JPH0119052B2 - - Google Patents

Info

Publication number
JPH0119052B2
JPH0119052B2 JP4694683A JP4694683A JPH0119052B2 JP H0119052 B2 JPH0119052 B2 JP H0119052B2 JP 4694683 A JP4694683 A JP 4694683A JP 4694683 A JP4694683 A JP 4694683A JP H0119052 B2 JPH0119052 B2 JP H0119052B2
Authority
JP
Japan
Prior art keywords
recovery turbine
blast furnace
stator
furnace gas
stator blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4694683A
Other languages
Japanese (ja)
Other versions
JPS59173526A (en
Inventor
Ryuichi Sagawa
Osamu Nagata
Toshiharu Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4694683A priority Critical patent/JPS59173526A/en
Publication of JPS59173526A publication Critical patent/JPS59173526A/en
Publication of JPH0119052B2 publication Critical patent/JPH0119052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、可変ピツチ静翼を有する高炉ガスエ
ネルギ回収タービンの静翼制御機構と、それを用
いた高炉ガスエネルギ回収タービンプラントの制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stator blade control mechanism for a blast furnace gas energy recovery turbine having variable pitch stator blades, and a method for controlling a blast furnace gas energy recovery turbine plant using the same.

従来から高炉から排出する高炉ガスの保有する
エネルギを回収するために第1図aに示すように
高炉ガスの排出系統にセプタム弁3と並列に回収
タービン5を配して炉頂圧力はセプタム弁3によ
り予め設定した設定値に保持するように制御し、
一部の高炉ガスを回収タービン5に導いてエネル
ギ回収を行なつていた。このような先行技術で
は、セプタム弁3を通過する高炉ガスのエネルギ
回収は行なわれないため、回収効率はかなり低い
ものであつた。
Conventionally, in order to recover the energy contained in the blast furnace gas discharged from the blast furnace, a recovery turbine 5 is disposed in the blast furnace gas discharge system in parallel with the septum valve 3, as shown in Fig. 1a, and the furnace top pressure is controlled by the septum valve. 3 to maintain the preset value,
A part of the blast furnace gas was guided to a recovery turbine 5 to recover energy. In such prior art, energy recovery from the blast furnace gas passing through the septum valve 3 is not performed, so the recovery efficiency is quite low.

これを解決する1つの方法として従来では、第
1図bに示すように通常運転時にはセプタム弁3
は全閉状態にし、調速弁14により炉頂圧制御を
行ない、高炉の異常時やタービンの起動停止時さ
らに調速弁14の制御範囲を越えた場合などにお
いてはセプタム弁3を作動させる方法が考えられ
た。この方法もまた高炉ガス流量が少なくなつた
場合、炉頂圧力を一定に保つために調速弁が流量
を絞るため絞り損失が大きくエネルギ回収効率が
低くなるという問題をかかえていた。
Conventionally, one method to solve this problem is to use the septum valve 3 during normal operation as shown in Figure 1b.
is fully closed, the furnace top pressure is controlled by the governor valve 14, and the septum valve 3 is activated in the event of an abnormality in the blast furnace, when the turbine starts or stops, or when the control range of the governor valve 14 is exceeded. was considered. This method also has the problem that when the blast furnace gas flow rate decreases, the regulating valve throttles the flow rate to keep the furnace top pressure constant, resulting in large throttling losses and low energy recovery efficiency.

さらにこの問題を解決するために他の先行技術
では、回収タービン5に可変ピツチ静翼を設置
し、前記調速弁14に代えて静翼ピツチを変更し
てタービン通過ガス流量を調節し炉頂圧制御装置
7による炉頂圧力制御や回収タービン5の起動や
停止時の回転数制御を行なうことが考えられた。
静翼ピツチ角が0度すなわち全閉状態から除々に
開度をとつて行く微開の状態では大きな騒音を発
生させることの他に、開度対流量の感度が非常に
高く、特に発電機負荷のような場合、無負荷定格
回転数に制御し、電力系統に同期投入しようとす
る場合などにおいて回転数制御装置の設計が非常
に困難である。
Furthermore, in order to solve this problem, in another prior art, a variable pitch stator blade is installed in the recovery turbine 5, and the stator blade pitch is changed in place of the speed regulating valve 14 to adjust the flow rate of gas passing through the turbine. It has been considered that the pressure control device 7 controls the furnace top pressure and controls the rotation speed when starting and stopping the recovery turbine 5.
When the stator vane pitch angle is 0 degrees, i.e., in a slightly opened state where the opening gradually increases from the fully closed state, not only does it generate a large amount of noise, but the sensitivity of the opening vs. flow rate is very high, especially when the generator load In such cases, it is very difficult to design a rotation speed control device when controlling the rotation speed to the no-load rated speed and synchronizing the rotation to the power grid.

その1つの解決方法として起動・停止、同期投
入などのタービンを通過する流量が少ない場合の
制御は、調速弁14にさせ高炉の原料投入などの
外乱に対し炉頂圧力を予め定めた設定値に保持す
るような炉頂圧制御などは静翼ピツチを変化させ
て行なう方法などが実施されている。このような
方法においても調速弁の微開時には、絞りによる
大きな騒音を発生したり、また衝撃波を出して下
流の静翼や動翼に悪影響を及ぼしたりする。
One solution to this problem is to use the governor valve 14 to control startup, shutdown, synchronization, and other operations when the flow rate passing through the turbine is small, and set the furnace top pressure to a predetermined set value in response to disturbances such as inputting raw materials into the blast furnace. The furnace top pressure is controlled by changing the pitch of the stationary blades to maintain the furnace top pressure. Even in such a method, when the speed regulating valve is slightly opened, a large noise is generated due to the throttle, and a shock wave is generated, which adversely affects downstream stationary blades and rotor blades.

第1図cは、先行技術における高炉ガスエネル
ギ回収プラントを示す。高炉1から排出される高
炉ガスは、除塵器2を過て回収タービン停止時に
はセプタム弁3で炉頂圧制御装置7からの制御信
号により炉頂圧力Pbが炉頂圧設定値PBSに保持さ
れるようにその流量を調節して下流側へ流してい
る。
FIG. 1c shows a prior art blast furnace gas energy recovery plant. The blast furnace gas discharged from the blast furnace 1 passes through the dust remover 2, and when the recovery turbine is stopped, the septum valve 3 maintains the furnace top pressure Pb at the furnace top pressure set value PBS by the control signal from the furnace top pressure control device 7. The flow rate is adjusted so that it flows downstream.

一方、この状態から回収タービン5を起動させ
る場合には、まず遮断弁4を全開にし、さらにガ
バナ8の調速機能81の回転数設定器811の設
定値を徐々に上げていくことにより回収タービン
5の静翼51の静翼角を0度(全閉)から徐々に
開け、回収タービン5に高炉ガスを導き回収ター
ビン5および回収タービン5によつて駆動する発
電機6の回転を徐々に上げていく。回収タービン
5および発電機6の回転数が定格回転数に達する
と発電機6を電力系統に同期投入する。この時点
で調速機能81は不安定となるので回転数設定器
811を上限まで逃がす。ガバナ8内の低位選択
器83の機能によりガバナ8の機能を回転機能8
1から調圧機能82に移行させ、ガバナ8の調圧
機能82からの信号により回収タービン5の静翼
51の静翼角を変化させて、炉頂圧力Pbを設定
値PSSに保持するように作用する。このとき設定
値PSSはセプタム弁3を駆動する炉頂圧制御装置
7の炉頂圧設定値PBSより若干低い値(すなわち
PSS=PBS−ΔPBS)に予め設定されている。この結
果セプタム弁3は全閉となり、高炉ガス全量が回
収タービン5を通過するため、発電機6は高炉ガ
スの保有するエネルギを最大限電力に変換し回収
することができる。
On the other hand, when starting the recovery turbine 5 from this state, first fully open the shutoff valve 4, and then gradually increase the setting value of the rotation speed setting device 811 of the speed regulating function 81 of the governor 8. The stator blade angle of the stator blade 51 of No. 5 is gradually opened from 0 degrees (fully closed), and the blast furnace gas is introduced to the recovery turbine 5, and the rotation of the recovery turbine 5 and the generator 6 driven by the recovery turbine 5 is gradually increased. To go. When the rotational speeds of the recovery turbine 5 and the generator 6 reach the rated rotational speed, the generator 6 is synchronously connected to the power system. At this point, the speed regulating function 81 becomes unstable, so the rotation speed setting device 811 is released to the upper limit. The function of the governor 8 is rotated by the function of the low selector 83 in the governor 8.
1 to the pressure regulating function 82, and the stator blade angle of the stator blade 51 of the recovery turbine 5 is changed by the signal from the pressure regulating function 82 of the governor 8, so that the furnace top pressure Pb is maintained at the set value PSS . It acts on At this time, the set value P SS is a value slightly lower than the furnace top pressure set value P BS of the furnace top pressure control device 7 that drives the septum valve 3 (i.e.
P SS =P BS −ΔP BS ). As a result, the septum valve 3 is fully closed and the entire amount of blast furnace gas passes through the recovery turbine 5, so that the generator 6 can convert and recover the maximum amount of energy contained in the blast furnace gas into electric power.

このような回収タービン5の運転において、回
収タービン5は起動から同期投入までは静翼51
を微少開度で操作し、回収タービン5の回転数を
調整する必要がある。また、エネルギを回収する
通常の運転状態では、静翼角はできるかぎり開
き、定格点の近傍で静翼角の微少な開閉操作でガ
スの流れをできるだけ乱さないように調節しなが
ら炉頂圧力Pbを炉頂圧力設定値PSSに保つように
制御する必要がある。
In such operation of the recovery turbine 5, the recovery turbine 5 is operated by the stationary blades 51 from startup to synchronization.
It is necessary to adjust the rotation speed of the recovery turbine 5 by operating it at a minute opening. In addition, under normal operating conditions for energy recovery, the stator blade angle is opened as much as possible, and the furnace top pressure Pb is adjusted so as not to disturb the gas flow as much as possible by slightly opening and closing the stator blade angle near the rated point. It is necessary to control the furnace top pressure to maintain it at the set value PSS .

ここで第1図cに示す先行技術の静翼制御機構
200を第2図に基づいて説明する。電気ガバナ
8から出力される静翼駆動信号ζは、静翼駆動器
52に入力されて、機械変位量xに変換され、静
翼角θを駆動させる。この機構を用いて回収ター
ビン5を起動から同期投入(無負荷定格回転数)
までの昇速過程および同期回転数に一致させる過
程で全ての静翼51を微少開度のところで駆動し
て回転数の調整をするのは、非常に困難でしばし
ば同期投入の失敗を起す。
The prior art stator vane control mechanism 200 shown in FIG. 1c will now be described with reference to FIG. 2. The stator blade drive signal ζ output from the electric governor 8 is input to the stator blade driver 52, converted into a mechanical displacement amount x, and drives the stator blade angle θ. Using this mechanism, the recovery turbine 5 is started and turned on synchronously (no-load rated rotation speed)
It is very difficult to adjust the rotation speed by driving all the stator vanes 51 at minute openings during the speed increase process and the process of matching the synchronous rotation speed, and synchronization often fails.

本発明の目的は、上述の技術的課題を解決し、
かつ定常状態の運転では全ての静翼が同じ角度で
変化し、高炉ガスの流れに乱れを生ぜしめない静
翼制御機構と、この機構を用いた高炉ガスエネル
ギ回収タービンプラントの制御方法を提供するこ
とである。
The purpose of the present invention is to solve the above-mentioned technical problems,
Further, in steady-state operation, all the stator blades change at the same angle, thereby providing a stator blade control mechanism that does not cause turbulence in the flow of blast furnace gas, and a method of controlling a blast furnace gas energy recovery turbine plant using this mechanism. That's true.

第3図は、本発明の一実施例の主要部のブロツ
ク図を示す。ガバナ8から送出される静翼駆動信
号ζは、信号変換部9の二つの変換器91および
92にラインl1を介して与えられ、それぞれ信
号変換されて出力信号ζ1およびζ2をラインl
2およびl3に送出する。静翼駆動器521は、
ラインl2を介して出力信号ζ1を受信し、静翼
駆動器522はラインl3を介して出力信号ζ2
を受信する。したがつて静翼駆動桿531および
532は駆動し、各機械変位量x1およびx2に
変換され、一部の静翼511の静翼角θ1および
残りの静翼512の静翼角θ2をそれぞれ駆動す
るよう構成されている。
FIG. 3 shows a block diagram of the main parts of one embodiment of the present invention. The stator blade drive signal ζ sent from the governor 8 is given to two converters 91 and 92 of the signal converter 9 via the line l1, where the signal is converted and the output signals ζ1 and ζ2 are sent to the line l1.
2 and l3. The stator vane driver 521 is
Receiving output signal ζ1 via line l2, stator vane driver 522 receives output signal ζ2 via line l3.
receive. Therefore, the stator blade drive rods 531 and 532 are driven and converted into mechanical displacements x1 and x2, which drive the stator blade angle θ1 of some of the stator blades 511 and the stator blade angle θ2 of the remaining stator blades 512, respectively. is configured to do so.

第4図は、前述のように構成した場合の電気ガ
バナ8から送出される静翼駆動信号ζと一部の静
翼511の静翼角θ1および残りの静翼512の
静翼角θ2との設定の関係を示す。第4図に示す
ように設定することにより静翼制御信号ζの小さ
い0≦ζ<ζAの範囲では、一部の静翼511の
みが角度変化するだけで、残りの静翼512は全
閉を保ち、次に静翼制御信号が増大し、ζA≦ζ
<ζBの範囲に入ると、前記一部の静翼511は
予め定めた一定角度で静止しており、残りの静翼
512が角度変化する。さらに静翼制御信号ζが
ζ≧ζBになると、全ての静翼51が同じ角度で
角度変化する。このように構成することにより回
収タービン5の起動から同期投入までのように静
翼で微少な流量を制御する必要がある場合すなわ
ち静翼駆動信号ζがζAより小さい範囲で作動す
る場合には、一部の静翼511の角度のみ変化さ
せるべく操作すればよくガス流量の制御が容易に
なる。さらに回収タービン5の炉頂圧力制御状態
で運転される通常の運転状態、すなわち静翼駆動
信号ζが定格運転点ζRの近傍で作動する場合に
は、全ての静翼51が全て同じ角度で変化するた
め静翼51の後流に乱れを発生することもなく回
収タービン5は安定に運転され、発電機6を駆動
して高炉ガスの保有するエネルギを電力に変換し
て回収することができる。
FIG. 4 shows the relationship between the stator blade drive signal ζ sent from the electric governor 8 and the stator blade angle θ1 of some of the stator blades 511 and the stator blade angle θ2 of the remaining stator blades 512 when configured as described above. Indicates the relationship between settings. By setting as shown in FIG. 4, in the range of 0≦ζ<ζA where the stator vane control signal ζ is small, only some of the stator blades 511 change in angle, and the remaining stator blades 512 remain fully closed. then the stator vane control signal increases and ζA≦ζ
<ζB, some of the stator blades 511 remain stationary at a predetermined constant angle, and the remaining stator blades 512 change in angle. Further, when the stator vane control signal ζ becomes ζ≧ζB, all the stator vanes 51 change their angles at the same angle. With this configuration, when it is necessary to control a minute flow rate with the stator blades, such as from the start of the recovery turbine 5 to the synchronization, that is, when the stator blade drive signal ζ operates in a range smaller than ζA, The gas flow rate can be easily controlled by only changing the angle of some of the stator vanes 511. Furthermore, in the normal operating state where the recovery turbine 5 is operated under the top pressure control state, that is, when the stator vane drive signal ζ operates near the rated operating point ζR, all the stator vanes 51 change at the same angle. Therefore, the recovery turbine 5 can be operated stably without causing any turbulence in the wake of the stationary blades 51, and the generator 6 can be driven to convert the energy possessed by the blast furnace gas into electric power and recover it.

以上述べたように本発明の一実施例は、ガバナ
8から出力される静翼駆動信号ζにより駆動され
る変換器91および92から成る信号変換部9、
各静翼駆動器521および522、ならびに各静
翼駆動桿531および532から構成される静翼
制御機構200については、信号変換部9は信号
レベルの変換部として機能し、またその出力で駆
動される。各静翼駆動器521および522は、
信号レベルの出力信号ζ1およびζ2を受信し、
機械変位x1およびx2に変換するサーボ機構を
例にとつて説明した。
As described above, one embodiment of the present invention includes a signal converter 9 comprising converters 91 and 92 driven by a stator blade drive signal ζ output from a governor 8;
Regarding the stator vane control mechanism 200 composed of the stator vane drivers 521 and 522 and the stator vane drive rods 531 and 532, the signal converter 9 functions as a signal level converter and is driven by its output. Ru. Each stator vane driver 521 and 522 is
receiving output signals ζ1 and ζ2 at signal levels;
The explanation has been given by taking as an example a servo mechanism that converts mechanical displacements x1 and x2.

第5図は、前記サーボ機構の他の実施例であ
る。ガバナ8からの静翼駆動信号ζを直接たとえ
ばサーボ機構から成る複合カム駆動器52aに入
力し、たとえば第6図に示すような複合カム10
を駆動し、矢符y方向に変位させ、これによつて
各静翼駆動桿531および532を駆動するよう
に静翼制御機構200を構成することも可能であ
る。
FIG. 5 shows another embodiment of the servo mechanism. The stator blade drive signal ζ from the governor 8 is directly inputted to a compound cam driver 52a composed of, for example, a servo mechanism, and the compound cam 10 as shown in FIG.
It is also possible to configure the stator vane control mechanism 200 to drive and displace the stator vane drive rods 531 and 532 in the y direction, thereby driving the stator vane drive rods 531 and 532.

第7図は、静翼制御機構200のさらに他の実
施例である。ガバナ8からの静翼駆動信号ζを直
接サーボ機構からなる連桿駆動器52bに与え、
連桿駆動器52bは一本の静翼駆動桿530を駆
動する。さらに静翼駆動桿530と各静翼駆動連
桿540との接合部に関し、一部の静翼512を
駆動する静翼駆動連桿542は、静翼駆動桿53
0とだ円形の溝部552で回転自在かつ上下変位
が可能なように接合され、さらに下方にばね56
2で付勢されて取付られている。したがつて第7
図a,b,cの順に全ての静翼51が全開状態か
ら閉じる方向へ静翼駆動桿530が移動すると、
第7図bで一部静翼511は部分的に開方の状態
にあるが残りの静翼512は全閉状態となる。さ
らに静翼駆動桿530が下方に移動すると、第7
図cの状態すなわち一部静翼511も全閉状態と
なる。この場合既全閉の残り静翼512を駆動す
る静翼駆動連桿542の先端は、だ円形の溝部5
52の溝部中で、下端に引付けられているばね5
62の力に反し溝部552の下端から離れること
により静翼駆動桿530の下方への移動を可能に
する。
FIG. 7 shows still another embodiment of the stator vane control mechanism 200. Applying the stator blade drive signal ζ from the governor 8 directly to the linked rod driver 52b consisting of a servo mechanism,
The continuous rod driver 52b drives one stator blade drive rod 530. Furthermore, regarding the joint between the stator blade drive rod 530 and each stator blade drive link rod 540, the stator blade drive link rod 542 that drives some of the stator blades 512 is connected to the stator blade drive rod 53.
0 and is connected to the elliptical groove 552 so as to be rotatable and movable up and down, and a spring 56 is further provided below.
It is attached and biased by 2. Therefore, the seventh
When the stator vane drive rod 530 moves in the direction in which all the stator vanes 51 are closed from the fully open state in the order of figures a, b, and c,
In FIG. 7b, some of the stator blades 511 are partially open, while the remaining stator blades 512 are fully closed. When the stationary vane drive rod 530 further moves downward, the seventh
In the state shown in FIG. c, the partial stator blades 511 are also in a fully closed state. In this case, the tip of the stator blade drive connecting rod 542 that drives the remaining stator blades 512 that are already closed is the oval groove 5.
The spring 5 is attracted to the lower end in the groove of 52.
By moving away from the lower end of the groove portion 552 against the force of 62, the stator vane drive rod 530 is allowed to move downward.

第8図は、前記の第7図のように静翼駆動機構
200を構成した場合、ガバナ8から送出される
静翼駆動信号ζと一部静翼511の静翼角θ1お
よび残りの静翼512の静翼角θ2との関係を示
す。この場合も静翼駆動信号ζが微少開度を要求
する0<ζ<ζAの範囲にあれば、一部静翼51
1のみが静翼角θ1を開き、また正常な運転領域
であるζ=ζRの近傍では一部静翼511も残り
静翼512も略同一の静翼角で変化し高炉ガス流
量を調節することを可能にする。
FIG. 8 shows the stator blade drive signal ζ sent from the governor 8, the stator blade angle θ1 of some of the stator blades 511, and the remaining stator blades when the stator blade drive mechanism 200 is configured as shown in FIG. 512 and the stator blade angle θ2. In this case as well, if the stator blade drive signal ζ is in the range of 0<ζ<ζA that requires a minute opening, some of the stator blades 51
Only the stator blade 511 opens the stator blade angle θ1, and in the vicinity of ζ = ζR, which is the normal operating region, the stator blade angle of some stator blades 511 and the remaining stator blades 512 changes at approximately the same angle to adjust the blast furnace gas flow rate. enable.

以上実施例で示したように静翼制御機構200
を電気式、流圧式、機械式またはそれらの組合せ
た機構を用いて実現し、回収タービン5の静翼5
1の一部の静翼511と残りの静翼512を微少
開度では、一部静翼511のみの開度を変化さ
せ、残りの静翼512は全閉状態に保つ。また回
収タービン5の正常な運転領域すなわち静翼51
が十分な開度を開いて運転する場合には、一部静
翼511を残りの静翼512も同一または略同一
の静翼角で変化することにより、回収タービン5
は従来の回収タービン5が有していた調速弁によ
る絞り機能を削除しても起動から正常な運転域で
の運転が、安全に、静かにかつ効率よく行なうこ
とができる。
As shown in the embodiments above, the stator blade control mechanism 200
is realized using an electric type, hydraulic type, mechanical type, or a combination thereof, and the stationary blade 5 of the recovery turbine 5 is
When some of the stator blades 511 and the remaining stator blades 512 of the stator blade 1 are slightly opened, the opening degree of only some of the stator blades 511 is changed, and the remaining stator blades 512 are kept in a fully closed state. In addition, the normal operating range of the recovery turbine 5, that is, the stationary blade 51
When the recovery turbine 5 is operated with a sufficient opening degree, the recovery turbine 5
Even if the throttling function provided by the speed regulating valve of the conventional recovery turbine 5 is removed, operation in the normal operating range from start-up can be performed safely, quietly and efficiently.

なお以上の実施例は、全て高炉プラントの排ガ
ン系統において回収タービン5と並列にセプタム
弁3が設置されている高炉ガスエネルギ回収ター
ビンプラントである。
The above embodiments are all blast furnace gas energy recovery turbine plants in which the septum valve 3 is installed in parallel with the recovery turbine 5 in the exhaust gas system of the blast furnace plant.

第9図は、高炉ガスエネルギ回収タービンプラ
ントの他の実施例である。第9図において、第1
図に示す構成と同じものは同一の参照符を付す。
この実施例は、高炉ガスの排ガス系統に除塵機能
と炉頂圧制御機能とを有するリングスリツトワツ
シヤ11を含む高炉ガスエネルギ回収タービンプ
ラントである。回収タービン5と並列にバイパス
弁12を設置する。炉頂圧力PBは常にリングス
リツトワツシヤ11にて制御し、回収タービン5
の起動から同期投入までの間はバイパス弁12が
タービン前圧制御装置13によりタービン前圧
PFを一定に制御し、同期投入後はバイパス弁1
2を全閉に保つ。回収タービン5が、ガバナ8か
らの信号によりタービン前圧PFを制御する。こ
のタイプの高炉ガスエネルギ回収プラントにおい
ては、前述第1図のセプタム弁3を有する高炉ガ
スエネルギ回収プラントの場合と同様、炉頂圧力
をタービン前圧と、またセプタム弁をバイパス弁
と読み換えることにより静翼制御機能を有する高
炉ガスエネルギ回収タービン制御装置を用いて回
収タービンを制御することが可能であることは明
らかである。
FIG. 9 is another embodiment of a blast furnace gas energy recovery turbine plant. In Figure 9, the first
Components that are the same as those shown in the figures are given the same reference numerals.
This embodiment is a blast furnace gas energy recovery turbine plant including a ring slit washer 11 having a dust removal function and a furnace top pressure control function in the blast furnace gas exhaust gas system. A bypass valve 12 is installed in parallel with the recovery turbine 5. The furnace top pressure PB is always controlled by the ring slit washer 11, and the recovery turbine 5
From startup to synchronization, the bypass valve 12 controls the turbine front pressure by the turbine front pressure control device 13.
Controls PF constant and bypass valve 1 after synchronization
Keep 2 fully closed. The recovery turbine 5 controls the turbine front pressure PF based on a signal from the governor 8. In this type of blast furnace gas energy recovery plant, the furnace top pressure can be read as the turbine front pressure, and the septum valve can be read as the bypass valve, as in the case of the blast furnace gas energy recovery plant that has the septum valve 3 shown in FIG. It is clear that it is possible to control the recovery turbine using a blast furnace gas energy recovery turbine controller having a stator vane control function.

以上のように本発明によれば、発電機の同期投
入時など微少流量の調節が必要なところでは、一
部静翼の静翼角のみを変更させるだけであるため
精密な流量調節が可能でかつ騒音も少なくするこ
とができる。また、通常運転時などには、原料装
入などによる高炉排出ガスの流量変動に対して全
静翼を同じ角度で同じように変化させ、炉頂圧力
制御するため、流体に乱れを起すことはなく、そ
の結果効率のよいエネルギの回収が行なわれるこ
とになる。
As described above, according to the present invention, in places where minute flow rate adjustment is required, such as when synchronizing a generator, only the stator vane angle of some of the stator vanes is changed, making it possible to precisely adjust the flow rate. Moreover, noise can also be reduced. In addition, during normal operation, all stationary blades are changed at the same angle in the same way to control the furnace top pressure in response to fluctuations in the flow rate of blast furnace exhaust gas due to material charging, etc., so there is no possibility of turbulence in the fluid. This results in more efficient energy recovery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は先行技術における高炉ガスエネルギ回
収プラントのブロツク図、第2図は先行技術の静
翼制御機構200を説明するための図、第3図は
第1発明の一実施例の主要部のブロツク図、第4
図はガバナ8から送出される静翼駆動信号ζと一
部の静翼511の静翼角θ1および残りの静翼5
12の静翼角θ2との設定の関係を示すグラフ、
第5図は静翼制御機構200の第1発明の他の実
施例の構成図、第6図は複合カム10の変位方向
を説明するための図、第7図は静翼制御機構20
0の第1発明のさらに他の実施例、第8図は第7
図のように静翼制御機構200を構成した場合の
ガバナ8から送出される静翼駆動信号ζと一部の
静翼511の静翼角θ1および残りの静翼512
の静翼角θ2との関係を示すグラフ、第9図は第
2発明の高炉ガスエネルギ回収タービンの制御装
置のブロツク図である。 1……高炉、2……除塵器、3……セプタム
弁、4……遮断弁、5……回収タービン、6……
発電機、7……炉頂圧制御装置、8……ガバナ、
9……信号変換部、10……複合カム、11……
リングスリツトワツシヤ、12……バイパス弁、
13……タービン前圧制御装置、14……調速
弁、51……静翼、52……静翼駆動器、52a
……複合カム駆動器、52b……連桿駆動器、8
1……調速機能、82……調圧機能、83……低
位選択器、91,92……変換部、200……静
翼制御機構、511,512……静翼、521,
522……静翼駆動器、530,531,532
……静翼駆動桿、540,541,542……静
翼駆動連桿、552……溝部、562……ばね。
Fig. 1 is a block diagram of a blast furnace gas energy recovery plant according to the prior art, Fig. 2 is a diagram for explaining a stator vane control mechanism 200 of the prior art, and Fig. 3 shows the main parts of an embodiment of the first invention. Block diagram, 4th
The figure shows the stator blade drive signal ζ sent from the governor 8, the stator blade angle θ1 of some of the stator blades 511, and the remaining stator blades 5.
A graph showing the relationship between the setting and the stator blade angle θ2 of 12,
FIG. 5 is a configuration diagram of another embodiment of the first invention of the stator vane control mechanism 200, FIG. 6 is a diagram for explaining the displacement direction of the composite cam 10, and FIG. 7 is a diagram of the stator vane control mechanism 200.
Still another embodiment of the first invention of No. 0, FIG.
When the stator blade control mechanism 200 is configured as shown in the figure, the stator blade drive signal ζ sent from the governor 8, the stator blade angle θ1 of some of the stator blades 511, and the remaining stator blades 512
FIG. 9 is a block diagram of a control device for a blast furnace gas energy recovery turbine according to the second invention. 1...Blast furnace, 2...Dust remover, 3...Septum valve, 4...Shutoff valve, 5...Recovery turbine, 6...
Generator, 7... Furnace top pressure control device, 8... Governor,
9...Signal converter, 10...Compound cam, 11...
Ring slit washer, 12...bypass valve,
13...Turbine front pressure control device, 14...Governing valve, 51...Stator blade, 52...Stator blade driver, 52a
... Composite cam driver, 52b ... Continuous rod driver, 8
1... Speed regulating function, 82... Pressure regulating function, 83... Low selector, 91, 92... Conversion section, 200... Stator vane control mechanism, 511, 512... Stator vane, 521,
522... Stator vane driver, 530, 531, 532
... Stator blade drive rod, 540, 541, 542 ... Stator blade drive connection rod, 552 ... Groove, 562 ... Spring.

Claims (1)

【特許請求の範囲】 1 高炉プラントの排ガス系統に回収タービンを
設置し、高炉ガスを導き高炉ガスの保有するエネ
ルギを電力に変換して回収する高炉ガスエネルギ
回収タービン発電プラントにおいて、回収タービ
ンを通過する高炉ガス流量が少ない場合には全静
翼のうちの一部の静翼のみを開閉させ、残りの静
翼の静翼角は全閉状態に保ち、さらに回収タービ
ンを通過するガス流量が大きい場合には全静翼の
静翼角を同一又は略同一角度で開閉させ、回収タ
ービンを通過する高炉ガス流量を調節する静翼制
御機構を有することを特徴とする高炉ガスエネル
ギ回収タービン制御装置。 2 高炉プラントの排ガス系統に回収タービンを
設置し、高炉ガスを導き高炉ガスの保有するエネ
ルギを電力に変換して回収する高炉ガスエネルギ
回収タービン発電プラントにおいて、回収タービ
ンの起動から発電機が電力系統に同期投入される
までの間は、回収タービンと並列に設置されてい
るセプタム弁またはバイパス弁にて炉頂圧力制御
またはタービン前圧制御を行ない、一方回収ター
ビンは、ガバナからの出力信号により前記静翼制
御機構を介して全静翼のうち一部の静翼の静翼角
のみを開閉させ、残りの静翼の静翼角は全閉状態
に保持して回収タービンを通過する高炉ガス流量
を微調節し、回収タービンの回転数を制御し、さ
らに同期投入後は、該セプタム弁またはバイパス
弁はほぼ全閉状態にて待期させておき、一方回収
タービンはガバナからの出力信号により、前記静
翼制御機構を介して、全静翼の静翼角を同一また
は略同一角度で開閉させることにより、回収ター
ビンを通過する高炉ガス流量を調節し、炉頂圧力
またはタービン前圧を制御することを特徴とする
高炉ガスエネルギ回収タービンの制御方法。
[Scope of Claims] 1. In a blast furnace gas energy recovery turbine power generation plant in which a recovery turbine is installed in the exhaust gas system of a blast furnace plant to guide blast furnace gas and recover the energy contained in the blast furnace gas by converting it into electricity, the blast furnace gas that passes through the recovery turbine When the blast furnace gas flow rate is low, only some of the stator blades are opened and closed, and the stator blade angle of the remaining stator blades is kept fully closed, and the gas flow rate passing through the recovery turbine is large. A blast furnace gas energy recovery turbine control device characterized by having a stator blade control mechanism that opens and closes the stator blade angles of all stator blades at the same or substantially the same angle to adjust the flow rate of blast furnace gas passing through the recovery turbine. 2. In a blast furnace gas energy recovery turbine power generation plant where a recovery turbine is installed in the exhaust gas system of a blast furnace plant to guide blast furnace gas and recover the energy contained in the blast furnace gas by converting it into electricity, the generator is connected to the power system from the start of the recovery turbine. Until the synchronous input is started, the septum valve or bypass valve installed in parallel with the recovery turbine performs furnace top pressure control or turbine front pressure control, while the recovery turbine is controlled by the output signal from the governor. Through the stator vane control mechanism, only the stator blade angles of some of the stator vanes are opened and closed, and the stator blade angles of the remaining stator blades are kept fully closed to control the flow rate of blast furnace gas passing through the recovery turbine. The rotational speed of the recovery turbine is controlled by finely adjusting the rotation speed of the recovery turbine, and after the synchronization is started, the septum valve or bypass valve is kept in a nearly fully closed state, while the recovery turbine is controlled by the output signal from the governor. By opening and closing the stator blade angles of all the stator blades at the same or substantially the same angle through the stator vane control mechanism, the blast furnace gas flow rate passing through the recovery turbine is adjusted, and the furnace top pressure or turbine front pressure is controlled. A method for controlling a blast furnace gas energy recovery turbine, characterized in that:
JP4694683A 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine Granted JPS59173526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4694683A JPS59173526A (en) 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4694683A JPS59173526A (en) 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine

Publications (2)

Publication Number Publication Date
JPS59173526A JPS59173526A (en) 1984-10-01
JPH0119052B2 true JPH0119052B2 (en) 1989-04-10

Family

ID=12761458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4694683A Granted JPS59173526A (en) 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine

Country Status (1)

Country Link
JP (1) JPS59173526A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741992A1 (en) * 1997-09-24 1999-03-25 Voith Hydro Gmbh & Co Kg Water turbine with running wheel
GB2410530A (en) * 2004-01-27 2005-08-03 Rolls Royce Plc Electrically actuated stator vane arrangement

Also Published As

Publication number Publication date
JPS59173526A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
EP3596334B1 (en) Method for operating a hydraulic machine and corresponding installation for converting hydraulic energy into electrical energy
US3236498A (en) Hydraulic reaction turbines and pump turbines
JPH0119052B2 (en)
US4346304A (en) Method of controlling operation of Francis type pump turbines
JPH0411727B2 (en)
JPS62152399A (en) Operation of variable speed hydraulic turbine generator
CN216157720U (en) Small radial flow turbine expander starting system
JPH0947089A (en) Flow rate control method for francis turbine
JPH03267512A (en) Steam turbine controller
JP2753028B2 (en) Parallel operation of water turbine or pump turbine
JPH03179171A (en) Control method of water turbine
JPH0245661A (en) Governor controller for water wheel
JPH1182279A (en) Speed governing controller for kaplan turbine
JPH0419364A (en) Adjusted-phase operation controller for hydraulic power machine
JPS6131671A (en) Pelton wheel
JPH0326804A (en) Steam turbine controller
JPH09291875A (en) Speed governing controller for kaplan water turbine
JPH01147165A (en) Controller for pelton wheel
JPS62153573A (en) Method of driving water turbine
JPS60206976A (en) Pelton wheel
JPS62150089A (en) Control method for hydraulic machine
JPH06153599A (en) Device for governing/controlling speed of waterwheel generator
JPS623174A (en) Operation stop of pump in pump waterwheel
JPS60222568A (en) Water wheel controlling device
JPH0220833B2 (en)