JPH0118987B2 - - Google Patents

Info

Publication number
JPH0118987B2
JPH0118987B2 JP59035228A JP3522884A JPH0118987B2 JP H0118987 B2 JPH0118987 B2 JP H0118987B2 JP 59035228 A JP59035228 A JP 59035228A JP 3522884 A JP3522884 A JP 3522884A JP H0118987 B2 JPH0118987 B2 JP H0118987B2
Authority
JP
Japan
Prior art keywords
steel
weight
less
strength
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59035228A
Other languages
Japanese (ja)
Other versions
JPS60181256A (en
Inventor
Kyohiko Nohara
Tsunehiko Kato
Shigeharu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59035228A priority Critical patent/JPS60181256A/en
Publication of JPS60181256A publication Critical patent/JPS60181256A/en
Publication of JPH0118987B2 publication Critical patent/JPH0118987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 この発明は、高Mn非磁性鋼につき、その成分
組成を調整することによつて、常温強度とくに耐
力の大幅な向上を加工性の改善に併せて実現しよ
うとするものであり、たとえば超電導発電機のア
ウターローター部など、大きな電磁誘導力のほか
に回転遠心力などが作用するような用途に用いて
とりわけ好適なものである。 技術的背景 さて超電導現象を利用した発電機の開発は、先
端技術分野に属し、これまでに実用機の製造実績
はないが、単に省エネルギーという利点だけでは
なく小型化、軽量化による省資材、省占有地効果
などの経済性の面でも大きなメリツトが見込まれ
ることから、我国をはじめとして現在各国で試作
が行われている最中である。 ところでかような超電導発電機のアウターロー
ター部は、電磁力と遠心力との双方に耐える必要
があることから、単に非磁性であるだけでなく、
常温で耐力が70Kg/mm2以上、より好ましくは80
Kg/mm2以上程度の高い強度をそなえていることが
必要とされる。そして圧延で製造するにしても、
鍛造で製造するにしても製造条件として、熱間加
工性が良くなければならず、また実機組み立ての
面からは被削性および溶接性が良好であることが
必要とされ、さらに使用特性の上からは強度のほ
かに延じん性に富むことが要求される。加えて実
用段階を踏まえ低価格であることが前提となる。 しかしながら現在までのところ、上記したよう
な条件すべてを兼ね備えた材料は見当らない。た
とえばオーステナイト系ステンレス鋼では、、常
温耐力はせいぜい40Kg/mm2であり、また特開昭55
−110757号公報に開示の高マンガン鋼の場合で
も、常温強度は45Kg/mm2程度にすぎない。この
点、高Ni鋼(A286など)やTi合金は、材質特性
的には対応できる可能性があるけれども、かかる
合金は本質的に高価な材料であることに加え、製
造性の点でも問題があつて歩留りが悪いことか
ら、一層コスト高となるという欠点があつた。 発明の目的 この発明は、上記の諸問題を有利に解決するも
ので、常温強度が高く、また熱間加工性、被削性
さらには溶接性に優れ、しかも安価な高Mn非磁
性鋼を提案することを目的とする。 発明の端諸 この発明は、高Mn非磁性鋼において、常温強
度とくに耐力の大幅な向上のためには、Cr、Al
またはCr、Nの固溶硬化作用と共にVの析出硬
化作用を併せて活用することが、また加工性の改
善にはP、Sを低減した上でREMとCaとを複合
添加することが、極めて有効であるとの新規知見
に立脚する。 解決手段の解明経緯 超電導発電機のアウターローター用材料として
は種々考えられるが、磁気的安定性、耐力向上の
容易性および経済性など種々の観点から総合する
と、高Mn鋼がとりわけ有力である。 そこで発明者らは、高Mn鋼について種々検討
を加えた結果、以下に述べるような強化機構を骨
子とした合金の製造技術を確立し、この発明を完
成させるに至つたのである。 さて高Mn鋼の常温強度を高める方法として
は、 (1) 成分の固溶硬化を利用する (2) 炭化物、窒化物および金属間化合物などの析
出硬化を利用する (3) 加工歪を利用する ことなどが考えられる。 これらの方法のうち(3)の方法は、製品が相当大
寸の中空棒状になることから現実には極めて難し
い。そこで(1)と(2)の方法につき、その可能性を
種々検討した結果、両者を併用すること、すなわ
ち具体的には (1)としてはCr、AlまたはCr、Nの固溶硬化を また (2)としてはV炭化物の析出硬化を 併せて活用することが、所期した目的達成の上で
極めて効果的であることを見出したのである。 さらに加工性、被削性などの改善についても検
討を加えたところ、これらの特性を同時に良好な
らしめるためには、P、Sを低減した上でREM
とCaとの同時添加を行うことが最善であること
も併せて見出したのである。 すなわち、高Mn鋼の強度改善を単にCrとAl
(この場合にAlNが生じるとじん性が損われるの
でNは低値とする)、またはCrとN(この場合も
同様の理由でAlは低く抑える)の固溶強化作用
のみによつて行つた場合には、たとえばCr、Al
系ではじん性には有利であるが熱間加工性には不
利、一方Cr、N系ではその逆の傾向にあるなど、
いずれにしても依然として問題が残つていたけれ
ども、かかる固溶強化作用にVCの粒内析出によ
る強化作用を重量させると上記の問題が解消され
て常温強度が格段に上昇すること、またP、Sを
低減することによつて延じん性、熱間加工性およ
び溶接性が向上すること、さらにREMとCaとを
複合添加することによつて熱間加工性ならびに被
削性のより一層の改善が達成され得ることを突き
止めたのである。 発明の構成 この発明は、上記の知見に由来するものであ
る。 すなわちこの発明は、C:0.30〜1.00重量%
(以下単に%で示す)、Mn:24.0〜31.0%および
V:0.2〜1.5%を含有し、かつCr:2.0〜10.0%
を、Al:3.0%以下、N:0.02〜0.40%であつてし
かも添付第1図に示す範囲内で座標に示される量
のAlおよびNと共に含み、さらにREM:0.002〜
0.010%およびCa:0.002〜0.010%のうちから選
ばれる少くともいずれか一種を含有し、、残部は、
0.015%以下に抑制したP、0.010%以下に抑制し
たSその他不可避に混入する不純物ならびにFe
の組成になることを特徴とする高Mn非磁性鋼で
ある。 以下この発明において各成分の組成範囲を上記
のとおりに限定した理由について説明する。 C:0.30〜1.00% Cは、侵入型の固溶元素として固溶硬化に寄与
すると共に、Vと化合して析出硬化を生じさせる
有用な元素であり、かかる析出硬化による強度改
善のためには少くとも0.30%が必要であるが、
1.00%を超えて含有されると被削性の劣化を招く
ので0.30〜1.00%の範囲に限定した。 Mn:24.0〜31.0% Mnは、オーステナイト相の安定化すなわち磁
気的安定化ならびに加工性の確保のためには少く
とも24.0%を必要とするが、31.0%を超えるとじ
ん性、溶接性が劣化するので、Mn含有量は24.0
〜31.0%の範囲とした。 V:0.2〜1.5% Vは、V炭化物の析出硬化作用によつて常温強
度と向上させるのに有効に寄与するが、含有量が
0.2%未満ではその添加効果に乏しく、一方1.5%
を超えると延じん性の劣化が甚だしくなつて他の
手段では回避しきれなくなるので、0.2〜1.5%の
範囲に限定した。 Cr:2.0〜10.0% Crは、後述のAlやNと共に固溶硬化作用によ
つて強度を向上させるだけでなく、じん性の改善
にも有用な元素であるが、含有量が2.0%未満で
はその添加効果に乏しく、一方10.0%を超えると
オーステナイト相の安定性を阻害し、じん性や応
力腐食割れ感受性に悪影響を及ぼすので、2.0〜
10.0%の範囲に限定した。 Al:3.0%以下、N:0.02〜0.40%でかつ添付第1
図において斜線で示される領域 AlおよびNはそれぞれ、置換型および侵入型
の固溶元素であつて、固溶形態はそれぞれ異なる
もの固溶硬化成分としては均等である。しかしな
がら両者共に多量に含有されるとAlNが生じて
じん性の著しい劣化をもたらすので、一方たとえ
ばNは、他方(この場合Al)の含有量に応じて
その添加量を適切な範囲に制御する必要がある。 Alは、その含有量が3.0%を超えるとじん性だ
けでなく熱間加工性にも悪影響を及ぼすので、
3.0%以下とする必要がある。 ここにAl量が3.0〜0.1%の場合:N含有量が
0.10%を超えると上述したようにAlNの析出が甚
だしくなつてじん性が損われ、一方0.02%に満た
ないとNの固溶強化作用が全て期待できなくなつ
てしまうので、Alが3.0〜0.1%の場合はNは0.02
〜0.10%の範囲とする必要がある。 またAl量が0.1%未満の場合:N含有量が0.40
%を超えると固溶強化作用が飽和に達するほか、
じん性や溶接性も劣化する傾向にあり、一方0.10
%未満では固溶強化が期待できないので、Alが
0.1%未満の場合はNは0.10〜0.40%の範囲とする
必要がある。 すなわち上記したAl量とN量との関係を図示
すると、添付第1図に斜線で示した領域となるわ
けである。 REM:0.002〜0.010%、Ca:0.002〜0.010% 後述するように、PとSの同時低減によつて熱
間加工性はある程度改善されるが、圧延率や鍛錬
比が高い場合には問題が残るのでREMやCaの添
加によつてより一層の改善を図るわけである。ま
たこの発明鋼は高強度材であり、製品の被削性に
劣るところにも問題を残しているが、かかる問題
の解決にもこれらの元素は有効に寄与する。しか
しながらREMおよびCaを単独使用または併用す
るいずれの場合においても、含有量が0.002%に
満たないとその添加効果に乏しく、一方0.010%
を超えて添加すると延じん性の劣化を招くので
0.002〜0.010%の範囲で添加する必要がある。 P:0.015%以下、S:0.010%以下 この発明鋼は、固溶硬化および析出硬化によつ
て常温強度の向上を図るものであるから、必然的
に延じん性や熱間加工性さらには溶接性(とくに
高温延性低下割れ)の劣化を招く。この点かよう
な幣害を回避するには、P、Sの同時低減が有効
であり、かかる観点からP、Sはその上限を 0.015%、0.010%に限定した。 次にこの発明鋼の製造法について述べる。 通常の転炉または電気炉にて溶製後、溶鋼の清
浄化を図るため脱ガス工程を経過後、連続鋳造に
よるスラブもしくはインゴツト鋳造及び分塊工程
によるスラブが製造される。その後、1100〜1200
℃の比較的低温にてスラブ加熱後厚板圧延によつ
て厚板製品とするか、もしくは熱間圧延を施して
熱延製品とする。場合によつて熱延コイルの母板
焼鈍(やはり1100〜1200℃加熱)後、グラインデ
イング・酸洗処理を行い冷間圧延により冷延製品
とする。いずれの場合も最終的に650℃での析出
時効処理を施す。 実施例 以下この発明の実施例を、従来例ならびに比較
例と共に説明する。 表1に成分組成を示した各種鋼を転炉で溶製し
たのち、炉外真空精錬炉にて精錬し、ついで常法
に従つて造塊、分塊圧延、熱間圧延、また場合に
よつてはさらに冷間圧延を施し、その後650℃、
4hの析出硬化処理を施して4.0mm厚の板製品とし
た。 得られた各鋼板(鋼No.1〜28)につき、種々の
引張り特性、透磁率、シヤルピー衝撃値ならびに
熱間加工性、被削性および溶接性について調べた
結果を表1に併記する。 なお、熱間加工性はくさび型試験片の熱間圧延
性で、また被削性は施削性とドリル穴あけ性で、
さらに溶接性はTIGのなめ付け性および隅肉溶接
性でそれぞれ判定した。
Technical Field This invention aims to achieve a significant improvement in room temperature strength, especially yield strength, as well as workability, by adjusting the composition of high-Mn non-magnetic steel. It is particularly suitable for use in applications such as the outer rotor of a generator, where rotational centrifugal force is applied in addition to large electromagnetic induction force. Technical background The development of generators that utilize superconducting phenomena belongs to the field of cutting-edge technology, and there has been no actual production results to date. Prototypes are currently being produced in various countries including Japan, as it is expected to have significant economic benefits such as the effect of occupying land. By the way, the outer rotor of such a superconducting generator needs to withstand both electromagnetic force and centrifugal force, so it is not only non-magnetic.
Yield strength at room temperature is 70Kg/ mm2 or more, preferably 80
It is required to have a high strength of Kg/mm 2 or more. And even if it is manufactured by rolling,
Even if manufactured by forging, hot workability must be good as a manufacturing condition, and good machinability and weldability are required from the perspective of actual machine assembly. Therefore, in addition to strength, high ductility is required. In addition, it is assumed that the price will be low considering the practical stage. However, to date, no material has been found that meets all of the above conditions. For example, austenitic stainless steel has a yield strength at room temperature of at most 40 kg/ mm2 , and
Even in the case of the high manganese steel disclosed in Publication No.-110757, the room temperature strength is only about 45 kg/mm 2 . In this regard, high Ni steel (such as A286) and Ti alloys may be able to address this issue in terms of material properties, but such alloys are inherently expensive materials and also have problems in terms of manufacturability. The disadvantage is that the yield is poor and the cost is even higher. Purpose of the Invention The present invention advantageously solves the above-mentioned problems, and proposes a high-Mn nonmagnetic steel that has high strength at room temperature, excellent hot workability, machinability, and weldability, and is inexpensive. The purpose is to Summary of the Invention The present invention discloses that in high Mn nonmagnetic steel, Cr, Al, and
Alternatively, it is extremely important to utilize the precipitation hardening effect of V along with the solid solution hardening effect of Cr and N, or to reduce P and S and add REM and Ca in combination to improve workability. Based on new findings that are effective. Background to the elucidation of the solution Although various materials can be considered for the outer rotor of a superconducting generator, high Mn steel is particularly promising from various viewpoints such as magnetic stability, ease of improving proof strength, and economic efficiency. Therefore, the inventors conducted various studies on high-Mn steel, and as a result, established a technology for producing an alloy based on the strengthening mechanism described below, and completed the present invention. Now, the methods to increase the room temperature strength of high Mn steel are: (1) Utilizing solid solution hardening of components (2) Utilizing precipitation hardening of carbides, nitrides, intermetallic compounds, etc. (3) Utilizing working strain There are many things that can be considered. Among these methods, method (3) is extremely difficult in practice because the product is shaped like a fairly large hollow rod. Therefore, as a result of various studies on the possibilities of methods (1) and (2), we decided to use both methods together, specifically (1), which also includes solid solution hardening of Cr, Al, or Cr, and N. As for (2), we have found that the combined use of precipitation hardening of V carbide is extremely effective in achieving the intended purpose. Furthermore, we investigated improvements in machinability, machinability, etc., and found that in order to improve these properties at the same time, we should reduce P and S and then REM.
They also discovered that it is best to add Ca and Ca simultaneously. In other words, the strength improvement of high Mn steel can be achieved simply by adding Cr and Al.
(In this case, if AlN is generated, the toughness will be impaired, so N should be kept at a low value), or only by the solid solution strengthening effect of Cr and N (also in this case, Al should be kept low for the same reason). For example, Cr, Al
Cr and N systems have an advantage in toughness but are disadvantageous in hot workability, while Cr and N systems have the opposite tendency.
In any case, the problem still remained, but if the solid solution strengthening effect is combined with the strengthening effect due to the intragranular precipitation of VC, the above problem is solved and the room temperature strength is significantly increased. By reducing S, ductility, hot workability and weldability are improved, and by adding REM and Ca in combination, hot workability and machinability are further improved. It was discovered that this can be achieved. Structure of the Invention The present invention is derived from the above knowledge. That is, in this invention, C: 0.30 to 1.00% by weight
(hereinafter simply expressed in %), contains Mn: 24.0 to 31.0%, V: 0.2 to 1.5%, and Cr: 2.0 to 10.0%.
Al: 3.0% or less, N: 0.02 to 0.40%, and together with the amounts of Al and N shown in the coordinates within the range shown in the attached Figure 1, and REM: 0.002 to 0.002.
Contains at least one selected from 0.010% and Ca: 0.002 to 0.010%, and the remainder is
P suppressed to 0.015% or less, S suppressed to 0.010% or less, and other unavoidable impurities and Fe.
It is a high Mn nonmagnetic steel characterized by a composition of The reason why the composition range of each component is limited as described above in this invention will be explained below. C: 0.30-1.00% C is a useful element that contributes to solid solution hardening as an interstitial solid solution element and also combines with V to cause precipitation hardening. At least 0.30% is required, but
If the content exceeds 1.00%, machinability deteriorates, so the content was limited to a range of 0.30 to 1.00%. Mn: 24.0 to 31.0% Mn is required to be at least 24.0% in order to stabilize the austenite phase, that is, to stabilize the magnetic properties and ensure workability, but if it exceeds 31.0%, toughness and weldability deteriorate. Therefore, the Mn content is 24.0
The range was 31.0%. V: 0.2-1.5% V effectively contributes to improving room temperature strength through the precipitation hardening action of V carbides, but the content
If it is less than 0.2%, the effect of the addition is poor, while if it is 1.5%
If the content exceeds this amount, the deterioration of ductility becomes so severe that it cannot be avoided by other means, so it is limited to a range of 0.2 to 1.5%. Cr: 2.0 to 10.0% Cr is an element that not only improves strength through solid solution hardening action together with Al and N, which will be described later, but is also useful for improving toughness, but if the content is less than 2.0%, The addition effect is poor, and if it exceeds 10.0%, it inhibits the stability of the austenite phase and has a negative effect on toughness and stress corrosion cracking susceptibility.
It was limited to a range of 10.0%. Al: 3.0% or less, N: 0.02-0.40%, and attached No. 1
The areas Al and N indicated by diagonal lines in the figure are substitutional and interstitial solid solution elements, respectively, and although their solid solution forms are different, they are equivalent solid solution hardening components. However, if large amounts of both are contained, AlN will be generated and cause a significant deterioration of toughness, so the amount of N, for example, needs to be controlled within an appropriate range depending on the content of the other (Al in this case). There is. If the Al content exceeds 3.0%, it will have a negative effect not only on toughness but also on hot workability.
Must be 3.0% or less. Here, when the Al amount is 3.0 to 0.1%: the N content is
If it exceeds 0.10%, as mentioned above, AlN precipitation will become severe and the toughness will be impaired, while if it is less than 0.02%, the solid solution strengthening effect of N cannot be expected at all. For %, N is 0.02
Must be in the range of ~0.10%. Also, if the Al content is less than 0.1%: the N content is 0.40
%, the solid solution strengthening effect reaches saturation, and
Toughness and weldability also tend to deteriorate;
If Al is less than %, solid solution strengthening cannot be expected.
If it is less than 0.1%, N needs to be in the range of 0.10 to 0.40%. That is, when the relationship between the above-mentioned Al content and N content is illustrated, the area is indicated by diagonal lines in the attached FIG. 1. REM: 0.002 to 0.010%, Ca: 0.002 to 0.010% As described later, hot workability is improved to some extent by simultaneously reducing P and S, but problems arise when the rolling rate and forging ratio are high. Therefore, further improvement is attempted by adding REM and Ca. Furthermore, the steel of this invention is a high-strength material, and although there remains a problem in that the product has poor machinability, these elements can effectively contribute to solving this problem. However, whether REM and Ca are used alone or in combination, if the content is less than 0.002%, the addition effect is poor;
If added in excess of
It is necessary to add it in the range of 0.002 to 0.010%. P: 0.015% or less, S: 0.010% or less Since this invention steel aims to improve room temperature strength through solid solution hardening and precipitation hardening, it naturally has ductility, hot workability, and weldability. This leads to deterioration in properties (especially high-temperature ductility reduction cracking). In order to avoid such damage, simultaneous reduction of P and S is effective, and from this point of view, the upper limits of P and S are limited to 0.015% and 0.010%. Next, a method for manufacturing this invented steel will be described. After melting in a conventional converter or electric furnace, a degassing process is performed to purify the molten steel, and then a slab is produced by continuous casting or by an ingot casting and blooming process. Then 1100-1200
After heating the slab at a relatively low temperature of 0.degree. C., it is rolled into a thick plate product, or hot rolled to make a hot rolled product. In some cases, after annealing the mother plate of the hot-rolled coil (also heated at 1100 to 1200°C), grinding and pickling are performed, followed by cold rolling to produce a cold-rolled product. In either case, a final precipitation aging treatment is performed at 650°C. Examples Examples of the present invention will be described below together with conventional examples and comparative examples. After melting the various steels whose compositions are shown in Table 1 in a converter, they are refined in an outside-furnace vacuum refining furnace, and then ingot-formed, bloomed, hot-rolled, and, as the case may be, in accordance with conventional methods. After that, it is further cold rolled and then rolled at 650℃.
A 4.0 mm thick plate product was obtained by precipitation hardening treatment for 4 hours. Table 1 also shows the results of examining various tensile properties, magnetic permeability, Charpy impact value, hot workability, machinability, and weldability for each of the obtained steel plates (steel Nos. 1 to 28). Note that hot workability is the hot rolling property of the wedge-shaped specimen, and machinability is the machinability and drilling property.
Furthermore, weldability was determined by TIG tanning and fillet weldability.

【表】【table】

【表】 表1に示した成積から明らかなように、従来例
のオーステナイト系ステンレス鋼(鋼No.22)や
Al合金(鋼No.25)はそれぞれ常温耐力が50Kg/
mm2以下と低く、また高Mn鋼(鋼No.26〜28)も45
Kg/mm2程度であつて、いずれもこの発明の目標値
である80Kg/mm2アツプにははるかに及ばない。こ
の点A286のような高Ni鋼(鋼No.23)やTi合金
(鋼No.24)の場合は、引張り特性についてはほぼ
所望の性質が得られたけれども、両材料とも構造
用材料として多量に用いるにはあまりに高価であ
り、また熱間加工性や溶接性に劣り、さらにとく
にTi合金については延性やじん性にも劣つてい
る。 また比較例のうち、鋼No.13はAl量が過多であ
るためじん性が悪く、また鋼No.14はP、Sとも過
多であるため熱間加工性および溶接性が好ましく
なく、その他鋼No.15はREMおよびCa無添加のた
め熱間加工性、被削性および溶接性が不良であ
り、同16はV過多でじん性不良、同17はC過少で
強度不足、同18はMn過少で透磁率が大きく、同
19はCr過少で強度不足、同20はCr過多でじん性
不良、そして同21はN過多でじん性不良であつて
いずれも問題を残している。 これに対しこの発明鋼(鋼No.1〜12)はいずれ
も、80Kg/mm2以上の常温耐力を有し、また延じん
性、熱間加工性、被削性および溶接性のすべてが
良好であり、さらに透磁率も低い値を示してい
る。 発明の効果 かくしてこの発明によれば、高Mn非磁性鋼に
つき、従来に較べて大幅な常温強度の向上を、延
じん性、熱間加工性、被削性および溶接性の改善
に併せて実現でき、従つてたとえば超電導発電機
のアウターローター部など、強い電磁力のほか大
きな遠心力が作用し、しかも製造容易性が要求さ
れるような用途に用いて、とりわけ偉効を奏す
る。
[Table] As is clear from the formation shown in Table 1, conventional austenitic stainless steel (Steel No. 22) and
Each Al alloy (Steel No. 25) has a room temperature yield strength of 50Kg/
It is low at less than mm 2 , and high Mn steel (Steel No. 26 to 28) is also 45
This is about Kg/mm 2 , which is far below the target value of this invention of 80 Kg/mm 2 . In this regard, in the case of high Ni steel (Steel No. 23) and Ti alloy (Steel No. 24) such as A286, almost the desired tensile properties were obtained, but both materials are used in large quantities as structural materials. Ti alloys are too expensive to use, have poor hot workability and weldability, and, especially for Ti alloys, have poor ductility and toughness. Among the comparative examples, steel No. 13 has poor toughness due to an excessive amount of Al, and steel No. 14 has poor hot workability and weldability due to excessive amounts of both P and S. No. 15 has poor hot workability, machinability, and weldability because it does not contain REM and Ca, No. 16 has poor toughness due to too much V, No. 17 lacks strength due to too little C, and No. 18 has poor Mn If the amount is too low, the permeability is large, and the same
No. 19 had too little Cr and lacked strength, No. 20 had too much Cr and poor toughness, and No. 21 had too much N and poor toughness, all of which still have problems. On the other hand, all of the steels of this invention (Steel Nos. 1 to 12) have a yield strength at room temperature of 80 kg/mm 2 or more, and have good ductility, hot workability, machinability, and weldability. Moreover, the magnetic permeability also shows a low value. Effects of the Invention Thus, according to the present invention, it is possible to achieve a significant improvement in the room temperature strength of high-Mn nonmagnetic steel compared to conventional steels, as well as improvements in ductility, hot workability, machinability, and weldability. Therefore, it is particularly effective when used in applications where strong electromagnetic force and large centrifugal force act, such as the outer rotor of a superconducting generator, and where ease of manufacture is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明におけるAl量とN量との
適正範囲を示した図表である。
FIG. 1 is a chart showing appropriate ranges for the amount of Al and the amount of N in this invention.

Claims (1)

【特許請求の範囲】 1 C:0.30〜1.00重量%、 Mn:24.0〜31.0重量%および V:0.2〜1.5重量% を含有し、かつ Cr:2.0〜10.0重量%を、 Al:3.0重量%以下、 N:0.02〜0.40重量% であつてしかも添付第1図に示す範囲内で座標に
示される量のAlおよびNと共に含み、さらに REM:0.002〜0.010重量%および Ca:0.002〜0.010重量% のうちから選ばれる少くともいずれか一種を含有
し、残部は 0.015重量%以下に抑制したP 0.010重量%以下に抑制したS その他不可避に混入する不純物ならびにFeの組
成になることを特徴とする常温強度に優れた高
Mn非磁性鋼。
[Claims] 1 Contains C: 0.30 to 1.00% by weight, Mn: 24.0 to 31.0% by weight, and V: 0.2 to 1.5% by weight, and Cr: 2.0 to 10.0% by weight, and Al: 3.0% by weight or less. , N: 0.02-0.40% by weight, and further contains Al and N in the amounts shown in the coordinates within the range shown in the attached Figure 1, and further contains REM: 0.002-0.010% by weight and Ca: 0.002-0.010% by weight. Room-temperature strength characterized by containing at least one selected from the following, with the remainder being P suppressed to 0.015% by weight or less, S suppressed to 0.010% by weight or less, other unavoidable impurities, and Fe. Excellent for high
Mn non-magnetic steel.
JP59035228A 1984-02-28 1984-02-28 High-mn nonmagnetic steel having excellent ordinary temperature strength Granted JPS60181256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59035228A JPS60181256A (en) 1984-02-28 1984-02-28 High-mn nonmagnetic steel having excellent ordinary temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035228A JPS60181256A (en) 1984-02-28 1984-02-28 High-mn nonmagnetic steel having excellent ordinary temperature strength

Publications (2)

Publication Number Publication Date
JPS60181256A JPS60181256A (en) 1985-09-14
JPH0118987B2 true JPH0118987B2 (en) 1989-04-10

Family

ID=12435976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035228A Granted JPS60181256A (en) 1984-02-28 1984-02-28 High-mn nonmagnetic steel having excellent ordinary temperature strength

Country Status (1)

Country Link
JP (1) JPS60181256A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110757A (en) * 1979-02-16 1980-08-26 Daido Steel Co Ltd High strength, nonmagnetic, high manganese steel
JPS572868A (en) * 1980-06-06 1982-01-08 Kawasaki Steel Corp High-manganese nonmagnetic steel for low temperature use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110757A (en) * 1979-02-16 1980-08-26 Daido Steel Co Ltd High strength, nonmagnetic, high manganese steel
JPS572868A (en) * 1980-06-06 1982-01-08 Kawasaki Steel Corp High-manganese nonmagnetic steel for low temperature use

Also Published As

Publication number Publication date
JPS60181256A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
WO2023212972A1 (en) Low-yield-ratio, easy-to-weld and weather-proof bridge steel and manufacturing method therefor
CN111101063B (en) 690 MPa-grade anti-seismic, corrosion-resistant and fire-resistant medium plate steel and manufacturing method thereof
CN103710622A (en) 690MPa-yield-strength low-yield-tensile-ratio antiseismic steel and manufacturing method thereof
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
WO2008007572A1 (en) ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
KR20240099374A (en) High-strength steel with excellent weather resistance and its manufacturing method
CN111187977B (en) 690 MPa-grade anti-seismic, corrosion-resistant and fire-resistant medium-thickness plate steel and manufacturing method thereof
CN110592491B (en) High-wear-resistance martensite/austenite dual-phase wear-resistant steel plate and manufacturing method thereof
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
CN108866435B (en) Composite microalloyed medium manganese steel for automobile and manufacturing method thereof
JPH029647B2 (en)
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JP2828303B2 (en) Manufacturing method of tough steel plate
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
CN102181792A (en) Low-cost high-strength high-toughness anti-seismic refractory steel and preparation process thereof
JPS58126956A (en) High-strength steel sheet with superior press workability
CN102021478A (en) High-toughness high-weather-resistance bridge steel and plate coil rolling method thereof
JPH0118987B2 (en)
JPH04272130A (en) Production of high mn nonmagnetic steel having superior drillability
CN111349848A (en) Corrosion-inhibiting high-strength aluminum-coated substrate steel and manufacturing method thereof
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness
CN104233059A (en) Anti-delayed fracture type high-strength TWIP steel
JPH0475305B2 (en)