JPH0119231B2 - - Google Patents

Info

Publication number
JPH0119231B2
JPH0119231B2 JP55035275A JP3527580A JPH0119231B2 JP H0119231 B2 JPH0119231 B2 JP H0119231B2 JP 55035275 A JP55035275 A JP 55035275A JP 3527580 A JP3527580 A JP 3527580A JP H0119231 B2 JPH0119231 B2 JP H0119231B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
polyvinylpyrrolidone
mixture
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55035275A
Other languages
Japanese (ja)
Other versions
JPS56132773A (en
Inventor
Teruyoshi Morita
Yoshinori Toyoguchi
Takafumi Fujii
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3527580A priority Critical patent/JPS56132773A/en
Publication of JPS56132773A publication Critical patent/JPS56132773A/en
Publication of JPH0119231B2 publication Critical patent/JPH0119231B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明はリチウム、ナトリウムなどのアルカリ
金属、マグネシウム、カルシウムなどのアルカリ
土類金属あるいはアルミニウムなど軽金属を負極
活物質とし、金属フツ化物、塩化物、酸化物ある
いは炭素のフツ化物を正極活物質とし、炭酸プロ
ピレン、γ−ブチロラクトン、1,2−ジメトキ
シエタン、テトラヒドロフランなどの有機溶媒あ
るいはそれらの混合溶媒中に過塩素酸リチウム、
ホウフツ化リチウム、塩化アルミニウムなどの溶
質を溶解した有機電解質を用いる、いわゆる有機
電解質電池の正極の改良に関する。
Detailed Description of the Invention The present invention uses alkali metals such as lithium and sodium, alkaline earth metals such as magnesium and calcium, or light metals such as aluminum as negative electrode active materials, and uses metal fluorides, chlorides, oxides, or carbon atoms as negative electrode active materials. Lithium perchlorate is used as a positive electrode active material, and lithium perchlorate,
This invention relates to improvements in the positive electrode of so-called organic electrolyte batteries that use organic electrolytes in which solutes such as lithium borofluoride and aluminum chloride are dissolved.

現在有機電解質電池の正極活物質として一般に
使用されているものに、フツ化炭素、二酸化マン
ガン、酸化銅、四三酸化鉛、硫化第一鉄、硫化第
二鉄などの固体状活物質、あるいは亜硫酸ガス、
塩化チオニルなどの気体または液体状活物質が挙
げられる。これら活物質は、いずれも電導度が極
端に小さく、特に固体状活物質の場合、電池の正
極として使用するためには、導電材として炭素粉
末あるいは金属粉末を添加することが必要であ
り、従つてこれら混合物を正極成形体となすため
には適当な結着剤の選択が重要な要件となつてい
る。
Currently, solid active materials commonly used as positive electrode active materials for organic electrolyte batteries include carbon fluoride, manganese dioxide, copper oxide, trilead tetroxide, ferrous sulfide, ferric sulfide, and sulfite. gas,
Examples include gaseous or liquid active materials such as thionyl chloride. All of these active materials have extremely low conductivity, and in the case of solid active materials in particular, in order to use them as positive electrodes for batteries, it is necessary to add carbon powder or metal powder as a conductive material. Therefore, selection of an appropriate binder is an important requirement in order to form a positive electrode molded article from these mixtures.

更に電解質として有機溶媒を使用しているた
め、耐有機溶媒性の結着剤を用いなければなら
ず、結着剤選択の自由度がこれによつて一層せば
められていると言える。
Furthermore, since an organic solvent is used as the electrolyte, a binder that is resistant to organic solvents must be used, and it can be said that the degree of freedom in selecting a binder is further limited by this.

従来、有機電解質電池においては、有機溶媒に
安定であるということから、主として四フツ化エ
チレン−六フツ化プロピレン共重合体、ポリ四フ
ツ化エチレン、ポリフツ化ビニリデンなどのフツ
素樹脂、あるいはポリエチレンなどの粉末、もし
くは界面活性剤などを用いて水に分散させたも
の、あるいはスチレンブタジエンゴム(SBR樹
脂)を有機溶媒に溶解したもの、界面活性剤を用
いて水に分散させたものなどが用いられてきた。
Conventionally, in organic electrolyte batteries, fluororesins such as tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene, polyvinylidene fluoride, or polyethylene have been used mainly because they are stable in organic solvents. powder or dispersed in water using a surfactant, styrene-butadiene rubber (SBR resin) dissolved in an organic solvent, or dispersed in water using a surfactant, etc. It's here.

これらは取り扱いの面からは粉末として使用す
るのが簡単であるが、その場合均一に分散させ、
結着性をもたせるためには、全体の20重量%程度
混入することが必要である。従つて導電材を10重
量%程度混入するとすれば、必然的に正極合剤中
の純粋活物質は約70重量%と低くなり、また結着
剤が活物質表面を覆う率も大となり、特性自体も
大きく低下する。
From the viewpoint of handling, it is easy to use these as powders, but in that case they must be uniformly dispersed and
In order to provide binding properties, it is necessary to mix approximately 20% by weight of the total. Therefore, if approximately 10% by weight of the conductive material is mixed, the pure active material in the positive electrode mixture will inevitably be as low as approximately 70% by weight, and the ratio of the binder covering the surface of the active material will also be large, which will affect the characteristics. itself is greatly reduced.

これに対し、取り扱い面ではやや不便である
が、界面活性剤を用いて水に分散させた結着剤を
用いた場合、結着剤量は全体の15〜5重量%と少
なく、エネルギー密度的には非常に有利である。
特にスチレンブタジエンゴムのデイスパージヨン
を用いた場合、導電材に炭素粉末を10重量%添加
したとき、約5重量%と少なくてすみ、これらの
結着剤のうちでは最も有利である。
On the other hand, when using a binder dispersed in water using a surfactant, the amount of binder is small at 15 to 5% by weight of the total, although it is somewhat inconvenient to handle, and the energy density is is very advantageous.
In particular, when a styrene-butadiene rubber dispersion is used, when 10% by weight of carbon powder is added to the conductive material, the amount required is as small as about 5% by weight, making it the most advantageous among these binders.

一方これらの樹脂はいずれも撥油性を有してい
るため電極となじみ難く、電極の内部への電解液
の浸透が極度に妨げられる。この撥油性はフツ素
樹脂よりスチレンブタジエンゴムの方が小さく、
この点でも量的に最も少なくすむことと相まつて
有利であると言える。
On the other hand, since all of these resins have oil repellency, they do not mix well with the electrodes, and the penetration of the electrolyte into the interior of the electrodes is extremely hindered. This oil repellency is smaller for styrene-butadiene rubber than for fluororesin,
In this respect as well, it can be said that it is advantageous since it can be minimized in terms of quantity.

しかしながら、少ない量で結着性をもたせるた
めには大きな圧力で電極を成形することが必要で
あり、かつスチレンブタジエンゴム自体もある程
度の撥油性を有しているので、電極内部への電解
液の浸透が困難であり、このことが電池の放電特
性に悪影響を与えている。即ち放電開始時におけ
る電圧の立ち遅れ、放電利用率への影響などであ
る。
However, in order to provide binding properties with a small amount, it is necessary to mold the electrode under high pressure, and styrene-butadiene rubber itself has some degree of oil repellency, so the electrolyte does not enter the inside of the electrode. Penetration is difficult, which adversely affects the discharge characteristics of the battery. That is, there is a delay in the voltage at the start of discharge, an effect on the discharge utilization rate, etc.

従つてこれらの欠点を解消するためには、結着
剤量の一層の低減、および電解液の浸透を容易に
するため電極の多孔度を大にするなどが必要とな
る。
Therefore, in order to eliminate these drawbacks, it is necessary to further reduce the amount of binder and to increase the porosity of the electrode to facilitate penetration of the electrolyte.

本発明者らは、上記に鑑み種々検討した結果、
ポリビニルピロリドン を正極合剤中に添加することにより、上記の欠点
を改良できることを見出した。
As a result of various studies in view of the above, the present inventors found that
Polyvinylpyrrolidone It has been found that the above-mentioned drawbacks can be improved by adding the above to the positive electrode mixture.

ポリビニルピロリドンは有機溶媒、特に炭酸プ
ロピレン、γ−ブチロラクトンに溶解性であり、
電極合剤中に添加し、成形体となした後、電池に
組み込んだ場合、徐々に電解液中に溶解してい
く。従つて、電極内のポリビニルピロリドンが存
在していた部分が電解液と置換され、電極の反応
部分が増大すると考えられる。その結果、電池の
放電特性が向上し、電極合剤の放電利用率が向上
する。同時にポリビニルピロリドン自体結着性を
有するため、結着剤量を低減できるという効果も
ある。
Polyvinylpyrrolidone is soluble in organic solvents, especially propylene carbonate, γ-butyrolactone,
When it is added to an electrode mixture, formed into a molded body, and then incorporated into a battery, it gradually dissolves into the electrolyte. Therefore, it is thought that the portion of the electrode where polyvinylpyrrolidone was present is replaced with the electrolyte, increasing the reactive portion of the electrode. As a result, the discharge characteristics of the battery are improved and the discharge utilization rate of the electrode mixture is improved. At the same time, since polyvinylpyrrolidone itself has binding properties, it also has the effect of reducing the amount of binding agent.

通常電池の電極は電池内に組み込んでしまえば
強度的に多少弱くとも充分に活用され得る。従つ
て、通常より少ない量の結着剤と所定量のポリビ
ニルピロリドンを正極活物質、導電材とともに成
形した時、ポリビニルピロリドンの結着性とも相
まつて、強度の大きい電極が得られ、電池組立工
程などにおける取り扱い時に崩れるなどというこ
とは全くなく、通常の電極と全く同様に取り扱
え、しかも電池内に組み込んだ後ポリビニルピロ
リドンのみが電解液中へ溶解していくので、電極
強度自体はわずかに低下するが、それは電池性能
に全く影響し得ないものである。しかも結着剤量
の絶対値が少ないことから電解液と電極のなじみ
が良くなり、しかもポリビニルピロリドンの溶解
により電極の多孔度が大となり、電池の放電特性
が向上するなど二重の効果が得られる。
Normally, once the electrodes of a battery are incorporated into the battery, they can be fully utilized even if their strength is somewhat weak. Therefore, when a smaller amount of binder than usual and a predetermined amount of polyvinylpyrrolidone are molded together with a positive electrode active material and a conductive material, a strong electrode can be obtained due to the binding properties of polyvinylpyrrolidone, which can be used in the battery assembly process. It does not crumble when handled, and can be handled in exactly the same way as a normal electrode. Moreover, since only the polyvinylpyrrolidone dissolves into the electrolyte after being incorporated into the battery, the strength of the electrode itself is slightly reduced. However, it cannot affect the battery performance at all. Moreover, since the absolute value of the binder amount is small, the electrolyte and electrode become more compatible, and the dissolution of polyvinylpyrrolidone increases the porosity of the electrode, resulting in a dual effect such as improving the discharge characteristics of the battery. It will be done.

以下、本発明をその実施例により説明する。 Hereinafter, the present invention will be explained with reference to examples thereof.

実施例 1 フツ化炭素粉末と導電材のアセチレンブラツク
とポリビニルピロリドンとを重量比で100:11:
0.7の割合で混合し、さらにその混合物100gとス
チレンブタジエンゴムの水性デイスパージヨン
(樹脂分50重量%)5gとを充分混合し、水分を
揮発させた後、その1gを大きさ20×20mmのチタ
ンネツト集電体を間にはさみ1トン/cm2の圧力で
加圧成形して正極を得る。
Example 1 Carbon fluoride powder, acetylene black as a conductive material, and polyvinylpyrrolidone in a weight ratio of 100:11:
Further, 100 g of this mixture and 5 g of an aqueous dispersion of styrene-butadiene rubber (resin content 50% by weight) were thoroughly mixed, and after the water was evaporated, 1 g of the mixture was mixed into a 20 x 20 mm A titanium net current collector is sandwiched between the two and pressure molded at a pressure of 1 ton/cm 2 to obtain a positive electrode.

負極は大きさ20×20mmのニツケルネツトの集電
体に金属リチウムシート0.2gを圧着して構成す
る。その負極2枚を、ポリプロピレンの不織布か
らなるセパレータで包んだ前記正極の両側に重ね
合せて電解液とともにポリエチレン製容器に封入
して試験用電池とする。なお電解液には、炭酸プ
ロピレンと1,2−ジメトキシエタンとの等容積
混合物にホウフツ化リチウムを1モル/の割合
で溶解したものを用いた。この電池をAとする。
The negative electrode was constructed by pressing 0.2 g of a metal lithium sheet onto a 20 x 20 mm nickel net current collector. The two negative electrodes are stacked on both sides of the positive electrode wrapped with a separator made of a nonwoven polypropylene fabric, and sealed together with an electrolyte in a polyethylene container to prepare a test battery. The electrolytic solution used was one in which lithium borofluoride was dissolved in a mixture of equal volume of propylene carbonate and 1,2-dimethoxyethane at a ratio of 1 mol/mole. This battery is called A.

次に、フツ化炭素とアセチレンブラツクとを重
量比で100:11で混合したもの100gに対し、ポリ
ビニルピロリドン0.7gを溶解した水50c.c.とスチ
レンブタジエンゴムの水性デイスパージヨン(樹
脂分50重量%)5gとを混合したものを加え、充
分に混合し水分を揮散させる。この1gをとり前
記と同様に正極を成形して電池を構成する。これ
をBとする。
Next, to 100 g of a mixture of fluorocarbon and acetylene black at a weight ratio of 100:11, 50 c.c. of water in which 0.7 g of polyvinylpyrrolidone was dissolved and an aqueous dispersion of styrene-butadiene rubber (resin content 50 Add a mixture of 5 g (% by weight) and mix thoroughly to evaporate water. A battery is constructed by taking 1 g of this and molding it into a positive electrode in the same manner as described above. Let this be B.

また、比較例としてフツ化炭素とアセチレンブ
ラツクとを重量比で100:11の割合で混合したも
の100gに対し、スチレンブタジエンゴムの水性
デイスパージヨン(樹脂分50重量%)10gを混合
し、水分を揮散させた後、その1gをとり前記と
同様に正極を成形し、電池を構成する。これをC
とする。
In addition, as a comparative example, 10g of a mixture of fluorocarbon and acetylene black at a weight ratio of 100:11 was mixed with 10g of an aqueous dispersion of styrene-butadiene rubber (resin content 50% by weight), and water After volatilizing it, 1 g of it is taken and molded into a positive electrode in the same manner as above to construct a battery. This is C
shall be.

いずれの電池も正極重量は同じであるが、理論
充填量は、A,Bが760mAh、Cが740mAhであ
る。なお負極リチウムの充填量は1.5Ahであり、
正極の特性比較ができるよう考慮した。
Although the weight of the positive electrode is the same in both batteries, the theoretical filling amount is 760 mAh for A and B, and 740 mAh for C. The filling amount of negative electrode lithium is 1.5Ah.
This was taken into consideration so that the characteristics of the positive electrode could be compared.

上記の各電池を試作直後、20℃において16mA
の電流で放電したときの特性を第1図に、また60
℃で1カ月保存後に同じ条件で放電した時の特性
を第2図に示す。
Immediately after prototyping each of the above batteries, 16mA at 20℃
Figure 1 shows the characteristics when discharging at a current of 60
Figure 2 shows the characteristics when discharged under the same conditions after storage at ℃ for one month.

第1図から明らかなように、電池A,Bは電池
Cに比べ理論充填量は3%程度多いにすぎない
が、実際の放電量としては約10%多くなつてい
る。また、放電開始時の電圧および平坦電圧もわ
ずかに高い。これは結着剤量が少なく電極への電
解液のなじみが良いことと、ポリビニルピロリド
ンが溶解し、電極の多孔度が大となり、反応面積
が増大したことによるものと考えられる。
As is clear from FIG. 1, the theoretical filling amount of batteries A and B is only about 3% larger than that of battery C, but the actual discharge amount is about 10% larger. In addition, the voltage at the start of discharge and the flat voltage are also slightly higher. This is thought to be due to the fact that the amount of binder is small and the electrolyte is well adapted to the electrode, and the polyvinylpyrrolidone is dissolved, increasing the porosity of the electrode and increasing the reaction area.

この傾向は第2図においてより顕著に表れてい
る。即ち60℃という高温保存後において、電池C
はわずかに特性が低下するのに対し、電池A,B
は、ポリビニルピロリドンの効果がより大きく表
れ、むしろ試作直後より良い特性を示している。
This tendency is more apparent in FIG. In other words, after storage at a high temperature of 60°C, battery C
While the characteristics of batteries A and B slightly deteriorated,
In this case, the effect of polyvinylpyrrolidone is more pronounced, and in fact, it shows better properties than immediately after trial production.

これらの結果からも判かるように、ポリビニル
ピロリドン添加の効果は極めて大きいと言える。
As can be seen from these results, it can be said that the effect of adding polyvinylpyrrolidone is extremely large.

実施例 2 次に二酸化マンガン粉末と導電材のアセチレン
ブラツクとを重量比で100:5の割合で混合した
もの100gに対し、ポリビニルピロリドン0.4gを
溶解した水50c.c.とスチレンブタジエンゴムの水性
デイスパージヨン(樹脂分50重量%)3.5gとの
混合物を加え、練り合せた後水分を揮散させる。
この2gをとり、大きさ20×20mmのチタンネツト
集電体を間にはさみ加圧成形して正極を得る。こ
の正極を用いて実施例1と同様にして試験用電池
とする。この電池をDとする。
Example 2 Next, 100 g of a mixture of manganese dioxide powder and acetylene black as a conductive material at a weight ratio of 100:5 was mixed with 50 c.c. of water in which 0.4 g of polyvinylpyrrolidone was dissolved and an aqueous solution of styrene-butadiene rubber. A mixture of 3.5 g of dispersion (resin content 50% by weight) is added, kneaded, and then the water is evaporated.
2 g of this was taken, and a titanium net current collector with a size of 20 x 20 mm was sandwiched between them and pressure molded to obtain a positive electrode. A test battery is prepared in the same manner as in Example 1 using this positive electrode. This battery is designated as D.

なお、この実施例では、電解液として、炭酸プ
ロピレンと1,2−ジメトキシエタンとの等容積
混合物に過塩素酸リチウムを1モル/の割合で
溶解したものを用いた。
In this example, the electrolytic solution used was one in which lithium perchlorate was dissolved in an equal volume mixture of propylene carbonate and 1,2-dimethoxyethane at a ratio of 1 mole/mole.

また、比較例として、二酸化マンガンとアセチ
ブラツクとの重量比100:5の混合物100gにスチ
レンブタジエンゴムの水性デイスパージヨン(樹
脂分50重量%)7gを混合し、水分を揮散させた
後、その2gをとり、上記と同様にして正極を作
り、電池を構成した。この電池をEとする。
In addition, as a comparative example, 7 g of an aqueous dispersion of styrene-butadiene rubber (resin content 50% by weight) was mixed with 100 g of a mixture of manganese dioxide and acetate black at a weight ratio of 100:5, and after the water was evaporated, the mixture was 2 g was taken and a positive electrode was made in the same manner as above to construct a battery. This battery is called E.

電池Dは正極の理論充填量は574mAh、Eのそ
れは567mAhである。
The theoretical charging capacity of the positive electrode of battery D is 574 mAh, and that of battery E is 567 mAh.

これらの電池を試作直後に20℃において16mA
の電流で放電したときの特性を第3図に、また60
℃で1カ月保存後に同じ条件で放電したときの特
性を第4図に示す。
16mA at 20℃ immediately after prototype production of these batteries.
Figure 3 shows the characteristics when discharging at a current of 60
Figure 4 shows the characteristics when discharged under the same conditions after storage at 1 month at ℃.

この例においても、実施例1と同様にポリビニ
ルピロリドン添加の効果は顕著である。
In this example, as in Example 1, the effect of adding polyvinylpyrrolidone is remarkable.

上記の実施例のように、ポリビニルピロリドン
を正極合剤に添加する方法として、粉末のまま添
加しても、また水溶液として添加してもその効果
は同様である。正極活物質が二酸化マンガンのよ
うな金属酸化物で、ポリビニルピロリドンと比べ
て比重の差が大きい場合には、均一に混合できる
水溶液とした方が有利である。
As in the above example, the effect is the same whether polyvinylpyrrolidone is added to the positive electrode mixture as a powder or as an aqueous solution. When the positive electrode active material is a metal oxide such as manganese dioxide and has a large difference in specific gravity compared to polyvinylpyrrolidone, it is advantageous to use an aqueous solution that can be mixed uniformly.

本発明は、上例のフツ化炭素、二酸化マンガン
に限らず、酸化銅、四三酸化鉛、硫化鉄などを正
極活物質に用いる場合にも同様に適用できる。
The present invention is applicable not only to the above-mentioned carbon fluoride and manganese dioxide, but also to cases where copper oxide, trilead tetroxide, iron sulfide, etc. are used as the positive electrode active material.

以上のように、本発明によれば、放電特性、保
存特性のすぐれた正極を得ることができる。
As described above, according to the present invention, a positive electrode with excellent discharge characteristics and storage characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種製法による正極を用いたフツ化炭
素−リチウム電池の試作直後の放電特性を示す
図、第2図は保存後の特性を示す図、第3図は各
種製法による正極を用いた二酸化マンガン−リチ
ウム電池の試作直後の放電特性を示す図、第4図
は保存後の特性を示す。
Figure 1 shows the discharge characteristics of fluorocarbon-lithium batteries immediately after prototype production using positive electrodes manufactured by various manufacturing methods, Figure 2 shows the characteristics after storage, and Figure 3 shows the characteristics of carbon-lithium fluoride batteries using positive electrodes manufactured by various manufacturing methods. Figure 4 shows the discharge characteristics of the manganese dioxide-lithium battery immediately after trial production, and the characteristics after storage.

Claims (1)

【特許請求の範囲】 1 結着剤とポリビニルピロリドンを添加した正
極合剤を成形することを特徴とする有機電解質電
池用正極の製造法。 2 正極合剤にポリビニルピロリドン粉末を添加
した後結着剤を加える特許請求の範囲第1項記載
の有機電解質電池用正極の製造法。 3 ポリビニルピロリドンを水溶液として正極合
剤に加える特許請求の範囲第1項記載の有機電解
質電池用正極の製造法。
[Scope of Claims] 1. A method for producing a positive electrode for an organic electrolyte battery, which comprises molding a positive electrode mixture to which a binder and polyvinylpyrrolidone are added. 2. The method for producing a positive electrode for an organic electrolyte battery according to claim 1, wherein a binder is added after adding polyvinylpyrrolidone powder to the positive electrode mixture. 3. The method for producing a positive electrode for an organic electrolyte battery according to claim 1, wherein polyvinylpyrrolidone is added to the positive electrode mixture as an aqueous solution.
JP3527580A 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery Granted JPS56132773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3527580A JPS56132773A (en) 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3527580A JPS56132773A (en) 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS56132773A JPS56132773A (en) 1981-10-17
JPH0119231B2 true JPH0119231B2 (en) 1989-04-11

Family

ID=12437228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3527580A Granted JPS56132773A (en) 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS56132773A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561839B2 (en) * 2008-01-23 2010-10-13 ソニー株式会社 Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and method for producing the same
JP5471598B2 (en) * 2010-03-02 2014-04-16 ソニー株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPS56132773A (en) 1981-10-17

Similar Documents

Publication Publication Date Title
US9276259B2 (en) Secondary battery of improved lithium ion mobility and cell capacity
JP3983601B2 (en) Non-aqueous secondary battery
JP3008269B2 (en) Rechargeable battery
JPH06342673A (en) Lithium secondary battery
JPS6149790B2 (en)
JPH10188977A (en) Lithium secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2003282147A (en) Lithium ion secondary battery
JPH0119231B2 (en)
JPH113698A (en) Lithium ion secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP3558751B2 (en) Non-aqueous solvent secondary battery
JPH03192663A (en) Nonaqueous electrolyte secondary battery
JPH0770326B2 (en) Organic electrolyte battery
JP3273569B2 (en) Lithium battery
JPH0355770A (en) Lithium secondary battery
KR102054266B1 (en) Active material separated type lithium-sulfur battery
JP2003317718A (en) Positive electrode material, electrode and battery
JPS614162A (en) Lithium battery
JPH09147861A (en) Lithium secondary battery
JP2002246026A (en) Non-aqueous electrolyte secondary battery
JPS59134562A (en) Lithium secondary cell
JP2703338B2 (en) Non-aqueous electrolyte battery