JPS59173526A - Method and device for controlling blast furnace gas energy recovering turbine - Google Patents

Method and device for controlling blast furnace gas energy recovering turbine

Info

Publication number
JPS59173526A
JPS59173526A JP4694683A JP4694683A JPS59173526A JP S59173526 A JPS59173526 A JP S59173526A JP 4694683 A JP4694683 A JP 4694683A JP 4694683 A JP4694683 A JP 4694683A JP S59173526 A JPS59173526 A JP S59173526A
Authority
JP
Japan
Prior art keywords
blast furnace
recovery turbine
furnace gas
stationary
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4694683A
Other languages
Japanese (ja)
Other versions
JPH0119052B2 (en
Inventor
Ryuichi Sagawa
佐川 隆一
Osamu Nagata
修 永田
Toshiharu Ozaki
年春 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP4694683A priority Critical patent/JPS59173526A/en
Publication of JPS59173526A publication Critical patent/JPS59173526A/en
Publication of JPH0119052B2 publication Critical patent/JPH0119052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line

Abstract

PURPOSE:To recover efficient energy by opening and closing only a part of stationary vanes when the flow rate of the blast furnace gas that passes through a recovery turbine is low, while opening and closing the whole stationary vanes at the same angle when the flow rate of the gas is high. CONSTITUTION:Stationary vane driving signals xsi which are sent out from a governor 8 is fed to the two converting parts 91, 92 of a signal converter 9 through a line l1 and, then, they are fed to stationary vane driving devices 521, 522 through lines l2, l3, as output signals xsi1, xsi2 respectively. Each of the driving devices 521, 522 controls the stationary-vane angles of a part of stationary vanes 511 and the stationary-vane angles of the remaining stationary vanes 512 through driving rods 531, 532 respectively. That is, when the flow rate of a blast furnace gas passing through a recovery turbine is low, the stationary- vane angles of only a part of stationary vanes 511 are controlled, while controlling the remaining stationary vanes to be in a totally closed condition. On the other hand, when the flow rate of the gas is high, the stationary-vane angle of the whole stationary vanes 511, 512 are controlled so as to be opened or closed at the same angle or almost at the same angle.

Description

【発明の詳細な説明】 本発明は、可変ピッチ静翼を有する旨炉ガスエネルギ回
収タービンの静翼制御M&構と、それを用いた高炉ガス
エネルギ回収タービンプラントの制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stator blade control M& structure for a blast furnace gas energy recovery turbine having variable pitch stator blades, and a method for controlling a blast furnace gas energy recovery turbine plant using the same.

従来から高炉から排出する高炉ガスの保有するエネルギ
を回収するために第1図(a)に示すように高炉ガスの
排出系統にセプタム弁3と並列に回収タービン5を配し
て炉頂圧力はセプタム弁3によシ予め設定した設定値に
保持するように制御し、一部の高炉ガスを回収タービン
5に得いてエネルギ回収を行なっていた。このような先
行技術では、セプタム弁3を゛通過する高炉ガスのエネ
ルギ回収は行なわれないため、回収効率はかなり低いも
のであった。
Conventionally, in order to recover the energy possessed by the blast furnace gas discharged from the blast furnace, a recovery turbine 5 is placed in the blast furnace gas discharge system in parallel with the septum valve 3, as shown in Fig. 1(a), to reduce the furnace top pressure. The septum valve 3 is controlled to maintain a preset value, and a part of the blast furnace gas is supplied to the recovery turbine 5 for energy recovery. In such prior art, energy recovery from the blast furnace gas passing through the septum valve 3 is not performed, so the recovery efficiency is quite low.

これを解決する1つの方法として従来では、第1図(L
、)に示すように通常運転時にはセプタム弁3は全開状
態にし、調速弁14により炉頂圧1v1」御を行ない、
高炉の異常時やタービンの起動停止時さらに調速弁14
のl#lJ御範囲全範囲た場合などにおいてはセプタム
弁3を作前させる方法が考えられた。この方法もまた高
炉ガス流血が少なくなった場−合、炉頂圧力を一定に保
つために調速弁が流量を絞るため級り損失が大きくエネ
ルギ回収効率が低くなるという問題をかかえていた。
One way to solve this problem is to use conventional methods as shown in Figure 1 (L
, ), during normal operation, the septum valve 3 is fully open, and the speed regulator valve 14 controls the furnace top pressure to 1v1.
In the event of an abnormality in the blast furnace or when the turbine starts or stops, the governor valve 14
In cases where the entire range of l#lJ is controlled, a method has been considered in which the septum valve 3 is moved forward. This method also has the problem that when blast furnace gas bleeding decreases, the regulating valve throttles the flow rate in order to keep the furnace top pressure constant, resulting in large scale losses and low energy recovery efficiency.

さらにこの問題を解決するために池の先行技術では、回
収タービン5に可変ピッチ静Aを設it L、前記調速
弁14に代えて静t4ピッチを変更してタービン通過ガ
ス流振を調節し炉頂圧1ljlJ御装匝7による炉頂圧
力制御や回収タービン5の起動や停止時の回転数制御を
行なうことが考えられた。静Aピッチ角が0反すなわち
全開状態から除々に開反金とって行く微開の状態では大
きな騒音を発生させることの他に、開度対流りの感度が
非常に晶く、特に発電機負荷のような場合、無負荷定格
回転故に制御し、電力系統に同期投入しようとする場合
などにおいて回転数制御装置の設計か非常に困難である
Furthermore, in order to solve this problem, in Ike's prior art, a variable pitch static A is installed in the recovery turbine 5, and the static pitch T4 is changed in place of the governor valve 14 to adjust the vibration of the gas flow passing through the turbine. It has been considered to control the furnace top pressure using the furnace top pressure 1ljlJ and the rotation speed when starting and stopping the recovery turbine 5. In the slightly open state where the static A pitch angle is 0, that is, the fully open state gradually increases, not only does it generate a large noise, but the sensitivity of the opening convection is very crystallized, especially when the generator load In such cases, it is very difficult to design a rotation speed control device when controlling the no-load rated rotation and synchronizing it to the power grid.

その1つの解決方法として起動・停止、同期投入などの
タービンを通過する流量か少ない場合の制御は、調速弁
14にさせ高炉のμ九料投入などの外乱に対し炉頂圧力
を予め疋めた設定値に保]守するような炉頂圧制御など
は静翼ピッチを変化させて行なう方法などが実施されて
いる。このような方法においても調速弁の微開時には、
絞りによる大きな騒音を発生したり一また衝撃波を出し
て下流の静貞やりの異に悪影響を及ぼしたりする。
One way to solve this problem is to use the regulating valve 14 to control startup, shutdown, synchronization, and other operations when the flow rate passing through the turbine is small, so that the furnace top pressure can be adjusted in advance against disturbances such as the injection of μ-9 into the blast furnace. The furnace top pressure is maintained at a set value by changing the stator blade pitch. Even with this method, when the regulating valve is slightly opened,
The diaphragm generates loud noises and shock waves that adversely affect the quietness downstream.

第1図(C)は、先行技術における高炉ガスエネルギ回
収プラントを示す。高炉lから排出される1%炉ガスは
、除縞器2を過て回収タービン停止時にはセプタム弁3
で炉頂圧制御装置7からの制御1d号により炉頂圧力P
bが炉頂圧設定値pBSに保持されるようにその流血を
関節して下流側へ流している。
FIG. 1C shows a prior art blast furnace gas energy recovery plant. The 1% furnace gas discharged from the blast furnace 1 passes through the stripe remover 2, and when the recovery turbine is stopped, the septum valve 3
The furnace top pressure P is controlled by control number 1d from the furnace top pressure control device 7.
The blood is directed to the downstream side so that b is maintained at the furnace top pressure set value pBS.

一方、この状態から回収タービン5を起動させる場合に
は、まず遮断弁4を全開にし、さらにガバナ8の調速機
能81の回転数設定器811の設定値を1余々に上げて
いくことにより回収タービン5の靜楓51のill 1
.NK角を0反(全閉)かも除々に開け、回収タービン
5に高炉ガスを萼き回収タービン5および回収タービン
5によって駆動する発電機6の回転を除々に上げていく
。回収タービン5“および発電機6の回転数が定格回転
数に達すると発電機6を電力系M、に同期投入する。こ
の時点で調速4a能81は不安定となるので回転数設定
器811を上限まで逃がす。カパナ8内の低位選択器8
3の機能によりガバナ8の機能を調速機1侶81から調
圧機能に、移行させ、ガバナ8の調圧機能からの信号に
より回収タービン5の静間51の靜衷角を変化させて、
炉頂圧力Pbを設定値pssに保持するように作用する
。このとき設定値1) 8.5はセプタム弁3を駆動す
る炉頂圧制御装置7の炉頂圧設定値pBSより若干低い
値(すなわちpss=pBS−ΔPBS )に予め設定
されている。この結果セプタム弁3は全開となり、篩炉
ガス全釦が回収タービン5を通過するため、光′重機6
は高炉ガスの保有するエネルギを最大限電力に質候し回
収することができる。
On the other hand, when starting the recovery turbine 5 from this state, first fully open the shutoff valve 4, and then increase the setting value of the rotation speed setting device 811 of the speed regulating function 81 of the governor 8 to more than 1. Collection turbine 5's silent Kaede 51's ill 1
.. The NK angle is gradually opened to 0 (fully closed), the blast furnace gas is fed to the recovery turbine 5, and the rotation of the recovery turbine 5 and the generator 6 driven by the recovery turbine 5 is gradually increased. When the rotational speed of the recovery turbine 5'' and the generator 6 reach the rated rotational speed, the generator 6 is synchronously connected to the power system M. At this point, the governor 4a function 81 becomes unstable, so the rotational speed setting device 811 Release to the upper limit.Low selector 8 in Kapana 8
3, the function of the governor 8 is transferred from the speed governor 81 to the pressure regulation function, and the quiet angle of the static space 51 of the recovery turbine 5 is changed by the signal from the pressure regulation function of the governor 8,
It acts to maintain the furnace top pressure Pb at the set value pss. At this time, the set value 1) 8.5 is preset to a value slightly lower than the furnace top pressure set value pBS of the furnace top pressure control device 7 that drives the septum valve 3 (that is, pss=pBS-ΔPBS). As a result, the septum valve 3 is fully opened and all the sieve furnace gas passes through the recovery turbine 5.
can convert and recover the maximum amount of energy contained in blast furnace gas into electricity.

このような回収タービン5の運転において、回収タービ
ン5は起動から同期投入まではaヂ虜51を微少開度で
操作し、回収タービン5の回1版奴を一θ沓する必要が
ある。また、エネルギを回収する辿゛酵の運転状部では
、静翼角はできるかぎり開き、定格点の近傍で靜用角の
微少な1j1]閉操作でガスのびしれをできるたけ乱さ
ないように調節しなから炉頂圧力pbを炉用圧力設定(
alPssに保つように制御する必要がある。
In such an operation of the recovery turbine 5, the recovery turbine 5 must be operated at a small opening degree from the time when the recovery turbine 5 is started until the synchronization is turned on, and the rotation angle of the recovery turbine 5 must be adjusted by one θ. In addition, in the operating section of the fermentation where energy is recovered, the stator vane angle is opened as much as possible, and the angle of the stationary blade is adjusted near the rated point so as not to disturb the gas flow as much as possible by closing the angle. Then set the furnace top pressure pb to the furnace pressure (
It is necessary to control to maintain it at alPss.

ここで@1図CC)に示す先行技術のI#′8瓦制ma
t構100を第2図に基ついて説明する。[α気ガバナ
8から出力される静翼駆動信号ξは、静翼駆姻器52に
入力されて、機械変位量xK要換され、静翼角θを駆動
させる。この機構を用いて回収タービン5を起動°から
同期投入(無負荷定格回1肱故)までの昇速過程および
同期回転数に一致させる過程で全てのn+X51を微少
開度のところで駆動して回転数の調整をするのは、非常
に困難でしばしば同期投入の失敗を起す。
Here, the prior art I#'8 tile system ma shown in @1 Figure CC)
The structure 100 will be explained with reference to FIG. [The stator vane drive signal ξ output from the α air governor 8 is input to the stator vane driver 52, where it is converted into a mechanical displacement xK to drive the stator vane angle θ. Using this mechanism, all n + Adjusting the numbers is very difficult and often results in synchronization failures.

本発明の目的は、上述の技術的課題を解決し、かつ定常
状態の運転では全ての静間が同じ角度で変化し、高炉ガ
スの流れに乱れを生せしめない静間制御機構と、この機
構を用いた重症ガスエネルギ回収タービンプラントの制
御卸方法を提供することである。
The purpose of the present invention is to provide a static space control mechanism that solves the above-mentioned technical problems, and in which all static spaces change at the same angle during steady-state operation and does not cause disturbances in the flow of blast furnace gas, and a static space control mechanism that uses this mechanism. An object of the present invention is to provide a method for controlling a severe gas energy recovery turbine plant.

第3図は、本発明の一実施例の主要部のブロック図を示
す。ガバナ8から送出される静衷駆刺4g号ξは、18
号変換部9の二つの変換器91および92にライン11
を介して与えられ、それぞれ1u号狭換6れて出力信号
ξ1およびξ2をライン12およびl!3Vc送出する
。静翼駆動器521は、ライン12を介して出力価号ξ
1を党価し、静翼駆#J器522はライン13を介して
出力信号ξ2を交信する。したがって静九駆動桿531
および532は駆動し、各機械変位量x1およびx2に
便侠され、一部の静鎮511の静翼角θ1および残りの
静翼522の静翼角θ2をそれぞれ#IJA切するよう
構成されている。
FIG. 3 shows a block diagram of the main parts of an embodiment of the present invention. The silent stabbing 4g No. ξ sent out from the governor 8 is 18
The line 11 is connected to the two converters 91 and 92 of the code converter 9.
are provided via lines 12 and l!, respectively, and the output signals ξ1 and ξ2 are provided through lines 12 and l! Sends 3Vc. The stator vane driver 521 has an output value ξ via the line 12.
1, and stator vane drive #J unit 522 communicates output signal ξ2 via line 13. Therefore, Shizuka drive rod 531
and 532 are driven and controlled by the mechanical displacements x1 and x2, and are configured to cut the stator blade angle θ1 of some of the stator vanes 511 and the stator blade angle θ2 of the remaining stator blades 522, respectively. There is.

第4図は、前述のように構成した場合の嘔気ガバナ8か
ら送出される#!j4駆動信号こと一部の静翼511の
静翼角θ1および伐りの静翼512の静翼角θ2との、
賀定の関係を示す。m ’4図に示すように設定するこ
とにより靜属制rlLl (i: ’8ξの小さい 0
≦ξ〈ζA の範囲では、一部の静As1tのみが角度
変化するだけで、残りの静)ス512は全閉を保ち、次
に静慎制御伯りが増大し、ξA≦ξくξBの範囲に入る
と、前記−郡の静翼511は予め定めた一定角度で静止
・しており、残りの静置512が角度鋭化する。さらに
静異1b制御G11lづ°ξかξ≧ξB になると、全
ての靜1A511が同じ角度で角V変化する。このよう
に構成することにより回収タービン5の起動から同期投
入までのように静楓で微少な流旭を制御jllする必要
がある場合すなわち静翼駆動信号ξがξAより小さい範
囲で作動する場合には、二部の静2451xの角度のみ
便化させるべく操作すればよくガス流風の制御が容易に
なる。さらに回収タービン5の炉頂圧力jlil (i
111状態で運転され名通常の運転状態、すなわち、#
商駆切(S ”Jξが定格運転点ξRの近イ労で作動す
る場合には、全ての静置51が全て同じ角度で変化する
ため静岡51の後流に乱7′1.′fc発生すると・と
もなく回収タービン5は安定に運転され、兄箪候6を駆
動して室炉ガスの保有する・エネルギケミ力に変換して
回収することができる。
FIG. 4 shows #! sent from the nausea governor 8 when configured as described above. j4 drive signal, the stator blade angle θ1 of some of the stator blades 511 and the stator blade angle θ2 of the felling stator blade 512,
Indicates the relationship between the two. By setting as shown in Figure m'4, the relative control rlLl (i: '8ξ small 0
In the range of ≦ξ〈ζA, only a part of the static As1t changes in angle, the remaining static As1t remains fully closed, and then the static control factor increases, and ξA≦ξ ξB. Once within the range, the stationary blades 511 of the - group are stationary at a predetermined constant angle, and the remaining stationary blades 512 are at a sharp angle. Further, when the static difference 1b control G11l becomes ξ or ξ≧ξB, all the static 1A511 change angle V by the same angle. With this configuration, when it is necessary to control minute flow ebbs and flows with static Kaede, such as from the start of the recovery turbine 5 to the synchronization, in other words, when the stator blade drive signal ξ operates in a range smaller than ξA. In this case, it is only necessary to operate the angle of the second part 2451x to make it easier to control the gas flow. Furthermore, the furnace top pressure jlil (i
It is operated in the 111 state and the normal operating state, i.e. #
Commercial cutting (S") When Jξ operates near the rated operating point ξR, all stationary positions 51 change at the same angle, causing turbulence 7'1.'fc in the wake of Shizuoka 51. Then, the recovery turbine 5 is operated stably, and the older cylinder 6 is driven to convert the energy possessed by the furnace gas into chemical power for recovery.

以上述べたように本発明の一実施例は、力゛〕々す8か
ら出力される静tm *m #信号ξにより駆即Jされ
る変換器91および92から成る信号質侠部9、谷靜減
駆#器521および522、ならひに各靜諷駆動桿53
1および532から構成される静翼制御機5200につ
いては、1百号変侠部9はイ日号レベルの変換器として
機能し、またその出力で駆m9Jされる。各a m 座
wt器521および522tri、H号しベルの出カイ
=号ξlおよびξ2を愛1出シ・機械式位x1およびx
2に狭侠するサーボ機構を例にとって説明した。
As described above, one embodiment of the present invention includes a signal quality control section 9, which is composed of converters 91 and 92, which are driven by the static tm*m# signal ξ output from the power source 8; Silence reduction # 521 and 522, each silence drive rod 53
Regarding the stator vane controller 5200 composed of 1 and 532, the 100th converter section 9 functions as a converter at the 1st level, and is driven by its output. Each a m seat wt device 521 and 522tri, H number and bell output = number ξl and ξ2, love 1 output, mechanical position x1 and x
The explanation was given by taking as an example a servo mechanism that narrows down to 2.

第5図は、前記サーボ機構の他の実施例である。FIG. 5 shows another embodiment of the servo mechanism.

ガバナ8からの静filK刺1d号ξを11接たとえば
サーボ機構から成る複合カム1小w器52aに入力し、
たとえば第6図に示すような複合カム10を1先!Iめ
し、矢符y方向に質位させ、これによって′6静1μ駆
動桿531および532を駆動するように静]枢;ト制
御磯講200を構成することも9能でりる。
Input the static filter 1d number ξ from the governor 8 to the compound cam 1 small unit 52a consisting of a servo mechanism, for example,
For example, the composite cam 10 as shown in Fig. 6 is the first! It is also possible to configure the static control rod 200 so as to move it in the direction of the arrow y, thereby driving the driving rods 531 and 532.

第7図は、静翼制御機44Ij 20 LJのさらeζ
イ曳の天胤例である。ガバナ8からのi’i’f’ −
ヴ駆動信号ξを1区接サーボ機構からなる連捏駆功器5
2bに与え、連桿躯薊器52bは一部の師@駆助桿53
0を駆四ノする。さらに靜翼駆切桿530と谷静鳥駆動
連桿540との接合部に関し、一部の静m51.1を駆
動する靜嗅駆動連桿542は、静翼を払9.IjJ桿5
30とだ円形めtllt f、fl< 552で回転自
在かつ上下友位が可能なように接合され、さらに下方に
ばね562で伺勢されて取付られている。したがって第
7図(a) 、 (+)) 、 (c)の順Vc <、
=ての静置51が全開状態から閉じる方向すなわち酸1
A駆切連桿53’Oが多動すると、vJ7図(b)で一
部H4を翼511は−d1≦方1ノ目の執心にあるが残
りの#&d512は全閉状I綜となる。
Figure 7 shows the height of the stator vane controller 44Ij 20LJ.
This is an example of Ibiki's Tentane. i'i'f' from governor 8 −
A continuous driving device 5 consisting of a servo mechanism that divides the drive signal ξ into one section.
2b, and the ren-kei-kei-ki 52b is given by some masters @ Kakusuke-kei 53
Drive 0 with four wheels. Furthermore, regarding the joint between the silent wing drive cutting rod 530 and the valley static bird driving connecting rod 540, the silent driving connecting rod 542 that drives a part of the static m51.1 removes the static blade 9. IjJ rod 5
30 and the oval shape tllt f, fl < 552 so as to be rotatable and vertically adjustable, and further biased downward by a spring 562. Therefore, in the order of FIG. 7 (a), (+)), (c), Vc <,
= the direction in which the rest 51 is closed from the fully open state, that is, the acid 1
When the A-stroke connecting rod 53'O moves too much, part of the blade 511 of H4 in FIG.

さらに静翼駆前桿530が下方に移動すると、第7図C
C)の状態すなわち一部静TA511も全閉状窓となる
。この場合残り静ν嬉512を脂味のする峙衷駆動連桿
542の先端は、だ円形の?7it if< 552の
溝部中で、下端に引付けられているd:ね562の力に
反し溝部552の下端から阻れることにより静具駆励桿
530の下方への移動を可能r(する。
When the stator vane front rod 530 moves further downward, as shown in FIG.
The state of C), that is, the partially static TA 511 also becomes a fully closed window. In this case, the tip of the opposite drive connecting rod 542 that makes the remaining static ν joy 512 oily is oval shaped? 7it if < 552, the force of the d: spring 562 that is attracted to the lower end is blocked from the lower end of the groove 552, allowing the stationary tool driving rod 530 to move downward.

第8図は、前記の第7図のように静置駆動機構200ン
傳1戊しグヒ場口、カパナ8から送出されるげp A融
入!I力1言り ξ と −州S tfJ’異 511
  のl’14’ :+1)月 σ 1 および伐りの
Uか異512の曲4月02との閃1丞τ不ず。この場合
もl異駆鯛摺1号ζか数少開度全要求する 0〈ζくξ
A の暢囲にあれば、 i’+p I’ip異511の
みかIfjIIA月θ1 ?r: IJIJ サ、マ/
コ止+1rなym ’ilx +N域であゐ ξ=ζR
の肛儲では一郡岬異511も伐り1伊異512も略−」
−゛の静翼角で便化し1−炉ガス流量をw−節すること
を口J能にする。
FIG. 8 shows the stationary drive mechanism 200, which is sent out from the stationary drive mechanism 200 and from the kapana 8, as shown in FIG. 7 above. I force 1 word ξ and -state S tfJ' difference 511
l'14': +1) Moon σ 1 and Hari no U or 512 song April 02 and Sen 1 τ uzu. In this case as well, we require the full opening of the Taisho No. 1 ζ or a few 0〈ζkuξ
If it is in the range of A, only i'+p I'ip difference 511 or IfjIIA month θ1? r: IJIJ sa, ma/
Kostop + 1r ym 'ilx + N area ξ = ζR
In the final report, Ichigun Misaki 511 was also cut down, and Ichigun 512 was also omitted.''
It is convenient to use a stator vane angle of 1 to 1 to reduce the furnace gas flow rate to 1.

以上夫施例で示したように静翼jli制御準構200勿
畦気式、流圧式、機械式またはそれらの組合せた俊傅を
用いて夫現し、回収タービン5の静翼51の一部の静^
511と伐りの静翼512を微少1JPJ反では、一部
靜衷511のみ・の開度を変化させ、伐りの静岡512
は全13−J状態に保つ。また回収タービン5の止゛m
な運転@域すなわち静fi51が十ガなlyl’1度を
1ノbいて運転する場合には、一部静翼511を戊りの
靜火512も同一またはIll! 1cjJ−の静翼角
で変化することにより、回収タービン5は従来の回収タ
ービン5が有゛していた祠連弁による叙り機能を削除し
ても起動から正常な運転域での運転が、安全に、静かに
か;)効率よく行なうことができる。
As shown in the examples above, the stator vane control substructure 200 can be controlled by using a pneumatic type, a hydraulic type, a mechanical type, or a combination thereof, to control a part of the stator blade 51 of the recovery turbine 5. Silence ^
511 and the stationary blade 512 of the felling are slightly 1 JPJ, the opening degree of only the silent 511 is changed partially, and the Shizuoka 512 of the cutting is changed.
is maintained in a total 13-J state. Also, the stop of the recovery turbine 5
In other words, when the static fi 51 is operated with 1 degree of static fi 51 at 1 nob, some of the static blades 511 and the silence 512 are the same or Ill! By changing the stator blade angle of 1cjJ-, the recovery turbine 5 can operate in the normal operating range from start-up even if the function of the conventional recovery turbine 5 using the continuous valve is removed. It can be done safely, quietly;) efficiently.

、なお以−ヒの実施例は、全て高炉プラントの排ガン系
統において回収タービン5と並列にセプタム弁3が設置
されている高炉ガスエネルギ回収タービンプラントであ
る。
The following embodiments are all blast furnace gas energy recovery turbine plants in which a septum valve 3 is installed in parallel with a recovery turbine 5 in the exhaust gas system of the blast furnace plant.

第9図は、篩炉ガスエネルギ回収タービンプラントの他
の実施例である。第9凶において、第1図に示す構成と
同じものは同一の参照符を付す。
FIG. 9 shows another embodiment of the sieve furnace gas energy recovery turbine plant. In No. 9, the same components as shown in FIG. 1 are given the same reference numerals.

この実施例は、高炉ガスの排ガス系統に除塵機能と炉頂
圧;11」御機能とを・目゛するリングスリットワンシ
ャ11を含む高炉ガスエネルギ回収タービンプラントで
ある。回収タービン5と並列にバイパス弁12を設置す
る。炉頂圧力は常にリングスリットワッシャl−1にて
制御1 L 、回収タービン5の起りνJから同期投入
棟での161はバイパス弁12がタービンIII圧制御
装置13によりタービン1jfJ EtE P Fを一
定K ’+li’J御し、同期投入後はバイパス弁12
を全閉に保つ。回収タービン5か、カパナ8からの1日
づによりタービン面圧P1?を副イ・111する。この
タイプの高炉ガスエネルギ回収プラントにおいては、1
J11述ス5ニス51プタムヲf3を自する高炉ガスエ
ネルギ回収プラントの場合と1i=il椋、炉頂圧力を
タービン14ij圧と、またセプタム弁をノくイ/くス
升とrj7シみ侠えiことによりe族制御4渋能を何す
る尚Pガスエネルギ回収タービン制御表置を用いて回収
タービンを制御することが口I能であることは明らかで
ある。
This embodiment is a blast furnace gas energy recovery turbine plant including a ring slit washer 11 in the blast furnace gas exhaust gas system for the purpose of dust removal function and furnace top pressure control function. A bypass valve 12 is installed in parallel with the recovery turbine 5. The furnace top pressure is always controlled by the ring slit washer l-1, and from the start νJ of the recovery turbine 5, 161 in the synchronized input building is controlled by the bypass valve 12 to keep the turbine 1jfJ EtE P F constant K by the turbine III pressure control device 13. '+li'J control, after synchronization, bypass valve 12
Keep it fully closed. Turbine surface pressure P1 due to recovery turbine 5 or Kapana 8? Sub A.111. In this type of blast furnace gas energy recovery plant, 1
J11 describes the case of a blast furnace gas energy recovery plant with 5 varnishes, 51 pts., and 1i = il, the furnace top pressure is the turbine 14ij pressure, and the septum valve is removed. It is clear that it is possible to control the recovery turbine using the P gas energy recovery turbine control system, which is a function of the E group control 4 function.

以−ヒのように本発明によれば、−fa重電機同lIj
]投入時など微少直重の調節が必要なところでは、一部
静界の静鬼月のみを斐史させるだけであるため精dな流
量調njiが”J’ nEでかつ騒音も少なくすること
ができる。また、」市電運転時などtては、原料装入な
どによる高炉排出ガスの流量装動に対して全1争異を同
じ角度で同じように良化させ、炉頂圧力IIIII @
するため、流体に乱れを起すことはなく、その結果効率
のよいエネルギの回収が行なわれることになる。
According to the present invention, as shown in FIG.
] In places where slight direct weight adjustment is required, such as when charging, only a part of the static world is stirred, so the precise flow rate adjustment is "J'nE" and the noise is reduced. In addition, during streetcar operation, etc., all differences in the flow rate of blast furnace exhaust gas due to material charging, etc. are improved in the same way at the same angle, and the furnace top pressure is improved.
Therefore, no turbulence is caused in the fluid, and as a result, efficient energy recovery is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は先行技術における高炉ガスエネルギ回収プラン
トのブロック図、第2図は先行技術の静間制御、哉構2
00を説明するだめの図、第3図は第1発明の一実施例
の王蕨都のブロック図、第4図はガバナ8から送出され
るm d * mJ慴号ξと一部の静憾t511の1葎
婁角θ12よひ戊りのl挿置512の靜翼角θ2との設
定の関係を示すグラフ、第5図は静夷制側1機構200
の第1発明の他の実施例の構成図、第6図は複合カム1
0の変位力向を説明するための図、第7図f−i静蝿;
μす1叶5磯構200の第1発明のさらに他の実施例、
躬8図は第7図のように静め制御機構200を構j戊し
た場合のガバナ8から送出されるfilす4駆動借号こ
と一部の^争脚511の静対角θ1および伐りのt3’
F4ikL 512の静周角θ2との開イ示を不すグラ
フ、第9図は第2発明の高炉ガスエネルギ回収タービン
の−J胡1装簡のブロック図である。 1・・高炉、2・・・除塵器、3・・カプクム弁、4・
・晶断弁、5・・・回収タービン、6・・・発電機、7
・・炉頂圧11tlJ碑装置、8・・ガバナ、lO・・
・複台カム、11・・・リングスリットソソシャ、12
 ノくイノヤス弁、13・・・タービン助圧市1jf曲
装置、51 ・岬i4、’52・・・岬関駆紡器、81
・・・読込機能、83・低1v尽択器、91.92・・
変侠器、511,512・・峙固、521.522  
・・・1イp異緒しくqIIJ 器、  530,53
1゜532・・酊閥1駆11の桿、542・・・111
1′シ座すνJ連桿、552・・冒衡都、562・・ば
ね 代理人    弁理士  西教圭一部 第3図 第4図 第5図 第6図 −〔−コー
Figure 1 is a block diagram of a blast furnace gas energy recovery plant in the prior art, and Figure 2 is a static control and structure 2 in the prior art.
00, FIG. 3 is a block diagram of Wang Biandu according to the embodiment of the first invention, and FIG. A graph showing the relationship between the angle θ12 of t511 and the angle θ2 of the yoke 512, and FIG. 5 is the static control side 1 mechanism 200.
A configuration diagram of another embodiment of the first invention, FIG. 6 shows the composite cam 1.
A diagram for explaining the displacement force direction of 0, Fig. 7 f-i static fly;
Still other embodiments of the first invention of μsu 1 Kano 5 Isokai 200,
Figure 8 shows the static diagonal θ1 of the fil 4 drive signal sent from the governor 8 when the calming control mechanism 200 is configured as shown in Figure 7. '
FIG. 9 is a block diagram of the blast furnace gas energy recovery turbine of the second invention -J Hu1. 1. Blast furnace, 2. Dust remover, 3. Capkum valve, 4.
・Crystal cutting valve, 5... Recovery turbine, 6... Generator, 7
...Furnace top pressure 11tlJ monument device, 8...Governor, lO...
・Multiple cam, 11...Ring slit sociator, 12
Nokuinoyasu valve, 13...Turbine support pressure city 1jf bending device, 51 ・Misaki i4, '52...Misaki Seki spinning machine, 81
...Reading function, 83.Low 1v selector, 91.92...
Hentaiki, 511,512...Tekketsu, 521.522
...1p strange qIIJ vessel, 530,53
1゜532...Drinking group 1 drive 11 rod, 542...111
1' Sitting νJ connecting rod, 552... Exploring the capital, 562... Spring agent Patent attorney Kei Nishi Part 3 Figure 4 Figure 5 Figure 6 -[-Co

Claims (2)

【特許請求の範囲】[Claims] (1)高炉プラントの排ガス系統に回収タービンを設置
し、高炉ガスを畔き高炉ガスの保有するエネルギを電力
に変換して回収する高炉ガスエネルギ回収タービン発電
プラントにおいて、回収タービンをMMする高炉ガス流
星が少ない場合には全静翼のうちの一州ζめ静戒のみを
開閉させ、残りの静翼の静呉角は全閉状態に保ち、さら
に回収タービンを通過するガス流量が大きい場合には全
静翼の卵翼角を同−又は略同−角度で開閉させ、回収タ
ービンを通過する高炉ガス流量を調節する静嵐制御機構
を有することを特徴とする高炉ガスエネルギ回収タービ
ン制御装置。
(1) In a blast furnace gas energy recovery turbine power generation plant where a recovery turbine is installed in the exhaust gas system of a blast furnace plant to collect blast furnace gas and convert the energy contained in the blast furnace gas into electricity, the blast furnace gas is used to MM the recovery turbine. When there are few meteors, only one of the stationary blades is opened and closed, and the remaining stationary blades are kept fully closed. Furthermore, when the gas flow rate passing through the recovery turbine is large, A blast furnace gas energy recovery turbine control device characterized by having a static storm control mechanism that opens and closes the egg blade angles of all stationary blades at the same or substantially the same angle to adjust the flow rate of blast furnace gas passing through the recovery turbine.
(2)高炉プラントの排ガス系統に回収タービンを設置
纜し、高炉ガスを辱き高炉ガスの保有するエネルギを電
力に変換して回収する高炉力゛スエネルギ回収タービン
発市プラントにおいて、回収タービンの起動から)A3
電機が重力系統に同期投入されるまでの間は、回収ター
ビンと並列に設置直されているセプタム弁またはバイパ
ス弁にて炉頂圧力制御またはタービンIJtJ圧制御を
行ない、−万回収クービンは、ガバナからの出力信号に
より)J+J記静翼制側1商構を介して全静翼のうち一
郡の静翼の静翼角のみを開閉させ、残りの静彊の靜埴(
角は全開状恣に保持して回収タービンを通過する嶋炉ガ
ス流量を微A如し、回収タービンの回転吹を制佃1し、
さらに同期投入後は、該セプタム弁またはバイパス弁は
ほぼ全閉状態にて待期−させておき、一方回収タービン
はガバナからの出力信号により、曲記靜呪制御機構を介
して、全静髭の静4角を同一または略同−角度で開閉さ
せることによセ、回収タービンを通過する高炉ガス流1
を調17?j L、炉頂圧力またはタービン前圧を制(
illすることを特徴とする高炉カスエネルギ回収ター
ビンの制H方r。
(2) A recovery turbine is installed in the exhaust gas system of the blast furnace plant, and the energy contained in the blast furnace gas is recovered by converting it into electricity. from) A3
Until the electric machine is synchronized into the gravity system, the furnace top pressure or turbine IJtJ pressure is controlled using the septum valve or bypass valve that has been reinstalled in parallel with the recovery turbine. Based on the output signal from J+J, only the stator blade angle of one group of the stator blades is opened or closed through the J+J stator blade control side structure, and the remaining static vanes are opened and closed.
The corner is arbitrarily held in a fully open position, and the flow rate of the Shima Furnace gas passing through the recovery turbine is set to 1 A, thereby controlling the rotational blow of the recovery turbine.
Furthermore, after the synchronization is turned on, the septum valve or bypass valve is kept in a waiting state in an almost fully closed state, while the recovery turbine is operated in a fully closed state by an output signal from the governor via a silence control mechanism. The blast furnace gas flow 1 passing through the recovery turbine is
Key 17? j L, control the furnace top pressure or turbine front pressure (
H control method of a blast furnace waste energy recovery turbine characterized by illumination.
JP4694683A 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine Granted JPS59173526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4694683A JPS59173526A (en) 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4694683A JPS59173526A (en) 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine

Publications (2)

Publication Number Publication Date
JPS59173526A true JPS59173526A (en) 1984-10-01
JPH0119052B2 JPH0119052B2 (en) 1989-04-10

Family

ID=12761458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4694683A Granted JPS59173526A (en) 1983-03-18 1983-03-18 Method and device for controlling blast furnace gas energy recovering turbine

Country Status (1)

Country Link
JP (1) JPS59173526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015789A1 (en) * 1997-09-24 1999-04-01 Voith Hydro Gmbh & Co. Kg System of moving blades for turbo-machine, in particular hydraulic turbine
GB2410530A (en) * 2004-01-27 2005-08-03 Rolls Royce Plc Electrically actuated stator vane arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015789A1 (en) * 1997-09-24 1999-04-01 Voith Hydro Gmbh & Co. Kg System of moving blades for turbo-machine, in particular hydraulic turbine
GB2410530A (en) * 2004-01-27 2005-08-03 Rolls Royce Plc Electrically actuated stator vane arrangement

Also Published As

Publication number Publication date
JPH0119052B2 (en) 1989-04-10

Similar Documents

Publication Publication Date Title
US5301500A (en) Gas turbine engine for controlling stall margin
AU2012219353B2 (en) Turbomachinery having self-articulating blades, shutter valve, partial-admission shutters, and/or variable-pitch inlet nozzles
US10309315B2 (en) Variable area nozzle assisted gas turbine engine restarting
JPS597785A (en) Blade feathering device for wind-force turbine
JP2008281001A (en) Turbine anti-rotating stall schedule
EP1302669A3 (en) Control system for positioning compressor inlet guide vanes
CN112664328A (en) System and method for controlling an unducted engine
CN102110992A (en) Method of synchronizing turbomachine generator to electric grid
CN101929431A (en) Wind turbine and be used to optimize the method that energy wherein produces
JPS6146656B2 (en)
JPS59173526A (en) Method and device for controlling blast furnace gas energy recovering turbine
JPS6024314B2 (en) How to start a water turbine
CN102667143A (en) Method and solar-powered wind plant for producing electric power
CN1217011C (en) Control method for stopping power generation systm operated by using excess pressure of blast furnace gas and relevant software
CN201292370Y (en) Blast furnace top pressure control rearrange apparatus
JP2002303244A (en) Pump turbine
JP4079311B2 (en) Hydropower plant speed control device
CN103614501A (en) Non-stop running technology for TRT (blast furnace gas residual pressure power generation device) during blast furnace damping down
JPS6032942A (en) Control method and device of energy collection turbine plant
JPH0419364A (en) Adjusted-phase operation controller for hydraulic power machine
JP2001342939A (en) Pump turbine
JPH09250443A (en) Overspeed controller of water wheel generator
JPH1182279A (en) Speed governing controller for kaplan turbine
JPS60209669A (en) Starting of water turbine for hydraulic electric power generation
JP2004064888A (en) Converter device