JPH01192759A - Superconducting ceramic - Google Patents

Superconducting ceramic

Info

Publication number
JPH01192759A
JPH01192759A JP63015270A JP1527088A JPH01192759A JP H01192759 A JPH01192759 A JP H01192759A JP 63015270 A JP63015270 A JP 63015270A JP 1527088 A JP1527088 A JP 1527088A JP H01192759 A JPH01192759 A JP H01192759A
Authority
JP
Japan
Prior art keywords
elements
periodic table
group
present
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63015270A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63015270A priority Critical patent/JPH01192759A/en
Publication of JPH01192759A publication Critical patent/JPH01192759A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To readily obtain ceramic having excellent superconductivity at low cost, by heating and calcining a mixture of given amounts of each raw material comprising two or more elements of group Vb of the periodic table, two or more elements of group IIa and Cu as constituent elements. CONSTITUTION:Compounds (e.g., oxide and carbonate) comprising (A) two or more elements of group Vb of the periodic table selected from Bi, Sb, As and P, (B) two or more elements of group IIa of the periodic table selected from Ba, Sr, Ca and Mg and (C) Cu as constituent elements, respectively are collected and blended in the ratio to make the composition ratio of the aimed substance. Then the blend is as a starting raw material pressurized, tableted, calcined in an oxidizing atmosphere at 500-1,000 deg.C, ground, blended, pressurized, heated, tableted again, further calcined in an oxidizing atmosphere and then reduced under heating in O2-Ar with reduced O2 with reduced O2 to give the title ceramic shown by the formula (A1-xBx)yCuzOw (A is element A; B is element B; x=0.3-1; y=2.0-4.0, preferably 2.5-3.5; z=1.0-4.0, preferably 1. 5-3.5; w is 4.0-10.0, preferably 6-8).

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は酸化物セラミック系超伝導材料に関する。 本
発明は新型の超伝導を呈する材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to oxide ceramic superconducting materials. The present invention relates to a new type of superconducting material.

「従来の利用分野J 従来、超電子材料は、水銀、鉛等の元素、NbN。“Traditional field of use J Conventionally, superelectronic materials include elements such as mercury and lead, and NbN.

Nb*Ge、 Nb3Ga等の合金またはNb5(Al
o、aGeo、z)等の三元素化合物よりなる金属材料
が用いられている。しかしCれらのTc(超伝導臨界温
度)オンセットは25Kまでであった。
Alloys such as Nb*Ge, Nb3Ga or Nb5(Al
A metal material made of a ternary compound such as o, aGeo, z) is used. However, their Tc (superconducting critical temperature) onset was up to 25K.

他方、近年、セラミック系の超伝導材料が注目されてい
る。この材料は最初IBMのチューリッヒ研究所よりB
a−La−Cu−0(バラクオ)系酸化物高温超伝導体
として報告され、さらにLSCO(第二銅酸−ランタン
ーストロンチューム)として知られてきた。
On the other hand, ceramic-based superconducting materials have attracted attention in recent years. This material was first obtained from IBM's Zurich laboratory.
It was reported as an a-La-Cu-0 (baraquo)-based oxide high-temperature superconductor, and further known as LSCO (cupric acid-lanthanum-strontium).

これらは(AI−X BX) ycuoz、x=o、0
1〜0.3 、y=1.3〜2.2. z=2.0〜4
.5におけるA、Bとして、それぞれ1種類の元素を用
いるのみであるため、Tcオンセントが30K Lか得
られなかった。
These are (AI-X BX) ycuoz, x=o, 0
1-0.3, y=1.3-2.2. z=2.0~4
.. Since only one type of element was used for each of A and B in Example 5, a Tc oncent of only 30 KL could not be obtained.

「従来の問題点」 しかし、これら酸化物セラミックスの超伝導の可能性は
Tcも30Kがその限界であった。
``Conventional Problems'' However, the possibility of superconductivity in these oxide ceramics was limited to Tc of 30K.

このため、このTco (電気抵抗が零または実質的に
零になる温度)をさらに高くし、望むべくは液体窒素温
度(77K)またはそれ以上で動作せしめることが強く
求められていた。
For this reason, there has been a strong demand to further increase this Tco (the temperature at which the electrical resistance becomes zero or substantially zero), and preferably to operate at liquid nitrogen temperature (77K) or higher.

「問題を解決すべき手段」 本発明は゛、ががる高温で超伝導を呈するべく・KJi
F4型を構成すべき素材を探し求めた。その結果、Tc
オンセット(超伝導現象が一部にみいて観察され始める
温度)も50〜107Kまで向上させ得ることが明らか
になった。
"Means to Solve the Problem" The present invention aims to exhibit superconductivity at extremely high temperatures.
We searched for the materials that would make up the F4 model. As a result, Tc
It has become clear that the onset (temperature at which superconducting phenomena begin to be observed in some areas) can also be improved to 50 to 107K.

本発明の超伝導性セラミックスは(AI−、8に)yC
uzOw、x−0,3〜1.y−2,0〜4.0好まし
くは2.5〜3.5. z−1,0〜4.0好ましくは
1.5〜3.5.w=4.0〜1O10好ましくは6〜
8で一般的に示し得るものである。AはA++At+ 
・・・Anよりなりまた、AI、At・・AnはBi(
ビスマス)、Sb(アンチモン)Aa(ヒ素)P(リン
)より選ばれた元素のうちの少なくとも2種類を用いて
いる。
The superconducting ceramics of the present invention (AI-, 8) yC
uzOw, x-0, 3~1. y-2.0 to 4.0 preferably 2.5 to 3.5. z-1.0 to 4.0 preferably 1.5 to 3.5. w=4.0~1O10 preferably 6~
8 can be generally shown. A is A++At+
...An, and AI, At...An is Bi(
Bismuth), Sb (antimony), Aa (arsenic), and P (phosphorus).

マタB !;!B+、Bg  ・・・anよりなりそれ
らはBa(バリューム)、Sr(ストロスンチェーム)
、Ca(カルシニーム) +Mg(マグネシューム)よ
り選ばれた元素のうち少なくとも2種類を用いている。
Mata B! ;! Consisting of B+, Bg...an, they are Ba (valium) and Sr (strosenchaim)
, Ca (calcineum) + Mg (magnesium).

本発明は銅と酸素との混合の層構造とせしめ、これを1
分子内で1層またはそれを対称構造の2層構造とし、こ
の層の最外積電子の電子の軌道により超伝導を呈せしめ
得るモデルを前提としている。このため、新構造を前提
としている。
The present invention creates a layered structure of a mixture of copper and oxygen, and
The premise is a model in which the molecule has one layer or a symmetrical two-layer structure, and superconductivity can be exhibited by the orbits of the outermost product electrons in this layer. Therefore, a new structure is assumed.

かかる構造においては、銅の4ケの原子より層構造とせ
しめ、この層をキャリアが移動しやすくするため、本発
明構造における(AI−X BX) ycuz。
In such a structure, a layer structure is formed using four copper atoms, and in order to facilitate the movement of carriers through this layer, (AI-X BX) ycuz in the structure of the present invention.

鰻におけるA、Bの選ばれる元素が重要である。The elements A and B selected in eel are important.

特にAの元素を旧(ビスマス)、Sb(アンチモン)。In particular, element A is old (bismuth) and Sb (antimony).

As(ヒ素)、P(リン)の元素用周期律表vbの族で
ある。本発明は、その元素のうちの少なくとも2種If
((At、At・・・ An)を用いている。
It is in group Vb of the periodic table for elements, including As (arsenic) and P (phosphorus). The present invention provides at least two of the elements If
((At, At... An) is used.

さらに本発明はBとして元素周期律表における■a族で
あるBa(バリューム)、Sr(ストロンチューム)、
Ca(カルシニーム)、Mg(マグネシューム)より選
ばれた元素のうちのす(なくとも2種類(B+、Bg 
 ・・・ B、 )を用いている。
Furthermore, the present invention uses Ba (valume), Sr (strontium), which are group ■a in the periodic table of elements, as B.
Some of the elements selected from Ca (calcineum) and Mg (magnesium) (at least two types (B+, Bg)
... B, ) is used.

かくすることにより、A、Bに対し、単に1つのみの元
素を用いるこれまでの構造に比べて、多結晶を呈する1
つの結晶粒を大きくでき、ひいてはその多結晶粒界での
バリアをより消失させ得る構成とけしめた。その結果、
Tcオンセットをさらに高くさせ得る。そしてその理想
は単結晶構造である。
By doing this, compared to the conventional structure in which only one element is used for A and B, 1 exhibits a polycrystalline structure.
The authors concluded that the structure was designed to make it possible to enlarge the polycrystalline grains, thereby further eliminating the barrier at the polycrystalline grain boundaries. the result,
Tc onset can be made even higher. The ideal is a single crystal structure.

本発明は出発材料の酸化物または炭酸化物を混合し、−
度加圧して、出発材料よ酸化物または炭酸化物により(
AI−X ax) ycuzO−型の分子を作り得る。
The present invention involves mixing the starting oxides or carbonates, -
Under high pressure, the starting materials are mixed with oxides or carbonates (
AI-X ax) ycuzO-type molecules can be made.

さらにこれを微粉末化し、再び加圧してタブレット化し
、本焼成を有せしめている。
Further, this is pulverized, pressed again to form a tablet, and subjected to main firing.

「作用」 本発明の新型構造のセラミック超伝導素材はきわめて簡
単に作ることができる。特にこれらはその出発材料とし
て3Nまたは4Nの純度の酸化物または炭素化物を用い
、これをボールミルを用いて微粉末に粉砕し、混合する
。すると、化学量論的に(AI−x ax) ycuz
O−におけるA=^t+Az+ ’ ・・Aa +B−
8++Bg+ * HHBaおよびLV+LHのそれぞ
−れの値およびA1,A2  ・・・ ^7およびB1
,B、  ・・・B7のそれぞれを任意に変更、制御す
ることができる。
"Operation" The ceramic superconducting material with the new structure of the present invention can be produced very easily. In particular, these use 3N or 4N purity oxide or carbonide as the starting material, which is ground into a fine powder using a ball mill and mixed. Then, stoichiometrically (AI-x ax) ycuz
A at O-=^t+Az+'...Aa +B-
8++Bg+ * Each value of HHBa and LV+LH and A1, A2 ... ^7 and B1
, B, . . . B7 can be arbitrarily changed and controlled.

本発明においては、かかる超伝導材料を作るのに特に高
価な設備を用いなくともよいという他の特徴も有する。
Another feature of the present invention is that it does not require the use of particularly expensive equipment to produce such a superconducting material.

以下に実施例に従い本発明を記す。The present invention will be described below according to Examples.

f実施例」 本発明の実施例として、A=^1+Aよとした。そして
AtとしてB15At としてSb、 B=8++Bg
とした。
f Example” As an example of the present invention, A=^1+A. And as At, B15At as Sb, B=8++Bg
And so.

そしてB、としてSr、 BzとしてCaを用いた。Then, Sr was used as B, and Ca was used as Bz.

出発材料はB1およびsb化合物として酸化ビスマス(
BizOs)、酸化アンチモン(SbtOs) 、 S
r化合物としてSrCO3、Ca化合物としてCaC0
,、銅化合物としてCuOを用いた。これらは■高純度
化学研究所より入手し、純度は99.95%またはそれ
以上の微粉末を用い、x =0.61CA:B−1:2
) y −3,0,z=3+W−6〜8となるべく選ん
だ。またA1,AtであるBiとsbとの比を1:1,
2:1,5:1例えば1:1さらにat、BzであるS
rおよびCaをl:l とした。するとBfo、 5S
bo、 5SrICaICu304〜10好ましくはB
io、 5Sbo、 5SrICalCulO7〜、と
することができた。
The starting material is bismuth oxide (
BizOs), antimony oxide (SbtOs), S
SrCO3 as r compound, CaC0 as Ca compound
, CuO was used as the copper compound. These were obtained from the High Purity Chemical Research Institute, using fine powder with a purity of 99.95% or higher, x = 0.61CA:B-1:2
) y-3,0,z=3+W-6~8. Also, the ratio of Bi and sb, which is A1, At, is 1:1,
2:1, 5:1 for example 1:1 and S which is at, Bz
r and Ca were set as l:l. Then Bfo, 5S
bo, 5SrICaICu304-10 preferably B
io, 5Sbo, 5SrICalCulO7~.

これらを十分乳鉢で混合しカプセルに封入し、3 kg
 / ciの荷重を加えてタブレ・ント化(太きく10
価φX3mm)した。さらに酸化性雰囲気、例えば大気
中で500〜1000’C5例えば800°Cで8時間
加熱酸化をした。この行程を仮焼成とした。
Mix these thoroughly in a mortar and seal in capsules, weighing 3 kg.
Add a load of /ci to make it into a tablet (thick 10
(value φX3mm). Further, heating oxidation was performed in an oxidizing atmosphere, for example, air, at 500 to 1000°C, for example, 800°C for 8 hours. This step was called pre-firing.

次にこれを粉砕し、乳鉢で混合した。そしてその粉末の
平均粉半径が10μm以下の大きさとなるようにした。
This was then ground and mixed in a mortar. The powder was made to have an average powder radius of 10 μm or less.

さらにこれをカプセルに封入し50kg/c1aの圧力
でタブレットに加圧して成型した。この加圧と同時に3
00〜800°Cに加熱してホットプレス方式とした。
Further, this was encapsulated in a capsule and pressed to form a tablet at a pressure of 50 kg/c1a. At the same time as this pressurization, 3
It was heated to 00 to 800°C to use a hot press method.

次に500〜1000°C1例えば900°Cの酸化物
雰囲気、例えば大気中で酸化して、本焼成を10〜50
時間、例えば15時間行った。
Next, oxidation is performed at 500 to 1000°C1, for example, 900°C in an oxide atmosphere, such as air, and the main firing is performed for 10 to 50°C.
For example, 15 hours.

このタブレットはベルブスカイト構造が主として観察さ
れるが、新型構造も同時に観察された。
This tablet mainly has a vervskite structure, but a new structure was also observed at the same time.

次にこの試料を酸素を少な(させた0、−Ar中で加熱
(600〜1100°C,3〜30時間、例えば300
°Cl2O時間)して、還元させた。
This sample is then heated (600-1100°C, 3-30 hours, e.g.
°Cl2O hours) for reduction.

この試料を用いて固有抵抗と温度との関係を調べた。す
ると最高温度が得られたものとしてのTcオンセットと
して147に、TcOとして125Kを観察することが
できた。
Using this sample, the relationship between resistivity and temperature was investigated. Then, it was possible to observe a Tc onset of 147 and a TcO of 125 K as the maximum temperature obtained.

「実施例2」 この実施例として、A1としてBi1^2としてsbを
n、*z =1:1でその酸化物を混合した。B、とし
てBa、 BzとしてMsを用いB、:B2=1:1 
とした。出発材料は酸化ビスマスおよび酸化アンチモン
を、BaとしてBaCO3、MgとしてMgzOs 、
また銅化合物としてCuOを用いた。その他は実施例1
と同様である。
"Example 2" In this example, sb was n as Bi1^2 as A1, and the oxides thereof were mixed at *z = 1:1. Using Ba as B and Ms as Bz, B:B2=1:1
And so. The starting materials are bismuth oxide and antimony oxide, BaCO3 as Ba, MgzOs as Mg,
Further, CuO was used as the copper compound. Others are Example 1
It is similar to

Tcオンセットとして134に、 Tcoとして104
Kを得ることができた。
134 as Tc onset, 104 as Tco
I was able to get K.

「効果」 本発明により、これまでまったく不可能とされていたセ
ラミックス超電導体を作ることができるようになった。
"Effects" The present invention has made it possible to create ceramic superconductors, which was previously considered impossible.

本発明において仮焼成をした後に微粉末化する工程によ
り、初期状態でのそれぞれの出発材料の化合物を到達材
料、即ち(八+−xBx)ycuzO−で示される材料
を含む化合物とするものである。
In the present invention, the compound of each starting material in the initial state is converted into a final material, that is, a compound containing a material represented by (8+-xBx)ycuzO-, by the step of pre-calcining and then pulverization. .

さらにこの到達材料の化合物における分子構造内で銅の
層構造をよりさせやすくするため、原子周期律表におけ
るI[a、Vbの元素を複数個混合させた。かくして最
終完成化合物中に、ボイド等の空穴の存在をより除去す
ることができ、ひいてはTcオンセット、Tcoをより
高温化できるものと酸化物が構造において層構造を有し
、その層構造る。
Furthermore, in order to make it easier to form a copper layer structure within the molecular structure of the compound of this target material, a plurality of elements I[a and Vb in the periodic table of atoms were mixed. In this way, the presence of voids such as voids can be further removed in the final completed compound, and as a result, the Tc onset, the Tco that can be heated to a higher temperature, and the oxide have a layered structure, and the layered structure .

本発明の実施例は、タブレットにしたものである。しか
しタブレットにするのではなく、仮焼成または本焼成の
後の粉末を溶媒にとかし、基板等にその溶液をコーティ
ングをし、これを酸化性界スとすることも可能である。
An embodiment of the present invention is made into a tablet. However, instead of making it into a tablet, it is also possible to dissolve the pre-calcined or main-calcined powder in a solvent, coat the solution on a substrate, etc., and use this as an oxidizing interface.

イA 本発明により超゛電導体を容易に低価格で作ることがで
きるようになった。
A: The present invention has made it possible to easily produce superconductors at low cost.

Claims (1)

【特許請求の範囲】[Claims] (A_1_−_xBx)_yCu_zO_w x=0.
3〜1,y=2.0〜4.0好ましくは2.5〜3.5
,Z=1.0〜4.0好ましくは1.5〜3.5,w=
4.0〜10.0好ましくは6〜8を有し、AはA_1
+A_2・・Anよりなり、またA_1,A_2・・・
AnはBi(ビスマス),Sb(アンチモン),As(
ヒ素)、P(リン)より選ばれた少なくとも2種類の元
素よりなり、BはB_1+B_2・・・Bnよりなりま
た、B_1,B_2・・・BnはBa(バリューム),
Sr(ストロンチューム),Ca(カルシューム),M
g(マグネシューム)より選ばれた少なくとも2種類の
材料の元素よりなる超伝導性を有するセラミックス材料
であることを特徴とする超伝導セラミックス。
(A_1_−_xBx)_yCu_zO_w x=0.
3-1, y=2.0-4.0 preferably 2.5-3.5
, Z=1.0-4.0 preferably 1.5-3.5, w=
4.0-10.0 preferably 6-8, A is A_1
+A_2...An, and A_1, A_2...
An is Bi (bismuth), Sb (antimony), As (
B consists of at least two elements selected from arsenic) and P (phosphorus), B consists of B_1+B_2...Bn, and B_1, B_2...Bn consists of Ba (valium),
Sr (strontium), Ca (calcium), M
1. A superconducting ceramic, characterized in that it is a ceramic material having superconductivity and comprising at least two types of material elements selected from g (magnesium).
JP63015270A 1988-01-26 1988-01-26 Superconducting ceramic Pending JPH01192759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015270A JPH01192759A (en) 1988-01-26 1988-01-26 Superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015270A JPH01192759A (en) 1988-01-26 1988-01-26 Superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01192759A true JPH01192759A (en) 1989-08-02

Family

ID=11884170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015270A Pending JPH01192759A (en) 1988-01-26 1988-01-26 Superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01192759A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188456A (en) * 1988-01-20 1989-07-27 Natl Res Inst For Metals Oxide high temperature superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188456A (en) * 1988-01-20 1989-07-27 Natl Res Inst For Metals Oxide high temperature superconductor

Similar Documents

Publication Publication Date Title
KR910001346B1 (en) Superconducting ceramics
JPH01192758A (en) Superconducting ceramic
JPH01192759A (en) Superconducting ceramic
JPH0764560B2 (en) Layered copper oxide
JP2636057B2 (en) Manufacturing method of oxide superconductor
JP2588400B2 (en) Superconducting ceramics
JPH01242459A (en) Superconducting ceramics
JP2617307B2 (en) Manufacturing method of superconducting ceramics
JPH0813705B2 (en) Oxide superconducting material and manufacturing method
JP2588398B2 (en) Superconducting ceramics
JP2588399B2 (en) Superconducting ceramics
JP2593475B2 (en) Oxide superconductor
JPS63233069A (en) Preparation of superconductive ceramic
JP3034267B2 (en) Oxide superconductor
JP2593480B2 (en) Manufacturing method of oxide superconductor
JPH01133924A (en) Perovskite type oxide superconductor having silver-containing oxygen-defective triple structure
JP2597578B2 (en) Superconductor manufacturing method
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
JP2748942B2 (en) Oxide superconductor
JPS63236751A (en) Superconductive ceramic
JPS63230563A (en) Superconducting ceramics
JPS63176353A (en) Superconductive raw material
JP2748943B2 (en) Oxide superconductor
JPS63233067A (en) Preparation of superconductive ceramic
JP3284010B2 (en) Metal oxide material and superconducting device using the same