JP4736226B2 - Non-ferrous metal smelting furnace - Google Patents

Non-ferrous metal smelting furnace Download PDF

Info

Publication number
JP4736226B2
JP4736226B2 JP2001117887A JP2001117887A JP4736226B2 JP 4736226 B2 JP4736226 B2 JP 4736226B2 JP 2001117887 A JP2001117887 A JP 2001117887A JP 2001117887 A JP2001117887 A JP 2001117887A JP 4736226 B2 JP4736226 B2 JP 4736226B2
Authority
JP
Japan
Prior art keywords
reaction
smelting
furnace
raw material
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001117887A
Other languages
Japanese (ja)
Other versions
JP2002318075A (en
Inventor
康夫 尾島
康裕 近藤
一哲 川中
敬二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001117887A priority Critical patent/JP4736226B2/en
Publication of JP2002318075A publication Critical patent/JP2002318075A/en
Application granted granted Critical
Publication of JP4736226B2 publication Critical patent/JP4736226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非鉄金属製錬炉に関し、さらに詳しくは非鉄金属製錬炉の構造に関する。
【0002】
【従来の技術】
非鉄金属の製錬プロセスとして、アイザスメルト(Isasmelt)法やオースメルト(Ausmelt)法が実用化されている。これらの製錬プロセスでは、マット(メタルまでの製錬過程で生成する硫化物形態の中間生成物)およびメタルのうちの少なくとも1種およびスラグからなる熔体中で、原料鉱石と製錬反応用ガスとに製錬反応を起こさせる。そして、上記製錬反応によって生成した反応生成ガスを含む排ガスを炉外へ排出する。それとともに、同じく生成した、マットおよびメタルのうちの少なくとも1種を回収し、スラグを排出する。これらはそれぞれ、各処理工程で適宜処理する。
【0003】
図5は、上記製錬プロセスで用いる非鉄金属製錬炉の概略透視図である。図5において、非鉄金属製錬炉は、炉体が縦型円筒状であり、原料装入口11とランス挿入口12と排気口13とを炉頂部10に有し、さらに反応床部20を有する。ここで、原料装入口11は、マットおよびメタルのうちの少なくとも1種およびスラグからなる熔体21に落下・供給できるように原料鉱石を装入するためのものである。また、ランス挿入口12からは、熔体21の中に浸漬した先端31aから製錬反応用ガスを吹き込むランス31を挿入し、排気口13から上記排ガスを炉外へ排出する。さらに、反応床部20では、熔体21を蓄えるとともに、熔体21に供給された原料鉱石と吹き込まれた製錬反応用ガスとに製錬反応を起こさせる。
【0004】
【発明が解決しようとする課題】
図5に示す非鉄金属製錬炉では、用いる原料鉱石が微細な場合には、該原料鉱石の一部が排ガスとともに排気口13に吸引され煙灰となる。このため、製錬反応効率が低下したり、煙灰の付着によって煙道閉塞のトラブルが起きるという問題点があった。この問題点に対しては、従来、原料鉱石を装入前に予めペレタイザーなどで造粒して粒径を大きくしたり、炉内水平断面積を大きくして排ガスの流速を遅くしたりすることにより原料鉱石を排気口13に飛散しにくくするなどの対策が取られていたが、充分な解決には至らなかった。
【0005】
また、原料装入口11やランス挿入口12から排ガスの一部が吹き出したり、原料装入口11やランス挿入口12が煙灰の付着により閉塞される恐れがあるという問題点があった。この問題点に対しては、炉頂部10付近の負圧を大きめにして操業するなどの対策が取られていたが、排ガスの量が多くなり排ガス処理の負荷が増大するという別の問題点が生じる。
【0006】
本発明の目的は、上記問題点を解消し、すなわち原料鉱石を造粒したり、排ガスの流速を遅くしたり、炉頂部付近の負圧を大きめにしたりしなくても、つまり通常の操業条件で、(1)原料鉱石が煙灰となりにくい、従って製錬反応効率も優れる、(2)原料装入口やランス挿入口から排ガスが吹き出しにくい、(3)原料装入口やランス挿入口が煙灰で閉塞されにくい非鉄金属製錬炉を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意研究を行った結果、従来の非鉄金属製錬炉では原料鉱石と排ガスとが炉内で実質的に向流接触することに着目し、本発明を完成するに至った。
【0008】
すなわち、本発明の非鉄金属製錬炉は、その第1、2発明によれば次の通りである。
【0009】
第1発明の非鉄金属製錬炉は、マットおよびメタルのうちの少なくとも1種、およびスラグからなる熔体に落下・供給するために原料鉱石を装入する原料装入口と、該熔体を蓄えるとともに、該熔体に供給された該原料鉱石と該熔体の中に吹き込まれた製錬反応用ガスとに製錬反応を起こさせる反応床部と、該熔体の中に浸漬した先端から該製錬反応用ガスを吹き込むランスを挿入するランス挿入口と、該製錬反応によって生成した反応生成ガスを含む排ガスを炉外へ排出する排気口とを有し、炉内を負圧とした従来の非鉄金属製錬炉において、該非鉄金属製錬炉は、前記原料装入口と前記ランス挿入口が設けられた天井部および反応床部を備え、該原料挿入口からの前記原料鉱石の落下経路および前記ランスが存在する製錬反応部と、該反応床部が水平横方向に延長して形成されており、かつ、前記製錬反応部から離間して前記排気口が設けられた天井部を備える熔体静置部とを有し、安定した流れとなった前記排ガス、該熔体静置部を通じて、前記排気口に流れ、前記製錬反応部における前記原料装入口からの前記原料鉱石の落下経路および前記ランスが存在する空間と相違する空間を経路とし、前記原料鉱石と炉内で接触することなく、炉外に排出されるように構成されていることを特徴とする。なお、上記「相違する」とは、安定した流れとなった排ガスの経路が原料鉱石の上記落下経路およびランスが存在する空間と相違することを意味する。
【0010】
第2発明の非鉄金属製錬炉は、原料装入口と、ランスと、ランス挿入口と、排気口とが天井部に設けられている、炉内を負圧にした、従来の縦型円筒状の非鉄金属製錬炉において、前記天井部から上下方向に伸長し、前記原料装入口からの前記原料鉱石の落下経路および前記ランスが存在する空間と、前記排ガスが前記排気口へと流れる経路とを隔てる隔壁が設けられ、安定した流れとなった前記排ガスが、前記原料鉱石と炉内で接触することなく、炉外へ排出されるように構成されていることを特徴とする。この場合も、安定した流れとなった排ガスの経路が原料鉱石の上記落下経路およびランスが存在する空間と相違することとなる。
【0011】
【発明の実施の形態】
第1発明の非鉄金属製錬炉は、製錬反応によって生成した反応生成ガスを含む排ガスが、原料装入口からの原料鉱石の落下経路およびランスが存在する空間と相違する空間を経路として流れるように、原料装入口とランス挿入口が形成されている天井部とは異なる天井部もしくは同じ天井部でも離隔された部分に排気口が設けられている。また、第2発明の非鉄金属製錬炉は、排ガスが上記のように流れるように、原料装入口からの原料鉱石の落下経路およびランスが存在する空間と排ガスが排気口へと流れる経路とを隔てる隔壁が天井部から上下方向に伸長するように設けられている。
【0012】
本発明の非鉄金属製錬炉(第1、2発明)の具体的な実施態様には例えば次のものが挙げられる。なお、これらの具体的な実施態様は、非鉄金属製錬炉の設置場所や他設備を含めたレイアウトなどの条件によって適宜選択される。
【0013】
(1)図1は、第1発明の第1実施態様の非鉄金属製錬炉を示す概略透視図である。図1に示す非鉄金属製錬炉は、縦型円筒状の製錬反応部40と熔体静置部50とを有する。ここで、製錬反応部40は、原料装入口11およびランス挿入口12を天井部に、そして反応床部20を有し、原料鉱石と製錬反応用ガスとに製錬反応を起こさせる。また、熔体静置部50は、反応床部20を水平横方向に延長して形成し、排ガスを炉外へ排出する排気口51を天井部に有する。そして、製錬反応を終了した熔体を熔体静置部50で静置する(熔体面の位置を鎖線で示した)。そのため、原料装入口11からの原料鉱石の落下経路Smおよびランス31が存在する空間Sl と相違する空間を経路Seとして排ガスが排気口51に流れる。
【0014】
(2)図2は、第1発明の第2実施態様の非鉄金属製錬炉を示す概略透視図である。図2に示す非鉄金属製錬炉は、製錬反応部60と熔体静置部70とを有する。ここで、製錬反応部60は、原料装入口11およびランス挿入口12を天井部に、そして反応床部20を有し、図1における製錬反応部40と同様に原料鉱石と製錬反応用ガスとに製錬反応を起こさせる。また、熔体静置部70は、製錬反応部60を水平横方向に延長して形成し、排ガスを炉外へ排出する排気口71を天井部に有する。そして、製錬反応を終了した熔体(熔体面の位置を鎖線で示した)を熔体静置部70で静置する。そのため、原料装入口11からの原料鉱石の落下経路Smおよびランス31が存在する空間Sl と相違する空間を経路Seとして排ガスが排気口71に流れる。
【0015】
(3)図3は、第2発明の一実施態様の非鉄金属製錬炉を示す概略透視図である。図3に示す非鉄金属製錬炉は、図5と同様の非鉄金属製錬炉において、原料装入口11からの原料鉱石の落下経路Smおよびランス31が存在する空間Slと排ガスが流れる経路Seとを隔てる隔壁81が天井部から上下方向に伸長するように設けられている。そのため、上記経路Smおよび上記空間Sl と相違する空間を経路Seとして排ガスが排気口13に流れる。なお、熔体面の位置を図3に鎖線で示した。
【0016】
本発明の非鉄金属製錬炉は、例えば次のように用いる。すなわち、まず、製錬反応部の反応床部に(熔体静置部があれば必然的に熔体静置部にも)熔体を蓄える。次に、製錬反応ガスを吹き込むためのランスをランス挿入口から炉内に挿入し、ランスの先端を上記熔体に浸漬する。この後、製錬反応に必要な固体原料鉱石を、通常は溶剤とともに、原料装入口から炉内に装入する。それと同時に、ランスの先端から製錬反応ガスを吹き込む。そうすることにより、反応床部で製錬反応が起こる。そして、この製錬反応によって生成した反応生成ガスを含む排ガスを排気口から炉外へ排出する。それとともに、同じく生成した、マットおよびメタルのうちの少なくとも1種を回収し、スラグを排出する。
【0017】
本発明の非鉄金属製錬炉は上記した通りであるため、排ガスが原料鉱石と炉内で実質的に向流接触しない。従って、通常の操業条件でも、(1)原料鉱石が煙灰となりにくく、製錬反応効率も向上する、(2)原料装入口やランス挿入口から排ガスが吹き出しにくい、(3)原料装入口やランス挿入口が煙灰で閉塞されにくい。
【0018】
【実施例】
[実施例1]
図4は、基本的に図1と同じ非鉄金属製錬炉に寸法を示したものであるが、この小型非鉄金属製錬炉を用いて、銅マットを金属銅まで製錬する試験を行った。
【0019】
深さ600mmの熔体(銅マット。熔体面の位置を鎖線で示した)を反応床部20と熔体静置部50に蓄えて試験を開始し、4日間以上中断することなく製錬した。そして、反応床部20と熔体静置部50に金属銅およびスラグからなる熔体を生成させた。この際、原料鉱石である銅マットは、平均粒度が20mmのものを溶剤とともに連続的に装入した。銅マットの装入速度や、製錬反応部40の天井部付近の負圧などの試験条件は従来と同様とした。
【0020】
試験中において、原料装入口11およびランス挿入口12からのガスの吹き出しや、原料装入口11およびランス挿入口12の煙灰による閉塞は観察されなかった。また、試験後において、排気口51の内径はほとんど変わっていなかった。
【0021】
【発明の効果】
本発明によれば、通常の操業条件で、(1)原料鉱石が煙灰となりにくい、従って製錬反応効率も優れる、(2)原料装入口やランス挿入口から排ガスが吹き出しにくい、(3)原料装入口やランス挿入口が煙灰で閉塞されにくい非鉄金属製錬炉を提供することができる。
【図面の簡単な説明】
【図1】第1発明の非鉄金属製錬炉の第1実施態様の概略透視図である。
【図2】第1発明の非鉄金属製錬炉の第2実施態様の概略透視図である。
【図3】第2発明の非鉄金属製錬炉の一実施態様の概略透視図である。
【図4】実施例1で用いた非鉄金属製錬炉の概略透視図である。
【図5】従来の非鉄金属製錬炉の概略透視図である。
【符号の説明】
10 炉頂部
11 原料装入口
12 ランス挿入口
13、51、71 排気口
20 反応床部
21 熔体
31 ランス
31a ランス先端
40、60 製錬反応部
50、70 熔体静置部
81 隔壁
m 原料装入口からの原料鉱石の落下経路
l ランス近傍の空間
e 排ガスの経路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-ferrous metal smelting furnace, and more particularly to the structure of a non-ferrous metal smelting furnace.
[0002]
[Prior art]
As a smelting process for non-ferrous metals, the Isasmelt method and the Ausmelt method have been put into practical use. In these smelting processes, raw materials ores and smelting reactions are used in slag, a mat (intermediate product in the form of sulfides generated in the smelting process up to metal) and at least one of metals. Cause smelting reaction with gas. And the exhaust gas containing the reaction product gas produced | generated by the said smelting reaction is discharged | emitted out of a furnace. At the same time, at least one of the mat and metal produced in the same manner is recovered and the slag is discharged. Each of these is appropriately processed in each processing step.
[0003]
FIG. 5 is a schematic perspective view of a non-ferrous metal smelting furnace used in the smelting process. In FIG. 5, the nonferrous metal smelting furnace has a vertical cylindrical furnace body, has a raw material inlet 11, a lance insertion port 12, and an exhaust port 13 in the furnace top portion 10, and further has a reaction bed portion 20. . Here, the raw material charging port 11 is for charging the raw material ore so that it can be dropped and supplied to the melt 21 made of at least one of mat and metal and slag. Further, from the lance insertion port 12, a lance 31 for injecting a smelting reaction gas from a tip 31a immersed in the melt 21 is inserted, and the exhaust gas is discharged from the exhaust port 13 to the outside of the furnace. Further, the reaction bed 20 stores the melt 21 and causes a smelting reaction between the raw material ore supplied to the melt 21 and the blown smelting reaction gas.
[0004]
[Problems to be solved by the invention]
In the nonferrous metal smelting furnace shown in FIG. 5, when the raw material ore used is fine, a part of the raw material ore is sucked into the exhaust port 13 together with the exhaust gas to become smoke ash. For this reason, there existed a problem that the smelting reaction efficiency fell and the trouble of the flue blockage occurred by adhesion of smoke ash. To solve this problem, conventionally granulating the raw ore with a pelletizer in advance before charging it to increase the particle size, or increasing the horizontal cross-sectional area in the furnace to slow down the exhaust gas flow rate. Although measures such as making it difficult for the raw material ore to scatter to the exhaust port 13 have been taken, it has not yet been fully solved.
[0005]
In addition, there is a problem that a part of the exhaust gas blows out from the raw material inlet 11 or the lance insertion port 12 or the raw material inlet 11 or the lance insertion port 12 may be blocked by the attachment of smoke ash. For this problem, countermeasures such as operating with a larger negative pressure near the furnace top 10 have been taken, but another problem is that the amount of exhaust gas increases and the load of exhaust gas treatment increases. Arise.
[0006]
The object of the present invention is to solve the above problems, that is, without granulating the raw ore, slowing the exhaust gas flow rate, or increasing the negative pressure near the top of the furnace, that is, normal operating conditions. (1) Raw material ore is unlikely to become smoke ash, so smelting reaction efficiency is excellent, (2) Exhaust gas is difficult to blow out from the raw material inlet and lance insertion port, and (3) Raw material inlet and lance insertion port are blocked with smoke ash It is to provide a non-ferrous metal smelting furnace that is difficult to be performed.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has paid attention to the fact that the raw ore and exhaust gas are substantially countercurrently contacted in the furnace in the conventional non-ferrous metal smelting furnace, It came to be completed.
[0008]
That is, the nonferrous metal smelting furnace of the present invention is as follows according to the first and second inventions.
[0009]
A non-ferrous metal smelting furnace according to a first aspect of the present invention stores at least one of a mat and a metal, and a raw material charging port for charging raw material ore to drop and supply the molten metal comprising slag, and stores the molten material. And a reaction bed for causing a smelting reaction between the raw ore supplied to the melt and a smelting reaction gas blown into the melt, and a tip immersed in the melt. a lance insertion opening for inserting a lance for blowing the formulation smelting reaction gas, possess an exhaust port for discharging exhaust gas containing the reaction product gas produced by the formulation smelting reaction out of the furnace, and the furnace negative pressure In a conventional non-ferrous metal smelting furnace, the non-ferrous metal smelting furnace includes a ceiling part provided with the raw material inlet and the lance insertion port and a reaction bed, and the falling of the raw material ore from the raw material insertion port. and smelting reaction portion that exists route and the lance, the reflected Floor portion is formed to extend in the horizontal transverse direction, and, and a熔体static part comprising a roof portion of the exhaust port is provided apart from the smelting reaction unit, stable flow The exhaust gas thus formed flows through the melt stationary part to the exhaust port, and is a space different from the space where the raw ore falling path from the raw material charging inlet and the lance exist in the smelting reaction part. was a path without contacting with the ore and the furnace, characterized in that it is configured to be discharged out of the furnace. In addition, the above “differing” means that the path of the exhaust gas having a stable flow is different from the space where the raw ore falls and the lance exists.
[0010]
The non-ferrous metal smelting furnace of the second invention is a conventional vertical cylindrical shape in which a raw material charging inlet, a lance, a lance insertion opening, and an exhaust opening are provided in the ceiling , and the furnace has a negative pressure. In the non-ferrous metal smelting furnace, a space extending in the vertical direction from the ceiling part, the space where the raw ore falls from the raw material inlet and the lance exists, and the path through which the exhaust gas flows to the exhaust port A partition wall is provided , and the exhaust gas in a stable flow is configured to be discharged outside the furnace without contacting the raw material ore in the furnace . Also in this case, the path of the exhaust gas having a stable flow is different from the space where the above-described dropping path of the raw ore and the lance exist.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Ferrous metal smelting furnace of the first invention, exhaust gas containing the reaction product gas produced by the smelting reactions, flows through the space to space and the phase differences which exist dropping path and lance ore from the raw material charging hole as a path Thus, the exhaust port is provided in the ceiling part different from the ceiling part in which the raw material loading inlet and the lance insertion port are formed or in a part separated by the same ceiling part . In addition, the non-ferrous metal smelting furnace of the second aspect of the present invention has a path where the raw ore falls from the raw material inlet and a space where the lance exists and a path where the exhaust gas flows to the exhaust port so that the exhaust gas flows as described above. A partition wall is provided so as to extend vertically from the ceiling .
[0012]
Specific embodiments of the non-ferrous metal smelting furnace of the present invention (first and second inventions) include, for example, the following. These specific embodiments are appropriately selected depending on conditions such as the installation location of the nonferrous metal smelting furnace and the layout including other equipment.
[0013]
(1) FIG. 1 is a schematic perspective view showing a non-ferrous metal smelting furnace according to a first embodiment of the first invention. The nonferrous metal smelting furnace shown in FIG. 1 has a vertical cylindrical smelting reaction part 40 and a melt stationary part 50. Here, the smelting reaction part 40 has the raw material charging inlet 11 and the lance insertion port 12 in the ceiling part, and has the reaction bed part 20, and raises a smelting reaction between the raw material ore and the smelting reaction gas. Moreover, the melt stationary part 50 is formed by extending the reaction bed part 20 in the horizontal and horizontal directions, and has an exhaust port 51 for discharging exhaust gas to the outside of the furnace in the ceiling part. And the melt which complete | finished smelting reaction is left still by the melt stationary part 50 (the position of the melt surface was shown with the chain line). Therefore, the exhaust gas flows through the exhaust port 51 to the space S l and the phase differences to space dropping path S m and the lance 31 of ore from the raw material charging hole 11 is present as a path S e.
[0014]
(2) FIG. 2 is a schematic perspective view showing the non-ferrous metal smelting furnace of the second embodiment of the first invention. The nonferrous metal smelting furnace shown in FIG. 2 has a smelting reaction part 60 and a melt stationary part 70. Here, the smelting reaction part 60 has the raw material charging inlet 11 and the lance insertion port 12 in the ceiling part, and has the reaction bed part 20, and is similar to the smelting reaction part 40 in FIG. A smelting reaction is caused to occur with the working gas. Moreover, the melt stationary part 70 is formed by extending the smelting reaction part 60 in the horizontal and lateral directions, and has an exhaust port 71 for discharging exhaust gas to the outside of the furnace in the ceiling part. Then, the melt that has finished the smelting reaction (the position of the melt surface is indicated by a chain line) is allowed to stand in the melt resting portion 70. Therefore, the exhaust gas flows through the exhaust port 71 to the space S l and the phase differences to space dropping path S m and the lance 31 of ore from the raw material charging hole 11 is present as a path S e.
[0015]
(3) FIG. 3 is a schematic perspective view showing a non-ferrous metal smelting furnace of one embodiment of the second invention. The non-ferrous metal smelting furnace shown in FIG. 3 is the same non-ferrous metal smelting furnace as in FIG. 5, the path S m of the raw ore from the raw material inlet 11 and the path S 1 in which the lance 31 exists and the path through which the exhaust gas flows. partition wall 81 separating the S e is provided so as to extend from the ceiling portion in the vertical direction. Therefore, the exhaust gas flows through the exhaust port 13 to the path S m and the space S l and the phase differences to the space as a path S e. The position of the melt surface is indicated by a chain line in FIG.
[0016]
The nonferrous metal smelting furnace of the present invention is used, for example, as follows. That is, first, the melt is stored in the reaction bed portion of the smelting reaction portion (necessarily also in the melt stationary portion if there is a melt stationary portion). Next, a lance for blowing the smelting reaction gas is inserted into the furnace through the lance insertion port, and the tip of the lance is immersed in the melt. Thereafter, the solid raw material ore necessary for the smelting reaction is usually charged into the furnace together with the solvent from the raw material inlet. At the same time, smelting reaction gas is blown from the tip of the lance. By doing so, a smelting reaction takes place in the reaction bed. And the exhaust gas containing the reaction product gas produced | generated by this smelting reaction is discharged | emitted from an exhaust port outside a furnace. At the same time, at least one of the mat and metal produced in the same manner is recovered and the slag is discharged.
[0017]
Since the non-ferrous metal smelting furnace of the present invention is as described above, the exhaust gas does not substantially counter-contact with the raw material ore in the furnace. Therefore, even under normal operating conditions, (1) the raw ore is less likely to become smoke ash and the smelting reaction efficiency is improved, (2) the exhaust gas is difficult to blow out from the raw material inlet and the lance insertion port, (3) the raw material inlet and lance The insertion slot is not easily blocked by smoke ash.
[0018]
【Example】
[Example 1]
FIG. 4 shows the dimensions of the same non-ferrous metal smelting furnace as in FIG. 1, but using this small non-ferrous metal smelting furnace, a test was conducted to smelt copper matte to metallic copper. .
[0019]
A 600 mm deep melt (copper mat. The position of the melt surface is indicated by a chain line) is stored in the reaction bed 20 and the melt stationary part 50 to start the test, and smelted for 4 days or more without interruption. did. And the reaction bed part 20 and the melt stationary part 50 produced | generated the melt which consists of metallic copper and slag. At this time, the copper mat as the raw material ore was continuously charged with a solvent having an average particle size of 20 mm together with the solvent. The test conditions such as the loading speed of the copper mat and the negative pressure near the ceiling of the smelting reaction part 40 were the same as in the past.
[0020]
During the test, no gas was blown out from the raw material charging port 11 and the lance insertion port 12 and no blockage of the raw material charging port 11 and the lance insertion port 12 with smoke ash was observed. Further, after the test, the inner diameter of the exhaust port 51 was hardly changed.
[0021]
【The invention's effect】
According to the present invention, under normal operating conditions, (1) the raw material ore is unlikely to become smoke ash, and thus the smelting reaction efficiency is excellent, (2) the exhaust gas is difficult to blow out from the raw material charging port or the lance insertion port, (3) the raw material It is possible to provide a non-ferrous metal smelting furnace in which the charging port and the lance insertion port are not easily blocked by smoke ash.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a first embodiment of a non-ferrous metal smelting furnace of the first invention.
FIG. 2 is a schematic perspective view of a second embodiment of the non-ferrous metal smelting furnace of the first invention.
FIG. 3 is a schematic perspective view of one embodiment of a non-ferrous metal smelting furnace of the second invention.
4 is a schematic perspective view of the non-ferrous metal smelting furnace used in Example 1. FIG.
FIG. 5 is a schematic perspective view of a conventional non-ferrous metal smelting furnace.
[Explanation of symbols]
10 furnace top 11 material charging hole 12 lance insertion opening 13,51,71 outlet 20 the bed portion 21熔体31 lance 31a lance tip 40,60 smelting reactions 50 and 70熔体static portion 81 partition wall S m Fall path S l of raw ore from the raw material inlet Space S e in the vicinity of the lance Exhaust gas path

Claims (2)

マットおよびメタルのうちの少なくとも1種、およびスラグからなる熔体に落下・供給するために原料鉱石を装入する原料装入口と、該熔体を蓄えるとともに、該熔体に供給された該原料鉱石と該熔体の中に吹き込まれた製錬反応用ガスとに製錬反応を起こさせる反応床部と、該熔体の中に浸漬した先端から該製錬反応用ガスを吹き込むランスを挿入するランス挿入口と、該製錬反応によって生成した反応生成ガスを含む排ガスを炉外へ排出する排気口とを有し、炉内が負圧である非鉄金属製錬炉において、
該非鉄金属製錬炉は、前記原料装入口と前記ランス挿入口が設けられた天井部および反応床部を備え、該原料挿入口からの前記原料鉱石の落下経路および前記ランスが存在する製錬反応部と、該反応床部が水平横方向に延長して形成されており、かつ、前記製錬反応部から離間して前記排気口が設けられた天井部を備える熔体静置部とを有し、
安定した流れとなった前記排ガス、該熔体静置部を通じて、前記排気口に流れ、前記製錬反応部における前記原料装入口からの前記原料鉱石の落下経路および前記ランスが存在する空間と相違する空間を経路とし、前記原料鉱石と炉内で接触することなく、炉外に排出されるように構成されていることを特徴とする非鉄金属製錬炉。
At least one of a mat and a metal, and a raw material inlet for charging raw ore for dropping and supplying to the melt consisting of slag, and the raw material supplied to the melt while storing the melt Insert a reaction bed that causes a smelting reaction between the ore and the smelting reaction gas blown into the melt, and a lance that blows the smelting reaction gas from the tip immersed in the melt. A non-ferrous metal smelting furnace having a lance insertion port and an exhaust port for exhausting exhaust gas containing the reaction product gas generated by the smelting reaction to the outside of the furnace,
The non-ferrous metal smelting furnace includes a ceiling part and a reaction bed part provided with the raw material inlet and the lance insertion port, and a smelting process in which the raw ore dropping path from the raw material insertion port and the lance exist. A reaction section, and a melt stationary section provided with a ceiling section in which the reaction bed section is formed to extend in a horizontal and lateral direction and is spaced apart from the smelting reaction section and provided with the exhaust port. Have
The exhaust gas became steady stream, through該熔body static portion, flows into the exhaust port, a space in which the dropping path and the lance of the ore from the raw material charging hole in the smelting reaction unit is present A non-ferrous metal smelting furnace, characterized in that it is configured so that a different space is used as a path and is discharged outside the furnace without contacting the raw ore in the furnace.
マットおよびメタルのうちの少なくとも1種、およびスラグからなる熔体に落下・供給するために原料鉱石を装入する原料装入口と、該熔体を蓄えるとともに、該熔体に供給された該原料鉱石と該熔体の中に吹き込まれた製錬反応用ガスとに製錬反応を起こさせる反応床部と、該熔体の中に浸漬した先端から該製錬反応用ガスを吹き込むランスを挿入するランス挿入口と、該製錬反応によって生成した反応生成ガスを含む排ガスを炉外へ排出する排気口とを有し、炉内が負圧である、縦型円筒状の非鉄金属製錬炉において、
該非鉄金属製錬炉は、前記原料装入口と、前記ランス挿入口と、前記排気口とが設けられた天井部、および、反応床部を備え、
前記天井部から上下方向に伸長し、前記原料装入口からの前記原料鉱石の落下経路および前記ランスが存在する空間と、前記排ガスが前記排気口へと流れる経路とを隔てる隔壁が設けられ、安定した流れとなった前記排ガスが、前記原料鉱石と炉内で接触することなく、炉外へ排出されるように構成されていることを特徴とする非鉄金属製錬炉。
At least one of a mat and a metal, and a raw material inlet for charging raw ore for dropping and supplying to the melt consisting of slag, and the raw material supplied to the melt while storing the melt Insert a reaction bed that causes a smelting reaction between the ore and the smelting reaction gas blown into the melt, and a lance that blows the smelting reaction gas from the tip immersed in the melt. A vertical cylindrical nonferrous metal smelting furnace having a lance insertion port for discharging and an exhaust port for discharging exhaust gas containing the reaction product gas generated by the smelting reaction to the outside of the furnace. In
The non-ferrous metal smelting furnace includes the raw material charging inlet, the ceiling portion provided with the lance insertion port, and the exhaust port, and a reaction bed portion,
A partition that extends in the vertical direction from the ceiling and separates a path where the raw ore falls from the raw material inlet and a space where the lance exists and a path through which the exhaust gas flows to the exhaust port is provided , and is stable. The non-ferrous metal smelting furnace is configured such that the exhaust gas that has flowed is discharged outside the furnace without contacting the raw material ore in the furnace.
JP2001117887A 2001-04-17 2001-04-17 Non-ferrous metal smelting furnace Expired - Lifetime JP4736226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117887A JP4736226B2 (en) 2001-04-17 2001-04-17 Non-ferrous metal smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117887A JP4736226B2 (en) 2001-04-17 2001-04-17 Non-ferrous metal smelting furnace

Publications (2)

Publication Number Publication Date
JP2002318075A JP2002318075A (en) 2002-10-31
JP4736226B2 true JP4736226B2 (en) 2011-07-27

Family

ID=18968354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117887A Expired - Lifetime JP4736226B2 (en) 2001-04-17 2001-04-17 Non-ferrous metal smelting furnace

Country Status (1)

Country Link
JP (1) JP4736226B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429825A (en) * 1977-08-09 1979-03-06 Norddeutsche Affinerie Apparatus for melting and refining crude copper or blister copper
JPH01195220A (en) * 1988-01-30 1989-08-07 Nippon Steel Corp Melting and reducing furnace
JPH01294832A (en) * 1988-05-20 1989-11-28 Mitsubishi Metal Corp Continuous smelting apparatus for metallic sulfide ore
JPH093561A (en) * 1995-06-19 1997-01-07 Sumitomo Metal Mining Co Ltd Mineral concentrating burner for self-flash smelting furnace and operation using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798979B2 (en) * 1987-12-08 1995-10-25 住友金属鉱山株式会社 Method for controlling temperature of flash smelting furnace and temperature measuring device used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429825A (en) * 1977-08-09 1979-03-06 Norddeutsche Affinerie Apparatus for melting and refining crude copper or blister copper
JPH01195220A (en) * 1988-01-30 1989-08-07 Nippon Steel Corp Melting and reducing furnace
JPH01294832A (en) * 1988-05-20 1989-11-28 Mitsubishi Metal Corp Continuous smelting apparatus for metallic sulfide ore
JPH093561A (en) * 1995-06-19 1997-01-07 Sumitomo Metal Mining Co Ltd Mineral concentrating burner for self-flash smelting furnace and operation using the same

Also Published As

Publication number Publication date
JP2002318075A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
RU2162108C2 (en) Method and apparatus for producing metals and metal alloys
KR910006037B1 (en) Method for smelting reduction of iron ore
JP3529317B2 (en) Operating method of copper smelting furnace
US6585929B1 (en) Direct smelting vessel
EP0690136B1 (en) Method and apparatus for production of iron from iron compounds
RU2226219C2 (en) Direct melting method
JP4736226B2 (en) Non-ferrous metal smelting furnace
RU2315934C1 (en) Furnace for processing oxidized ore materials containing nickel, cobalt, iron
CN1025793C (en) Apparatus for continuous copper smelting
JP3431314B2 (en) Electric smelting furnace for nonferrous metal smelting and method of charging raw slag
RU2209840C2 (en) Method of cleaning slag in electrical furnace
JP2002317229A (en) Metal smelting furnace
JPH11310814A (en) Smelting reduction furnace
JPH0129857B2 (en)
JP3024273B2 (en) Converter for non-ferrous metal smelting and its operation method
RU2070696C1 (en) Electric furnace
RU2087820C1 (en) Furnace
JPH1150164A (en) Horizontal converter
RU2059178C1 (en) Furnace for continuous heat of materials in molten bath
RU2009424C1 (en) Furnace for processing sulfide starting materials
RU1813193C (en) Method of treating melt and gas-lift for performing the method
AU773908B2 (en) Direct smelting vessel
RU2096705C1 (en) Furnace for production of antimony trioxide
JPS6035408B2 (en) Continuous processing method and equipment for hot metal
RU2044210C1 (en) Furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

EXPY Cancellation because of completion of term