JPH01188469A - Production of silicon carbide sintered compact - Google Patents

Production of silicon carbide sintered compact

Info

Publication number
JPH01188469A
JPH01188469A JP63011097A JP1109788A JPH01188469A JP H01188469 A JPH01188469 A JP H01188469A JP 63011097 A JP63011097 A JP 63011097A JP 1109788 A JP1109788 A JP 1109788A JP H01188469 A JPH01188469 A JP H01188469A
Authority
JP
Japan
Prior art keywords
compd
atoms
weight
sintering
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63011097A
Other languages
Japanese (ja)
Other versions
JPH0733285B2 (en
Inventor
Teizo Hase
長谷 貞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63011097A priority Critical patent/JPH0733285B2/en
Publication of JPH01188469A publication Critical patent/JPH01188469A/en
Publication of JPH0733285B2 publication Critical patent/JPH0733285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject sintered compact consisting of smalldiameter grains and having high density and mechanical strength by compacting a mixture of SiC powder, a B-contg. compd., and a C-contg. compd., impregnating the compact with a soln. of an org. Al compd., and sintering the impregnated compact in a nonoxidizing atmosphere. CONSTITUTION:From 99.92-97.5wt.% SiC powder consisting essentially of beta-SiC having 0.03-0.3mu grain diameter, 0.02-0.1wt.% B-contg. compd. (e.g., B) corresponding to B atom, and 0.03-0.15wt.% C-contg. compd. (e.g., carbon black) corresponding to C atom are mixed. The mixture is compacted into a specified shape, and the compact is impregnated with the soln. of an org. Al compd. (e.g., aluminum alkoxide) in a solvent (e.g., benzene) so that the total amt. of the Al, B, and C atoms is controlled to 0.08-0.35wt.%. The impregnated compact is then sintered in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭化珪素(以下StCという)焼結体の製造方
法に関し、詳しくは粒径が小さく高密度で、機械的強度
に優れた焼結体を得ることができるSiC焼結体の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a sintered body of silicon carbide (hereinafter referred to as StC), and more specifically, the present invention relates to a method for producing a sintered body of silicon carbide (hereinafter referred to as StC), and more specifically, a sintered body having a small particle size, high density, and excellent mechanical strength. The present invention relates to a method for producing a SiC sintered body.

[従来の技術] SiC焼結体は耐熱性に優れ、熱膨張率が小さく、高密
度焼結体は高温で高強度であることなどから、高温用構
造材料として注目されている。しかしながらSiC粉末
それ自体では焼結が困難であるために、従来各種の焼結
助剤が提案され高密度化が図られている。
[Prior Art] SiC sintered bodies have excellent heat resistance and a low coefficient of thermal expansion, and high-density sintered bodies have high strength at high temperatures, so they are attracting attention as structural materials for high temperatures. However, since it is difficult to sinter the SiC powder itself, various sintering aids have been proposed to achieve higher density.

例えば焼結助剤として、特公昭57−41538号公報
などにはアルミニウム(以下A文という)が、特開昭5
1−148712号および特公昭57−32035号公
報などにはホウ素(以下Bという)と炭素(以下Cとい
う)とを併用したものが開示されている。また特公昭4
8−7486号および特開昭55−116667M公報
などにはma族元素の酸化物が、特開昭57−1609
70@公報などには希土類元素がそれぞれ開示されてい
る。
For example, aluminum (hereinafter referred to as A text) is used as a sintering aid in Japanese Patent Publication No. 57-41538, etc.
No. 1-148712 and Japanese Patent Publication No. 57-32035 disclose a combination of boron (hereinafter referred to as B) and carbon (hereinafter referred to as C). In addition, the special public corporation Showa 4
8-7486 and JP-A-55-116667M, etc., oxides of Ma group elements are disclosed in JP-A-57-1609.
Rare earth elements are disclosed in Publication No. 70@ and the like.

[発明が解決しようとする課題] 上記した従来の技術では、焼結助剤の添加量は、SiC
粉末に対して一般に0.5〜4重量%の範囲とされ、こ
の添加量より少ないと焼結が困難とされている。しかし
焼結助剤の添加量が多くなるにつれて、SiC粉末が焼
結中に異常粒成長しやすく、焼結体の強度が低下すると
いう問題があった。焼結体の強疫低下は異常粒成長粒子
による場合と、粒成長が緻密化に先行した結果としての
低密度による場合がある。
[Problem to be solved by the invention] In the above-mentioned conventional technology, the amount of sintering aid added is
Generally, it is in the range of 0.5 to 4% by weight based on the powder, and if the amount added is less than this, sintering is said to be difficult. However, as the amount of the sintering aid added increases, the SiC powder tends to undergo abnormal grain growth during sintering, resulting in a problem in that the strength of the sintered body decreases. The reduction in strength of the sintered body may be due to abnormal grain growth particles or to low density as a result of grain growth preceding densification.

このような不具合を防止するものとして、特公昭58−
9785号公報には、AgとBおよびCを同時に使用し
て、相乗効果により八λの添加量を低減させて焼結助剤
の総添加聞を低減することにより、焼結体の密度を高く
する製造方法が開示されている。
In order to prevent such problems,
Publication No. 9785 discloses that Ag, B, and C are used simultaneously to reduce the amount of 8λ added due to the synergistic effect, thereby reducing the total amount of sintering aid added, thereby increasing the density of the sintered body. A manufacturing method is disclosed.

本発明はこの特公昭58−9785号公報に開示された
技術をさらに改良するものであり、−層高密度の焼結体
をけることができる製造方法を提供するものである。
The present invention further improves the technique disclosed in Japanese Patent Publication No. 58-9785, and provides a manufacturing method capable of producing a high-density sintered body.

[課題を解決するための手段] 本発明のSiC焼結体の製造方法は、5i−C粉末99
.92〜97.5重量%と、0.02−、−0゜1重量
%のB原子に相当する量のB含有化合物と、0.03〜
0.15重量%のC原子に相当する酊のC含有化合物と
を混合して所定形状の成形体を成形する成形工程と、 焼結体中のAi原子、B原子およびC原子の総団が0.
08−0.35重量%となるように有機Al化合物の溶
液を成形体に含浸させる含浸工程と、 有機Al化合物が含浸された成形体を非酸化性雰囲気下
で焼結する焼結工程と、よりなるこ、とを特徴とする。
[Means for Solving the Problems] The method for producing a SiC sintered body of the present invention includes 5i-C powder 99
.. 92 to 97.5% by weight, a B-containing compound in an amount corresponding to 0.02-, -0°1% by weight of B atoms, and 0.03 to 97.5% by weight.
A molding process in which a C-containing compound corresponding to 0.15% by weight of C atoms is mixed to form a molded body of a predetermined shape, and a total group of A atoms, B atoms, and C atoms in the sintered body 0.
08- An impregnation step of impregnating the molded body with a solution of an organic Al compound to a concentration of 0.35% by weight; a sintering step of sintering the molded body impregnated with the organic Al compound in a non-oxidizing atmosphere; It is characterized by:

成形工程はSiC粉末とB含有化合物とC含有化合物を
混合し、所定形状の成形体を成形する工程である。
The molding step is a step of mixing SiC powder, a B-containing compound, and a C-containing compound and molding a molded body into a predetermined shape.

SiC粉末としては、通常β−8iCが利用されるが、
α−8iCを混合しであるいは単独で用いることもでき
る。その粒子径としては、従来と同様に0.03〜0.
3μmのものが好適である。
β-8iC is usually used as SiC powder, but
α-8iC can be used alone or in combination. The particle size is 0.03 to 0.0, which is the same as before.
A thickness of 3 μm is preferable.

B含有化合物としては、B単独、5ac1BN、AlB
2など従来と同様のものが利用できる。このB含有化合
物は、B原子に換算して0.02〜0.1重量%となる
ようにSiC粉末およびC含有化合物と混合される。そ
の添加量が0.021量%より少ないと焼結が困難とな
り、0.1重量%より多くなると焼結体の粒成長が促進
される。
B-containing compounds include B alone, 5ac1BN, AlB
2, etc., which are similar to conventional ones, can be used. This B-containing compound is mixed with the SiC powder and the C-containing compound in an amount of 0.02 to 0.1% by weight in terms of B atoms. When the amount added is less than 0.021% by weight, sintering becomes difficult, and when it is more than 0.1% by weight, grain growth of the sintered body is promoted.

C含有化合物としては、カーボンブラック、黒鉛が代表
的であるが、その他焼結時に熱分解されてC原子を供給
する有機化合物を用いることもできる。しかし有機化合
物では焼結時に分解して消失する部分を含んでいるので
、、場合によっては消失した部分が気孔となって残り密
度が低下することもある。従って消失する部分がほとん
どないカーボンブラックなどを用いるのが好ましい。こ
のC含有化合物は、C原子に換算して0.03〜0゜1
5重量%となるようにSiC粉末およびB含有化合物と
混合される。CはSiC中に存在するか、あるいは加熱
に際して吸着された酸素から形成されるシリカ(SiO
2)を還元する作用を奏するとともに、遊離珪素を炭化
物として固定する。また焼結時に残存したものの一部は
粒界の移動または粒成長を抑制する。従ってその添加量
が0.033重丸より少ないと焼結の円滑な進行が疎外
され、また0、15重量%より多くなると焼結体の耐酸
化性などが低下するようになる。
Carbon black and graphite are typical examples of the C-containing compound, but other organic compounds that are thermally decomposed during sintering to supply C atoms can also be used. However, since organic compounds contain parts that decompose and disappear during sintering, in some cases, the disappeared parts become pores and remain, reducing the density. Therefore, it is preferable to use carbon black or the like, which has almost no disappearing portion. This C-containing compound is 0.03 to 0°1 in terms of C atoms.
It is mixed with SiC powder and a B-containing compound to a concentration of 5% by weight. C may be present in SiC or in silica (SiO) formed from oxygen adsorbed during heating.
2), and also fixes free silicon as carbide. Further, some of the material remaining during sintering suppresses movement of grain boundaries or grain growth. Therefore, if the amount added is less than 0.033 weight percent, the smooth progress of sintering will be hindered, and if it is more than 0.15% by weight, the oxidation resistance of the sintered body will deteriorate.

上記3成分は充分均一に混合された後、圧縮成形、スリ
ップキャスティング成形など公知の成形法により所定形
状の成形体が形成される。なお、この成形工程は非酸化
性雰囲気下で行なうことが望ましい。SiC粉末表面な
どに酸素が吸着して焼結時にCを奪うのを防止するため
である。
After the above three components are mixed sufficiently and uniformly, a molded article having a predetermined shape is formed by a known molding method such as compression molding or slip casting molding. Note that this molding step is preferably performed in a non-oxidizing atmosphere. This is to prevent oxygen from being adsorbed on the SiC powder surface and taking away C during sintering.

本発明の最大の特徴をなす含浸工程は、上記成形体に有
機Al化合物の溶液を含浸する工程である。有11Af
fi化合物としては、ベンゼンなどに溶解して溶液とな
るAi (OCH3)3、A夕(OCx)−1s)3、
A、e(OC3H7)3、AJ!(OC@HsCHz)
3などのアルミニウムアルコキシトが適当であるが、そ
の細氷、有機溶媒などに溶解して溶液となるものを用い
ることができる。
The impregnation step, which is the most characteristic feature of the present invention, is a step of impregnating the molded article with a solution of an organic Al compound. Yes 11Af
Fi compounds include Ai (OCH3)3, which becomes a solution when dissolved in benzene etc., Ai(OCx)-1s)3,
A, e(OC3H7)3, AJ! (OC@HsCHz)
Aluminum alkoxides such as No. 3 are suitable, but those that can be dissolved in thin ice, an organic solvent, etc. to form a solution can also be used.

この含浸工程で含浸される有11Affi化合物の6は
、焼結体中のAλ原子、B原子およびC原子の総量が0
.08〜0.35重量%となる損とされる。
In 6 of the 11Affi compounds impregnated in this impregnation step, the total amount of Aλ atoms, B atoms and C atoms in the sintered body is 0.
.. The loss is estimated to be 0.08 to 0.35% by weight.

このようにするには有機へλ化合物溶液の濃度を調整す
ることで容易に行なうことができる。3原子の総量が0
.08重量%より少ないと焼結が困難となり、0.35
重邑%より多くなると粒成長が生じて密度や強度が低下
する。なお、この含浸工程も非酸化性雰囲気下で行なう
ことが望ましい。
This can be easily done by adjusting the concentration of the organic λ compound solution. The total amount of 3 atoms is 0
.. If it is less than 0.08% by weight, sintering becomes difficult;
When the amount exceeds 1%, grain growth occurs and density and strength decrease. Note that this impregnation step is also desirably performed in a non-oxidizing atmosphere.

SiC粉末表面などに酸素が吸着して焼結時にCを奪う
のを防止するためである。
This is to prevent oxygen from being adsorbed on the SiC powder surface and taking away C during sintering.

焼結工程は、有機AI化合物が含浸された成形体を非酸
化性雰囲気下で加熱して焼結する工程であり、従来と同
様に行なうことができる。
The sintering step is a step of heating and sintering the molded body impregnated with the organic AI compound in a non-oxidizing atmosphere, and can be performed in the same manner as conventional methods.

[発明の作用および効果] 本発明のSiC焼結体の製造方法では、成形工程で成形
された成形体に溶液状態の有機Affi化合物が含浸さ
れる。従って、成形工程で成形された成形体にはAJ2
原子は存在しておらず、特公昭58−9785号などに
みられるような全ての焼結助剤を同時に混合して成形す
る方法に比、べて、成形体中のSiC粉末の含有率を高
くすることができSiC粒子どうしは密接している。ま
た含浸工程では溶液状態の有機Ai化合物が成形体中の
空隙に含浸されるので、成形体のみかけの体積は変化せ
ず、SiC粒子は成形時と同様に極めて密接している。
[Operations and Effects of the Invention] In the method for producing a SiC sintered body of the present invention, an organic Affi compound in a solution state is impregnated into the molded body formed in the molding step. Therefore, the molded body formed in the molding process has AJ2
Since no atoms exist, the content of SiC powder in the molded product can be reduced compared to the method of mixing all the sintering aids at the same time and molding, as in Japanese Patent Publication No. 58-9785. SiC particles are in close contact with each other. In addition, in the impregnation step, the organic Ai compound in a solution state is impregnated into the voids in the molded body, so the apparent volume of the molded body does not change, and the SiC particles are extremely close together as in the molding process.

従って焼結時にはSiC粒子は焼結しやすく、密度の高
い焼結体を製造することができる。
Therefore, during sintering, SiC particles are easily sintered, and a sintered body with high density can be manufactured.

さらにAffiは溶液状態で含浸されるため、成形体中
に極めて均一に分布し、B原子との相乗効果が確実に発
揮される。従ってBlC,AJf!の3種類の原子の総
量が従来より少なくとも、相乗効果により焼結性に優れ
、かつ粒成長が抑制される。
Furthermore, since Affi is impregnated in a solution state, it is distributed extremely uniformly in the molded body, and a synergistic effect with B atoms is reliably exerted. Therefore BlC, AJf! If the total amount of these three types of atoms is at least lower than that of the conventional method, the synergistic effect results in excellent sinterability and grain growth is suppressed.

従って本発明の製造方法により製造されるSIC焼結体
は、粒子径が小さく高密度であり、優れた機械的強度を
有している。
Therefore, the SIC sintered body manufactured by the manufacturing method of the present invention has a small particle size, high density, and excellent mechanical strength.

[実施例] 以下、実施例により具体的に説明する。[Example] Hereinafter, this will be explained in detail using examples.

〈実施例1) (1)成形工程 粒径約200人のカーボンブラックを減圧下、1380
℃で一酸化珪素(SiO)と反応させ、未反応のSiO
を蒸発除去して粒径500〜800人のβ−8iC粉末
を合成した。このSiC粉末および有離物としてのC粉
末を水素気流中の流動層で750℃に加熱し、表面の酸
素を除去してベンゼン中に捕集した。
<Example 1> (1) Molding process Carbon black with a particle size of approximately 200 mm was heated under reduced pressure to 1380 mm
℃ to react with silicon monoxide (SiO), unreacted SiO
was removed by evaporation to synthesize β-8iC powder with a particle size of 500 to 800 particles. This SiC powder and C powder as an eluent were heated to 750° C. in a fluidized bed in a hydrogen stream to remove surface oxygen and collected in benzene.

三臭化ホウ素(BBr3)と水素とを気相反応させて非
晶質BID末を合成し、所定濃度でベンゼン中に保存し
た。なお、このB粉末は90%が粒径0.07〜0.1
0μmに範囲ある。
Amorphous BID powder was synthesized by a gas phase reaction of boron tribromide (BBr3) and hydrogen, and stored in benzene at a predetermined concentration. In addition, 90% of this B powder has a particle size of 0.07 to 0.1
There is a range of 0 μm.

粒径約200大のカーボンブラック粉末を、6・6ナイ
ロンで被覆されたffi勅ミルで充分に分散した後、所
定濃度でベンゼン中に保存した。
Carbon black powder with a particle size of about 200 was thoroughly dispersed in an FFI mill coated with nylon 6.6, and then stored in benzene at a predetermined concentration.

それぞれベンゼン中に保存されたSiC,BおよびC粉
末を、固形分換算でB粉末が0.03重ω%、C粉末が
0.05重量%、残部SiC粉末となるように混合し、
樹脂製ボールミルにて72時間混合後、窒素ガス中でベ
ンゼンを乾燥させた。
SiC, B and C powders each stored in benzene are mixed so that the B powder is 0.03% by weight, the C powder is 0.05% by weight, and the balance is SiC powder in terms of solid content,
After mixing in a resin ball mill for 72 hours, the benzene was dried in nitrogen gas.

そして15?られた混合粉末を、150kg/Cl12
の圧力で1次成形し、次いで5000kg/cm2で静
水圧成形して所定形状の成形体を形成した。なお、成形
は窒素ガス雰囲気下で行なった。
And 15? 150kg/Cl12 of the mixed powder
The molded product was first molded at a pressure of 2,000 kg/cm 2 , and then subjected to isostatic pressing at a pressure of 5,000 kg/cm 2 to form a molded product of a predetermined shape. Note that the molding was performed under a nitrogen gas atmosphere.

(2)含−浸工程 アルミニウムイソプロポキシドの5重量%ベンゼン溶液
を調製し、上記成形体全体をこのベンゼン溶液中に浸漬
して、減圧にし、次いで窒素ガス雰囲気下で成形体にア
ルミニウムイソプロポキシドを含浸させた。なお、含浸
量はへλ原子に換算して成形体中に0.02ffi量%
である。
(2) Impregnation process A 5% by weight benzene solution of aluminum isopropoxide is prepared, the entire molded body is immersed in this benzene solution, the pressure is reduced, and then the molded body is coated with aluminum isopropoxide in a nitrogen gas atmosphere. Impregnated with de. In addition, the amount of impregnation is 0.02ffi amount% in the molded body in terms of λ atoms.
It is.

(3)焼結工程 アルミニウムイソプロポキシドが含浸した成形体を、液
体窒素で冷却されたパイプから供給されたヘリウムガス
雰囲気下で加熱し、最高温度2040℃で1.5時間保
持して焼結した。
(3) Sintering process The molded body impregnated with aluminum isopropoxide is heated in a helium gas atmosphere supplied from a pipe cooled with liquid nitrogen, and held at a maximum temperature of 2040°C for 1.5 hours to sinter. did.

(4)特性値の測定 得られた焼結体の全気孔率、平均粒径および3点曲げ強
度を測定し、結果を表に示す。なお、全気孔率はn−ブ
タノールによるアルキメデス法により測定し、平均粒径
は走査電子顕微鏡により測定し、曲げ強度はJIS−R
1601に準じて測定した。本実施例で得られた焼結体
は、焼結助剤の総量が少なくても高密度に焼結し、かつ
粒径が小さく曲げ強度に優れている。
(4) Measurement of characteristic values The total porosity, average grain size and three-point bending strength of the obtained sintered body were measured, and the results are shown in the table. The total porosity was measured by the Archimedes method using n-butanol, the average particle size was measured by a scanning electron microscope, and the bending strength was determined by JIS-R.
Measured according to 1601. The sintered body obtained in this example can be sintered with high density even if the total amount of sintering aid is small, and has a small particle size and excellent bending strength.

(他の実施例) B、CおよびAIの量を表に示すように変化させたこと
以外は実施例1と同様にして、それぞれの焼結体を形成
し、同様に特性値を測定した。結果は表に示す。表より
、気孔率は高くとも8.8容積%であり、理論密度の9
0%に達す、る焼結性を示している。また粒径について
は、気孔率の大きい焼結体で粒径が若干小さい傾向が見
られるが、全て0.8〜1.2μmと非常に微細な粒径
を有している。さらに曲げ強度は気孔率の大きな焼結体
でも45〜60kgf /mm2と、優れた強度ヲ示し
ている。
(Other Examples) Each sintered body was formed in the same manner as in Example 1 except that the amounts of B, C, and AI were changed as shown in the table, and the characteristic values were measured in the same manner. The results are shown in the table. From the table, the porosity is at most 8.8% by volume, which is 9% of the theoretical density.
It shows a sinterability of up to 0%. Regarding the particle size, although there is a tendency for the particle size to be slightly smaller in the sintered bodies with higher porosity, they all have very fine particle sizes of 0.8 to 1.2 μm. Furthermore, the bending strength is 45 to 60 kgf/mm2 even for a sintered body with a large porosity, which shows excellent strength.

(比較例) 実施例1と同様のSiC粉末、B粉末およびC粉末を用
い、さらに平均粒径約1μmのΔ文粉末をベンゼンとと
もに表に示す組成で混合し、実施例1と同様に成形体を
形成した。なおAffi粉末は表面の酸化防止膜を溶剤
で除去したものを用いた。
(Comparative Example) Using the same SiC powder, B powder, and C powder as in Example 1, ΔMoon powder with an average particle size of about 1 μm was mixed with benzene in the composition shown in the table, and a molded body was prepared in the same manner as in Example 1. was formed. Note that the Affi powder used had the anti-oxidation film on the surface removed with a solvent.

そして含浸工程は行なわず、上記成形体を実施例1と同
様に焼結した。、得られた焼結体の特性値を同球に測定
し、結果を表に示す。
The molded body was then sintered in the same manner as in Example 1 without performing the impregnation step. The characteristic values of the obtained sintered body were measured on the same sphere, and the results are shown in the table.

表より比較例の焼結体は、実施例の焼結体と同等の組成
であるものの、全気孔率が大きく、曲げ強度が小さい。
From the table, the sintered bodies of the comparative examples have the same composition as the sintered bodies of the examples, but the total porosity is large and the bending strength is low.

即ち、本実施例の焼結体が優れた特性を有するのは、含
浸工程を行なった効果によるものであることが明らかで
ある。
That is, it is clear that the reason why the sintered body of this example has excellent properties is due to the effect of the impregnation process.

特許出願人  トヨタ自動車株式会社 代理人   弁理士   大川 宏Patent applicant: Toyota Motor Corporation Agent: Patent attorney: Hiroshi Okawa

Claims (1)

【特許請求の範囲】[Claims] (1)炭化珪素粉末99.92〜97.5重量%と、0
.02〜0.1重量%のホウ素原子に相当する量のホウ
素含有化合物と、0.03〜0.15重量%の炭素原子
に相当する量の炭素含有化合物とを混合して所定形状の
成形体を成形する成形工程と、 焼結体中のアルミニウム原子、ホウ素原子および炭素原
子の総量が0.08〜0.35重量%となるように有機
アルミニウム化合物の溶液を該成形体に含浸させる含浸
工程と、 該有機アルミニウム化合物が含浸された該成形体を非酸
化性雰囲気下で焼結する焼結工程と、よりなることを特
徴とする炭化珪素焼結体の製造方法。
(1) 99.92 to 97.5% by weight of silicon carbide powder and 0
.. A molded article having a predetermined shape is prepared by mixing an amount of a boron-containing compound corresponding to 02 to 0.1% by weight of boron atoms and an amount of a carbon-containing compound corresponding to 0.03 to 0.15% by weight of carbon atoms. and an impregnation step of impregnating the sintered body with a solution of an organoaluminum compound so that the total amount of aluminum atoms, boron atoms, and carbon atoms in the sintered body is 0.08 to 0.35% by weight. and a sintering step of sintering the compact impregnated with the organic aluminum compound in a non-oxidizing atmosphere.
JP63011097A 1988-01-21 1988-01-21 Method for manufacturing silicon carbide sintered body Expired - Fee Related JPH0733285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63011097A JPH0733285B2 (en) 1988-01-21 1988-01-21 Method for manufacturing silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63011097A JPH0733285B2 (en) 1988-01-21 1988-01-21 Method for manufacturing silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH01188469A true JPH01188469A (en) 1989-07-27
JPH0733285B2 JPH0733285B2 (en) 1995-04-12

Family

ID=11768499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63011097A Expired - Fee Related JPH0733285B2 (en) 1988-01-21 1988-01-21 Method for manufacturing silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPH0733285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496103A (en) * 2023-06-25 2023-07-28 成都超纯应用材料有限责任公司 High-strength low-density silicon carbide and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496103A (en) * 2023-06-25 2023-07-28 成都超纯应用材料有限责任公司 High-strength low-density silicon carbide and preparation method and application thereof
CN116496103B (en) * 2023-06-25 2023-08-25 成都超纯应用材料有限责任公司 High-strength low-density silicon carbide and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0733285B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US5942455A (en) Synthesis of 312 phases and composites thereof
GB2082165A (en) Silicon carbide ceramic
JPS6228109B2 (en)
WO1997018162A9 (en) Synthesis of 312 phases and composites thereof
GB2093481A (en) Sintered high density refractory compositions
JPS6240317B2 (en)
JPH1149572A (en) Ceramic composite particles and their production
JPH0251863B2 (en)
CA2087655A1 (en) Silicon nitride ceramics containing crystallized grain boundary phases
JPH01188469A (en) Production of silicon carbide sintered compact
JP3498989B2 (en) Silicon carbide based composite material and method for producing the same
US5281564A (en) Crystallization of grain boundary phases in SiC ceramics through catalytic deoxygenation
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPS6212663A (en) Method of sintering b4c base fine body
WO1997027965A1 (en) Synthesis of h-phase products
JPS638069B2 (en)
JPS6212664A (en) Method of sintering b4c base composite body
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS63392B2 (en)
JPH0224789B2 (en)
JPH0350808B2 (en)
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body
JPH042662A (en) High-purity silicon carbide sintered material and production thereof
JPS61136963A (en) Manufacture of silicon nitride base sintered body
JPS61122167A (en) High strength silicon nitride base sintered body and manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees