JPH01186658A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01186658A
JPH01186658A JP591488A JP591488A JPH01186658A JP H01186658 A JPH01186658 A JP H01186658A JP 591488 A JP591488 A JP 591488A JP 591488 A JP591488 A JP 591488A JP H01186658 A JPH01186658 A JP H01186658A
Authority
JP
Japan
Prior art keywords
silicide
hydrofluoric acid
polycrystalline
semiconductor device
resistant metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP591488A
Other languages
Japanese (ja)
Inventor
Makio Goto
後藤 万亀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP591488A priority Critical patent/JPH01186658A/en
Publication of JPH01186658A publication Critical patent/JPH01186658A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable improved contact to be achieved between a metal silicide which is represented by Ti silicide and a polycrystalline Si by performing connection through a hydrofluoric acid resistant metal or a silicide of hydrofluoric acid resistant metal. CONSTITUTION:An oxide film for separating elements 2, a gate oxide film 3, a polycrystalline Si gate electrode 4, a low-concentration N-type impurities diffusion layer(LDD) 5, an insulation film side wall 6, and an high-concentration N-type impurities diffusion layer (source drain) 7 are provided on a P-type Si substrate 1. A Ti silicide 8 is formed on the surface of the gate electrode 4 and the source drain 7 and an Mo silicide 11 is formed within a contact hole 10 which is provided at one part of an insulation film between layers 9, which connects a Ti silicide 8 and a high-resistance polycrystalline Si 12. Namely, since the Mo silicide 11 which is rich in hydrofluoric acid resistant properties is formed at the contact hole part 10 when forming the high-resistance polycrystalline Si 12, pre-washing with hydrofluoric acid can be fully made. It allows the Ti silicide to be fully in contact with the polycrystalline Si.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の構造に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to the structure of a semiconductor device.

(従来の技術) 近年、半導体素子の微細化に伴い、拡散層。(Conventional technology) In recent years, with the miniaturization of semiconductor devices, the diffusion layer.

ゲート電極の低抵抗化を目的としたいわゆるサリサイド
構造のデバイスが用いられてきつつある。
Devices with a so-called salicide structure are being used for the purpose of reducing the resistance of gate electrodes.

ここで−例としてサリサイド構造のSRAMの断面図を
第2図に示す、同図において、lはP型Si基板、2は
素子分離用酸化膜、3はゲート酸化膜、4は多結晶Si
ゲート電極、5は低濃度不純物拡散層、6は絶縁膜サイ
ドウオール、7は高濃度N型不純物拡散層(リース・ト
レイン)、8はTiシリサイド、9は層間絶縁膜、10
はコンタクトホール、12は高抵抗多結晶Siである。
Here, as an example, a cross-sectional view of an SRAM with a salicide structure is shown in FIG.
Gate electrode, 5 is a low concentration impurity diffusion layer, 6 is an insulating film sidewall, 7 is a high concentration N type impurity diffusion layer (lease train), 8 is Ti silicide, 9 is an interlayer insulation film, 10
1 is a contact hole, and 12 is a high-resistance polycrystalline Si.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述の従来技術では、低抵抗シリサイドとして
最も有望なTiシリサイドがフッ酸に対して溶解性が高
く、高抵抗多結晶シリコン成長前にフッ酸による前洗浄
が行えず、コンタクトホール形成時にTiシリサイド表
面に付着したフッ素系ポリマーあるいは自然酸化膜等の
絶縁膜の除去か困難であり、これがTiシリサイドと高
抵抗多結晶Siの接触不良を引き起こすという問題かあ
った。
However, in the above-mentioned conventional technology, Ti silicide, which is most promising as a low-resistance silicide, is highly soluble in hydrofluoric acid, and pre-cleaning with hydrofluoric acid cannot be performed before growing high-resistance polycrystalline silicon. It is difficult to remove insulating films such as fluorine-based polymers or natural oxide films adhering to the silicide surface, and this causes a problem of poor contact between Ti silicide and high-resistance polycrystalline Si.

そこて木発す1は、このような問題点を解決するもので
、その目的はTiシリサイドで代表される金属シリサイ
ドと多結晶Siとの間で良好な接触か得られる半導体装
置を提供することにある。
Therefore, Kihata's 1 is intended to solve these problems, and its purpose is to provide a semiconductor device that can obtain good contact between metal silicide, typified by Ti silicide, and polycrystalline Si. be.

(課題を解決するための手段) 本発明はTiシリサイド層と多結晶St層が耐フッ酸性
金属あるいは、そのシリサイドを介して接続されている
ことを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that the Ti silicide layer and the polycrystalline St layer are connected via a hydrofluoric acid-resistant metal or its silicide.

〔実施例〕〔Example〕

以下図面により本発明の実施例を詳細に説明する。第1
図は本発明の半導体装置を表わす断面図てあり、同図に
おいてlはP型Si基板、2は素子分離用酸化膜、3は
ゲート酸化膜、4は多結晶Siゲート電極、5は低濃度
N型不純物拡散層(LDD)、6は絶縁膜サイドウオー
ル、7は高濃度N型不純物拡散層(ソース・ドレイン)
である。
Embodiments of the present invention will be described in detail below with reference to the drawings. 1st
The figure is a cross-sectional view showing the semiconductor device of the present invention, in which l is a P-type Si substrate, 2 is an oxide film for element isolation, 3 is a gate oxide film, 4 is a polycrystalline Si gate electrode, and 5 is a low concentration silicon substrate. N-type impurity diffusion layer (LDD), 6 is an insulating film sidewall, 7 is a high concentration N-type impurity diffusion layer (source/drain)
It is.

前記ゲート電極4及びソース・ドレイン7の表面にはT
iシリサイド8が形成されている0層間絶縁膜9の一部
に設けられたコンタクトホール10内部にはMoシリサ
イド11が形成され、これ°が前記Tiシリサイド8と
高抵抗多結晶5i12を接続する役目を果たす。
T is formed on the surfaces of the gate electrode 4 and source/drain 7.
Mo silicide 11 is formed inside a contact hole 10 provided in a part of the interlayer insulating film 9 where the i-silicide 8 is formed, and this serves to connect the Ti silicide 8 and the high-resistance polycrystal 5i12. fulfill.

次の本発明の半導体装置の製造方法を簡単に説明する。The following method for manufacturing a semiconductor device according to the present invention will be briefly described.

前記1〜7までは従来の技術を用いて容易に形成される
0次に全面にTfをスパッタ法で200〜800A形成
した後に600〜700℃の温度でハロゲンランプによ
り処理することて前記ゲート電極4及びソース・ドレイ
ン7上のTiはSiと反応しTiシリサイド8が形成さ
れる。
In steps 1 to 7 above, the gate electrode is formed by forming Tf of 200 to 800 A on the entire surface of the zero order by sputtering, which can be easily formed using conventional techniques, and then treating it with a halogen lamp at a temperature of 600 to 700°C. 4 and on the source/drain 7 reacts with Si to form Ti silicide 8.

未反応Tiは選択エッチ液により除去し、さらに800
℃前後の温度でハロゲンランプによりアニールを行う。
Unreacted Ti was removed using a selective etchant, and
Annealing is performed using a halogen lamp at a temperature around ℃.

化学的気相成長法により層間絶縁膜9を2000人前後
形成し、フォトレジストパターンを用い一部エッチング
除去しコンタクトホールlOを形成する。
Approximately 2,000 interlayer insulating films 9 are formed by chemical vapor deposition, and a portion of the interlayer insulating film 9 is removed by etching using a photoresist pattern to form contact holes 1O.

フォトレジストパターンを除去した後、前記コンタクト
ホールlO形成時に生したフッ素系ポリマーあるいは自
然酸化膜をArスパッタエッチにより取り除きMoシリ
サイド11をスパッタ法にて200〜800A堆積させ
る。
After removing the photoresist pattern, the fluorine-based polymer or natural oxide film produced when forming the contact hole IO is removed by Ar sputter etching, and Mo silicide 11 is deposited at a thickness of 200 to 800 Å by sputtering.

フォトレジストパターンを用い前記MOシリサイド11
をコンタクトホール部のみを残すようにエツチングした
後に、高抵抗用多結晶Si 12を化学的気相成長法に
より1000〜2000A形成し1本発明の半導体装置
の構造が完成する。
The MO silicide 11 is formed using a photoresist pattern.
After etching to leave only the contact hole portion, a high-resistance polycrystalline Si film 12 of 1000 to 2000 A is formed by chemical vapor deposition to complete the structure of the semiconductor device of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように発明によればTiシリサイド表面に形
成された自然酸化膜あるいはコンタクトホールドライエ
ッチによるフッ素ポリマーはArスパッタエッチにより
容易に除去され、高抵抗多結晶Si形成時にはコンタク
トホール部には、耐フッ酸性に富むMOシリサイドが形
成されているため、フッ酸による前洗浄が十分行える。
As described above, according to the invention, the natural oxide film formed on the Ti silicide surface or the fluoropolymer formed by contact hole dry etching is easily removed by Ar sputter etching, and when high resistance polycrystalline Si is formed, the contact hole portion is Since MO silicide is formed which is highly resistant to hydrofluoric acid, pre-cleaning with hydrofluoric acid can be performed sufficiently.

これによりTiシリサイド、多結晶SiはMOシリサイ
ドを介し良好な接触が得られるという効。
This has the effect that good contact can be obtained between Ti silicide and polycrystalline Si via MO silicide.

果を有する。have fruit.

以上実施例に基すき具体的に説明したが1本発明は上記
実施例に限定されるものではなく、その要旨を逸脱しな
い範囲で種々変更可能であることはいうまでもない。
Although the present invention has been specifically described above based on the embodiments, it goes without saying that the present invention is not limited to the above embodiments, and can be modified in various ways without departing from the gist thereof.

たとえば、耐フッ酸性物質はMoシリサイド以外ても、
Mo、Co、N t、w、pt等の高融点金属、あるい
はそのシリサイドであフてもよい。
For example, hydrofluoric acid-resistant substances other than Mo silicide include
It may be a high melting point metal such as Mo, Co, Nt, w, or pt, or a silicide thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の実施例を示すSRAMの
主要断面図、第2図は従来の半導体装置の実施例を示す
SRAMの主要断面図。 lφ・・P型Si基板 2・・・素子分離用酸化膜 3・・・ゲート酸化膜 4・・・(多結晶Si)ゲート電極 5・・・低濃度N型不純物拡散層(LDD)6・・・絶
縁膜サイドウオール 7・・・高濃度N型不純物拡散層 (ソース・ドレイン) 8・・・Tiシリサイド 9・・・層間絶縁膜 10・・・コンタクトホール 11・・・MOシリサイド 12・・・高抵抗多結晶Si 以上 第2図
FIG. 1 is a main sectional view of an SRAM showing an embodiment of a semiconductor device of the present invention, and FIG. 2 is a main sectional view of an SRAM showing an embodiment of a conventional semiconductor device. lφ...P-type Si substrate 2...Element isolation oxide film 3...Gate oxide film 4...(Polycrystalline Si) gate electrode 5...Low concentration N-type impurity diffusion layer (LDD) 6... ...Insulating film sidewall 7...High concentration N-type impurity diffusion layer (source/drain) 8...Ti silicide 9...Interlayer insulating film 10...Contact hole 11...MO silicide 12...・High resistance polycrystalline Si Above Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)Tiシリサイド層と多結晶Si層が耐フッ酸性金
属あるいは、該耐フッ酸性金属のシリサイドを介して接
続されていることを特徴とする半導体装置。
(1) A semiconductor device characterized in that a Ti silicide layer and a polycrystalline Si layer are connected via a hydrofluoric acid-resistant metal or a silicide of the hydrofluoric acid-resistant metal.
(2)前記耐フッ酸性金属はMo、Ni、W、Co、P
tから選ばれてなる第1項記載の半導体装置。
(2) The hydrofluoric acid-resistant metal is Mo, Ni, W, Co, P.
2. The semiconductor device according to claim 1, wherein the semiconductor device is selected from t.
(3)前記Tiシリサイド層はソース・ドレイン領域ま
たはゲート電極上に形成されていて、前記耐フッ酸性金
属あるいは該耐フッ酸性金属のシリサイドは、層間絶縁
膜に設けられたコンタクトホール内部に形成されている
ことを特徴とする第1項記載の半導体装置。
(3) The Ti silicide layer is formed on the source/drain region or the gate electrode, and the hydrofluoric acid-resistant metal or the silicide of the hydrofluoric acid-resistant metal is formed inside the contact hole provided in the interlayer insulating film. 2. The semiconductor device according to claim 1, characterized in that:
JP591488A 1988-01-14 1988-01-14 Semiconductor device Pending JPH01186658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP591488A JPH01186658A (en) 1988-01-14 1988-01-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP591488A JPH01186658A (en) 1988-01-14 1988-01-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01186658A true JPH01186658A (en) 1989-07-26

Family

ID=11624164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP591488A Pending JPH01186658A (en) 1988-01-14 1988-01-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01186658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585308A (en) * 1993-12-23 1996-12-17 Sgs-Thomson Microelectronics, Inc. Method for improved pre-metal planarization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166075A (en) * 1985-01-17 1986-07-26 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166075A (en) * 1985-01-17 1986-07-26 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585308A (en) * 1993-12-23 1996-12-17 Sgs-Thomson Microelectronics, Inc. Method for improved pre-metal planarization

Similar Documents

Publication Publication Date Title
US4141022A (en) Refractory metal contacts for IGFETS
US5451545A (en) Process for forming stable local interconnect/active area silicide structure VLSI applications
EP0046371B1 (en) Method of manufacturing a semiconductor device
TWI242811B (en) Cleaning solution and method for selectively removing layers in a silicidation process
JP2010272785A (en) Semiconductor device and method of manufacturing the same
US6706573B2 (en) Thin film transistor and method of manufacturing the same
JPS61166075A (en) Semiconductor device and manufacture thereof
US6339021B1 (en) Methods for effective nickel silicide formation
JPH02271673A (en) Semiconductor device
JPH02271674A (en) Semiconductor device
JPH01186658A (en) Semiconductor device
JPH11289087A (en) Semiconductor device and its manufacture
US20050250267A1 (en) Method of heat treating thin film transistor using metal induced lateral crystallization
JP2864658B2 (en) Method for manufacturing thin film transistor
JPS6242391B2 (en)
JPH04240733A (en) Manufacture of thin film transistor
JP2000307060A (en) Manufacture of resistor element
JPS62172761A (en) Amorphous silicon thin film transistor and manufacture thereof
JPH0322694B2 (en)
JPH01186654A (en) Semiconductor device
KR100992631B1 (en) Method of manufacturing semiconductor Device
JPS6151941A (en) Manufacture of electrode wiring film
JPS58202553A (en) Semiconductor device
JP2822382B2 (en) Semiconductor device and manufacturing method thereof
JPH01260857A (en) Semiconductor device and manufacture thereof