to the reaction chamber 15 side by the circulating gas blown from the circulating gas blowing nozzle 19, and the blown circulating gas passes through the raw material supply chamber 13 and reacts. Since it rises and floats on the side of the chamber 15, it is discharged together with the exhaust gas, and no gas is generated in the raw material supply chamber 13.
第5図および第6図は第2の実施例の溶融還元炉21で
あり、これは前記溶融還元炉11において、循環ガス吹
込み用ノズル19に代えて、反応室15側にスラグ排出
孔22を設けることにより、原料供給室13から反応室
15への原料やスラグの移動を円滑におこなうようにし
たものである。5 and 6 show a smelting reduction furnace 21 according to a second embodiment, in which a slag discharge hole 22 is provided on the reaction chamber 15 side in place of the circulating gas injection nozzle 19 in the smelting reduction furnace 11. By providing this, raw materials and slag can be smoothly moved from the raw material supply chamber 13 to the reaction chamber 15.
このスラグの流出の流れに従って原料が反応IL15へ
移動する。The raw material moves to the reaction IL 15 according to the flow of the slag.
第7図および第8図は第3の実施例の溶融還元炉31で
あり、これは前記溶融還元炉11において、循環ガス吹
込み用ノズル19を廃し、下面がスラグ浴18に浸漬し
ない長さとした仕切壁32を設けたものであり、仕切壁
32によって原料供給バンカー14から炉内への投入口
33を覆うことにより、原料が排ガスによって吸引排出
されるのを防ぐとともに、溶融金属やスラグの流動を容
易にするものである。ここで仕切壁32の長さは、溶融
還元炉31の最も炉径の大きくなっており炉内で発生す
る排ガスの上昇流速の低い炉腹部までの長さとすること
で、排ガスによる原料の吸引排出を防止するものである
。7 and 8 show a smelting reduction furnace 31 according to a third embodiment, in which the circulating gas injection nozzle 19 is eliminated from the smelting reduction furnace 11, and the length is such that the lower surface is not immersed in the slag bath 18. By covering the inlet 33 from the raw material supply bunker 14 into the furnace with the partition wall 32, the raw material is prevented from being suctioned and discharged by exhaust gas, and the molten metal and slag are It facilitates flow. Here, the length of the partition wall 32 is set to the part of the furnace which has the largest diameter of the smelting reduction furnace 31 and has a low upward flow rate of the exhaust gas generated in the furnace, so that the raw material can be sucked and discharged by the exhaust gas. This is to prevent
第9図および第10図は第4の実施例の溶融還元炉41
であり、これは前記溶融還元炉11において、複数の循
環ガス吹込み用ノズル42を反応室15のスラグ浴18
位置に周方向に傾斜させて取付け、かつ仕切壁43の両
側部に空隙44を設けた構造であり、このようにしてス
ラグ浴18に炉周辺に副って循環流を与え、反応室15
への原料の移動ならびに希薄となったスラグの原料供給
室13への移動を円滑に行なわしめるものである。FIG. 9 and FIG. 10 show a melting reduction furnace 41 of the fourth embodiment.
This means that in the melting reduction furnace 11, the plurality of circulating gas injection nozzles 42 are connected to the slag bath 18 of the reaction chamber 15.
It has a structure in which the slag bath 18 is installed at an inclined position in the circumferential direction, and gaps 44 are provided on both sides of the partition wall 43. In this way, a circulation flow is given to the slag bath 18 around the furnace, and the reaction chamber 15
This allows smooth movement of the raw material to the raw material supply chamber 13 and movement of the diluted slag to the raw material supply chamber 13.
以下本発明による溶融還元炉での施工例について説明す
る。An example of construction using a melting reduction furnace according to the present invention will be described below.
本発明例としては、第3および4図に示す溶融還元炉を
使用し、比較例としては第11図に示す従来の仕切壁の
ない溶融還元炉51を使用した。As an example of the present invention, the melting reduction furnace shown in FIGS. 3 and 4 was used, and as a comparative example, a conventional melting reduction furnace 51 without a partition wall shown in FIG. 11 was used.
従来炉における原料の投入方法は、前述したように塊原
料は上方投入、粉状原料は底吹きないしは横吹きノズル
からの吹込みを行なっているが、比較のために粉状原料
も上吹き投入を実施した。投入する原料は粒径15〜3
0mo+の塊原料と1m+n以下の粉状原料を使用し、
排ガス中のダスト量を測定した。その結果を次表に示す
。As mentioned above, in the conventional method of feeding raw materials into a furnace, lump materials are fed upwards, and powdery materials are blown in from the bottom blow or side blow nozzle, but for comparison, powdery materials are also fed top blow. was carried out. The raw material to be fed has a particle size of 15 to 3
Using lump raw materials of 0mo+ and powdered raw materials of 1m+n or less,
The amount of dust in the exhaust gas was measured. The results are shown in the table below.
塊原料を使用した場合には、本発明炉と従来炉において
、排ガス中ダスト量にはそれほど差は見られず、60〜
80 g/Nrd程度のダストが排ガス中に含まれてい
る。塊原料を使用しているため、投入時の排ガスによる
飛散ロスはほとんどないため、このダスト量は、反応室
での撹拌ガスに同伴された溶融金属あるいはスラグの微
小滴、もしくは上吹き酸素のスラグ面への衝突により発
生したスラグ滴が排ガスとともに炉外へ排出されたもの
であると考えられる。When using lump raw materials, there was no significant difference in the amount of dust in the exhaust gas between the furnace of the present invention and the conventional furnace, and the amount of dust in the exhaust gas was 60~
Approximately 80 g/Nrd of dust is contained in the exhaust gas. Since lump raw materials are used, there is almost no scattering loss due to exhaust gas during input, so the amount of dust is reduced to minute droplets of molten metal or slag entrained in the stirring gas in the reaction chamber, or slag from top-blown oxygen. It is thought that slag droplets generated by collision with the surface were discharged out of the furnace together with the exhaust gas.
一方、粉状原料を使用した場合、本発明炉は従来炉に比
べ排ガス中ダスト量は約176となっており、本発明の
効果が顕著に表われている。本発明炉におけるダスト量
は、塊原料の場合と同程度であり、原料の飛散ロスはほ
とんどなくなったと見なせる。On the other hand, when powdered raw materials are used, the amount of dust in the exhaust gas in the furnace of the present invention is approximately 176% compared to the conventional furnace, which clearly shows the effects of the present invention. The amount of dust in the furnace of the present invention is comparable to that in the case of lump raw materials, and it can be considered that the scattering loss of raw materials has almost disappeared.
以上説明したごとく本発明による溶融還元炉においては
、塊状、粉状の原料を篩分けする必要なく炉の上部から
投入することができ、また排気ガスによる原料の飛散も
なくなるので、粉体処理のための設備費、運営費を低減
することができ、また原料の投入歩留りも向上し原単位
を低下させることができる。As explained above, in the smelting reduction furnace according to the present invention, bulk and powder raw materials can be charged from the upper part of the furnace without the need for sieving, and there is no scattering of raw materials due to exhaust gas, so powder processing is possible. It is possible to reduce the equipment cost and operating cost for the process, and also improve the raw material input yield and reduce the unit consumption.
第1図は本発明の詳細な説明する溶融還元炉の略側面図
、第2図は第1図のx−x’断面図、第3図および第4
図、第5図および第6図、第7図および第8図、第9図
および第1O図は夫々第1の実施例、第2の実施例、第
3の実施例、第4の実施例の側面図およびA−A’ 、
B−B’ 、C−C’ 、D−D’断面図、第11図は
従来の操業を示す炉体の略側面図である。
1.11.21,31.41・・・溶融還元炉、2,1
8・・・スラグ、3・・・溶融金属、4.15・・・反
応室、5,13・・・原料供給室、6,16・・・ラン
ス、7.12.32.43・・・仕切壁、8. 9.1
7.19.42・・・吹込み羽口、22・・・スラグ排
出孔、44・・・空隙
代理人 弁理士 秋 沢 政 光
他1名
岸3図
六5図
71′7図
左9図FIG. 1 is a schematic side view of a melting reduction furnace for explaining the present invention in detail, FIG. 2 is a sectional view taken along line xx' in FIG.
5 and 6, FIG. 7 and FIG. 8, FIG. 9, and FIG. side view and A-A',
BB', CC', DD' sectional views, and FIG. 11 are schematic side views of the furnace body showing conventional operation. 1.11.21, 31.41... Melting reduction furnace, 2,1
8... Slag, 3... Molten metal, 4.15... Reaction chamber, 5, 13... Raw material supply chamber, 6, 16... Lance, 7.12.32.43... Partition wall, 8. 9.1
7.19.42...Blowing tuyere, 22...Slag discharge hole, 44...Void agent Patent attorney Masamitsu Akizawa and 1 other person Bank 3 Figure 65 Figure 71'7 Figure left 9 figure
Claims (1)
環を可能とした仕切壁を設け、該仕切壁で形成される1
室を反応室とし、他の室を原料供給室としたことを特徴
とする溶融還元炉。 2、仕切壁の両側部に炉内溶融物が炉週辺に副って循環
可能とする空隙を設けた請求項1記載の溶融還元炉。[Claims] 1. A partition wall that partitions the upper space in the furnace and allows circulation of the molten material in the furnace is provided in the lower part, and 1.
A smelting reduction furnace characterized in that one chamber is a reaction chamber and another chamber is a raw material supply chamber. 2. The smelting reduction furnace according to claim 1, wherein gaps are provided on both sides of the partition wall to allow the molten material in the furnace to circulate along the sides of the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987488A JPH01195220A (en) | 1988-01-30 | 1988-01-30 | Melting and reducing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987488A JPH01195220A (en) | 1988-01-30 | 1988-01-30 | Melting and reducing furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01195220A true JPH01195220A (en) | 1989-08-07 |
Family
ID=12011357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987488A Pending JPH01195220A (en) | 1988-01-30 | 1988-01-30 | Melting and reducing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01195220A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002318075A (en) * | 2001-04-17 | 2002-10-31 | Sumitomo Metal Mining Co Ltd | Non-ferrous metal refining furnace |
WO2006046606A1 (en) * | 2004-10-29 | 2006-05-04 | Kabushiki Kaisha Kobe Seiko Sho | Process for producing molten iron and apparatus therefor |
JP2006257545A (en) * | 2005-02-18 | 2006-09-28 | Kobe Steel Ltd | Method for producing molten iron and apparatus therefor |
WO2007122928A1 (en) * | 2006-04-25 | 2007-11-01 | Kabushiki Kaisha Kobe Seiko Sho | Process for producing molten iron and apparatus for producing molten iron |
-
1988
- 1988-01-30 JP JP1987488A patent/JPH01195220A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002318075A (en) * | 2001-04-17 | 2002-10-31 | Sumitomo Metal Mining Co Ltd | Non-ferrous metal refining furnace |
JP4736226B2 (en) * | 2001-04-17 | 2011-07-27 | 住友金属鉱山株式会社 | Non-ferrous metal smelting furnace |
WO2006046606A1 (en) * | 2004-10-29 | 2006-05-04 | Kabushiki Kaisha Kobe Seiko Sho | Process for producing molten iron and apparatus therefor |
JP2006257545A (en) * | 2005-02-18 | 2006-09-28 | Kobe Steel Ltd | Method for producing molten iron and apparatus therefor |
WO2007122928A1 (en) * | 2006-04-25 | 2007-11-01 | Kabushiki Kaisha Kobe Seiko Sho | Process for producing molten iron and apparatus for producing molten iron |
US7993430B2 (en) | 2006-04-25 | 2011-08-09 | Kobe Steel, Ltd. | Process for producing molten iron and apparatus for producing molten iron |
US8277536B2 (en) | 2006-04-25 | 2012-10-02 | Kobe Steel, Ltd. | Process for producing molten iron and apparatus for producing molten iron |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2955306B2 (en) | Hot metal manufacturing method and apparatus | |
EP0316819B1 (en) | Metal-making process and apparatus involving the smelting reduction of metallic oxides | |
CA1228234A (en) | Process and an arrangement for producing molten pig iron or steel pre-products | |
US5639293A (en) | Method and apparatus for production of iron from iron compounds | |
JPH01195220A (en) | Melting and reducing furnace | |
US6454833B1 (en) | Process for producing liquid pig iron or semifinished steel products from iron-containing materials | |
AU727192B2 (en) | Melter gasifier for the production of a metal melt | |
JPS6311609A (en) | Prereduction device for iron ore | |
JPH11310814A (en) | Smelting reduction furnace | |
KR940008450B1 (en) | Making method and device of iron ore prereduction | |
JP2895520B2 (en) | Method and apparatus for supplying carbon material to smelting reduction furnace | |
JP2765734B2 (en) | Operation method of iron bath reactor | |
JPH0774368B2 (en) | Iron ore fluidized bed reduction device | |
JPS59159907A (en) | Method for preventing clogging in transfer pipe for preliminarily reduced high temperature granular ore | |
JPH01247516A (en) | Method for supplying raw material in smelting reduction | |
JPH03138309A (en) | Apparatus for reducing ore | |
JPH0637660B2 (en) | Iron ore fluidized bed reduction device | |
JPH03215621A (en) | Circulating fluidized bed prereduction for powdery iron ore | |
JPH024909A (en) | Smelting reduction method for powdered ore | |
JPH06108131A (en) | Operation of vertical type smelting reduction furnace | |
JPH0297889A (en) | Operation of fluidized bed preliminary reducing furnace | |
JPS6311611A (en) | Prereduction device for iron ore | |
JPS62228868A (en) | Fluidized bed furnace with out-of-core circulating mechanism | |
JPH10183214A (en) | Operation of smelting reduction equipment and furnace body structure therefor | |
JPS62230907A (en) | Production of molten metal from powdery ore |