JPH01185917A - Doping of arsenic - Google Patents
Doping of arsenicInfo
- Publication number
- JPH01185917A JPH01185917A JP1118788A JP1118788A JPH01185917A JP H01185917 A JPH01185917 A JP H01185917A JP 1118788 A JP1118788 A JP 1118788A JP 1118788 A JP1118788 A JP 1118788A JP H01185917 A JPH01185917 A JP H01185917A
- Authority
- JP
- Japan
- Prior art keywords
- arsenic
- reaction tank
- carrier gas
- semiconductor substrate
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052785 arsenic Inorganic materials 0.000 title claims abstract description 30
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims abstract description 12
- 239000012159 carrier gas Substances 0.000 claims abstract description 10
- LULLIKNODDLMDQ-UHFFFAOYSA-N arsenic(3+) Chemical compound [As+3] LULLIKNODDLMDQ-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 230000004913 activation Effects 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- -1 ^scIg Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体基体中にN形の領域形成のため、あるい
はN゛層形成のために行われるひ素のドーピング方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for doping arsenic in a semiconductor substrate for forming an N-type region or for forming an N layer.
ひ素のドーピング方法の一つとしては、半導体基体表面
の酸化膜に例えばひ素を気相拡散させ、この基体を開管
法で加熱してひ素を基体内に拡散させる方法、AsHs
(アルシン)のようなひ素化合物ガスを用いて開管法
で拡散させる方法あるいは半導体基体を金属ひ素の固体
、^scIgのような化合物の液体あるいはひ素を拡散
したシリコンなどと一緒に封じ込んで封管法で拡散させ
る方法などの拡散法がある。または半導体のエピタキシ
ャル成長時に、6素化合物の液体をsia 4等の液体
の半導体原料化合物に混合する方法あるいは^sH@な
どの気体の化合物を半導体原料化合物ガスに混合する方
法がある。さらには、ひ素をイオンにして打込むイオン
注入法も知られている。One method for doping arsenic is to diffuse arsenic into the oxide film on the surface of a semiconductor substrate in a vapor phase, and then heat the substrate using an open tube method to diffuse arsenic into the substrate.
A method of diffusion using an open tube method using an arsenic compound gas such as (arsine), or a method of sealing the semiconductor substrate together with a solid metal arsenic, a liquid compound such as ^scIg, or silicon in which arsenic is diffused. There are diffusion methods such as diffusion using a tube method. Alternatively, during epitaxial growth of a semiconductor, there is a method of mixing a liquid hexagonal compound with a liquid semiconductor raw material compound such as SIA 4, or a method of mixing a gaseous compound such as ^sH@ with a semiconductor raw material compound gas. Furthermore, an ion implantation method in which arsenic is ionized and implanted is also known.
しかし、これらの方法は、いずれも半導体基体を800
〜1250℃の高温に加熱する必要がある。このような
高温の熱処理は、半導体基体中に結晶欠陥を生成させる
欠点がある。またデバイスが微細化するにつれて浅いド
ーピング領域を形成することが必要になるが、これらの
高温の熱処理を伴う方法では、例えば半導体基体として
Siを考えた場合、ひ素のSi中での拡散係数が大きい
ために浅いドーピング領域を得ることができない、また
イオン注入では、浅いドーピング層を形成するような3
0にV以下の低加速での打込みは安定に行うことが困難
であり、10冨1〜103!原子/−といった高い表面
不純物濃度も得られにくくなるなどの問題点がある。さ
らに、気相拡散に用いるアルシンは猛毒で知られ取扱い
に万全の注意を要する問題もある。However, in all of these methods, the semiconductor substrate is
It is necessary to heat to a high temperature of ~1250°C. Such high temperature heat treatment has the disadvantage of generating crystal defects in the semiconductor substrate. Furthermore, as devices become smaller, it becomes necessary to form shallow doping regions, but in these methods that involve high-temperature heat treatment, for example, when considering Si as the semiconductor substrate, the diffusion coefficient of arsenic in Si is large. Therefore, it is not possible to obtain a shallow doping region, and in ion implantation, a shallow doping layer cannot be obtained.
It is difficult to stably drive at low accelerations below V to 0, and 10 to 1 to 103! There are problems in that it becomes difficult to obtain a high surface impurity concentration such as atomic/-. Furthermore, arsine used in gas phase diffusion is known to be highly toxic and requires extreme care when handling.
本発明の目的は、上述の問題を解決し、アルシンのよう
な猛毒のガスを用いる必要がなく、半導体基体を高温に
加熱することもなく、基体中に浅く高濃度のドーピング
領域を形成できるひ素のド上記の目的を達成するために
、本発明の方法は、真空容器内の対向する電極の一方の
上に半導体基体を配置して所定の温度に保持し、金属ひ
素を加熱し昇華させたガスをキャリアガスと共に対向電
極間に導入し、対向電極間に電圧を印加してグロー放電
を発生させるものとする。The purpose of the present invention is to solve the above-mentioned problems and to provide arsenic that can form a shallow, highly doped region in the substrate without using highly toxic gases such as arsine, without heating the semiconductor substrate to high temperatures. In order to achieve the above object, the method of the present invention involves placing a semiconductor substrate on one of the opposing electrodes in a vacuum container and maintaining it at a predetermined temperature to heat and sublimate metal arsenic. Gas is introduced between opposing electrodes together with a carrier gas, and a voltage is applied between the opposing electrodes to generate glow discharge.
〔作用〕
金属元素を昇華させて作製したひ素ガスを導入してプラ
ズマ空間に導入することによって、本件出願人の出願に
係る特開昭59−218727号公報に記載されている
プラズマドーピングにより、活性化のための高温熱処理
の必要なしに半導体基体内に浅く、高濃度のひ素のドー
ピング領域を形成できる。[Operation] By introducing arsenic gas produced by sublimating a metal element into the plasma space, activation can be achieved by plasma doping as described in Japanese Patent Application Laid-Open No. 59-218727 filed by the present applicant. A shallow, highly doped region of arsenic can be formed within a semiconductor substrate without the need for high-temperature heat treatment for chemical conversion.
第1図は本発明の一実施例に用いた装置を示し、真空に
できる反応槽1内には直流電源3に接続された対向電極
21.22が配置され、ti21にはその上に載置され
るSt基板4を加熱できるヒータ51が内蔵され電源3
1に接続されている0反応槽lには排気管63.真空バ
ルブ64を介して真空排気系61が接続されている。ま
たガス導入管76−′反応槽1に開口しており、これに
は真空加熱容器8が真空バルブ65を介して接続されて
いる。真空加熱容器8は真空バルブ66を介して接続さ
れた真空排気系62によって真空にすることができ、内
部に金属ひ素81を入れる皿82とそのひ素を加熱して
昇華させるために電源32に接続されたヒータ52が収
容されている。さらにこの真空加熱容器8にはマスフロ
ーなどのガス調整回路91を介して不活性キャリアガス
ボンベ9が接続される0反応槽1および真空加熱容器8
には内部の真空度を調整するための真空計11.12が
連結されている。FIG. 1 shows an apparatus used in an embodiment of the present invention, in which counter electrodes 21 and 22 connected to a DC power source 3 are arranged in a reaction tank 1 that can be evacuated, and a counter electrode 21 and 22 are placed on the ti 21. A built-in heater 51 that can heat the St substrate 4 to be heated is connected to the power source 3.
The 0 reaction tank 1 connected to 1 has an exhaust pipe 63. A vacuum exhaust system 61 is connected via a vacuum valve 64 . Further, a gas introduction pipe 76-' opens into the reaction tank 1, and a vacuum heating container 8 is connected to this via a vacuum valve 65. The vacuum heating container 8 can be evacuated by an evacuation system 62 connected through a vacuum valve 66, and is connected to a power source 32 in order to heat and sublimate the dish 82 containing metal arsenic 81 therein. A heated heater 52 is housed therein. Furthermore, an inert carrier gas cylinder 9 is connected to this vacuum heating container 8 via a gas adjustment circuit 91 such as a mass flow.
are connected to vacuum gauges 11 and 12 for adjusting the internal vacuum degree.
この装置を用いて次のような手順でドーピング領域の形
成を行った。まず、真空排気系61により反応槽1内を
約I X 10−’Torrに排気する。 si基板4
はヒータ51により約200℃に加熱しておく、金属ひ
素加熱容器8を排気系62により約I X 10−”T
orrに排気し、ヒータ52で金属ひ素81を50℃に
加熱し昇華させた0次いで、真空バルブ64を絞り、排
気系61の排気速度を下げると同時にバルブ66を閉じ
、さらにパルプ65を開けてボンベ9から不活性キャリ
アガスとしてのHeを調整回路91を這して流し、ひ素
を含むキャリアガスを反応槽1に導入し、反応槽の圧力
を2 Torrに調整した。その後、電極間距離50鶴
の対向電極21.22の間に電源3により直流(ioO
V 、 0.6 mA/ alIの放電入力を供給して
5分間の放電を行った。 St基板4は比抵抗10〜3
0 kΩ1の単結晶シリコンであった。Using this apparatus, a doped region was formed according to the following procedure. First, the inside of the reaction tank 1 is evacuated to about I x 10-' Torr by the vacuum evacuation system 61 . si board 4
The metal arsenic heating container 8, which has been heated to about 200°C by the heater 51, is heated to about I x 10-”T by the exhaust system 62.
The metal arsenic 81 was heated to 50° C. with the heater 52 and sublimated. Then, the vacuum valve 64 was throttled to lower the exhaust speed of the exhaust system 61, and at the same time the valve 66 was closed, and the pulp 65 was opened. He as an inert carrier gas was passed through the adjustment circuit 91 from the cylinder 9, a carrier gas containing arsenic was introduced into the reaction tank 1, and the pressure of the reaction tank was adjusted to 2 Torr. After that, a direct current (ioO
A discharge input of 0.6 mA/alI was applied for 5 minutes. St substrate 4 has a specific resistance of 10 to 3
It was single crystal silicon with a resistance of 0 kΩ1.
第2図はこのようにしてドーピングされた基板4中のひ
素の深さ方向の濃度分布を示すプロファイルである。こ
れはイオン・マイクロアナライザにより測定したもので
ある。第2図かられかるように、本発明に基づく方法に
より形成されたひ素含有量は、101m原子/−以上の
高い表面不純物濃度を有している。しかも、この不純物
濃度は深さ約50= 1100nで101原子/−ニ低
下すル、コレハ、通常の拡散法では表面濃度が10″′
原子/−以下になる深さが0.5μ以上になるのと比較
すれば、非常に高濃度で浅いドーピング領域であると言
うことができる。FIG. 2 is a profile showing the concentration distribution of arsenic in the depth direction in the substrate 4 doped in this manner. This was measured using an ion microanalyzer. As can be seen from FIG. 2, the arsenic content formed by the method according to the invention has a high surface impurity concentration of more than 101 m atoms/-. Moreover, this impurity concentration decreases by 101 atoms/-2 at a depth of about 50 = 1100 nm, whereas in the normal diffusion method, the surface concentration is 10''
When compared with the case where the depth is 0.5μ or more, it can be said that this is a very high concentration and shallow doping region.
本発明によれば、金属ひ素を昇華させたひ素ガスをキャ
リアガスと共に対向電極間に導入して一方の電極上の半
導体基体にプラズマドーピングすることにより、従来の
ような結晶欠陥を生ずる高温の熱処理過程を経ることな
く、表面で108′原子/−以上の高濃度で、しかも0
.1−程度の浅いひ素のドーピング領域が形成できる。According to the present invention, by introducing arsenic gas obtained by sublimating metallic arsenic together with a carrier gas between opposing electrodes and plasma-doping the semiconductor substrate on one electrode, high-temperature heat treatment that causes crystal defects as in the conventional method is avoided. Without undergoing any process, the surface has a high concentration of 108' atoms/- or more, and 0
.. A shallow arsenic doping region of about 1.0 mm can be formed.
ひ素によりこのような高濃度でごく浅いドーピングを行
うことは、ひ素のSi中の拡散係数が大きいために不可
能であった。しかも本発明では不純物源として金属ひ素
を用いるため、アルシン(AsHs)などのガスを用い
る場合のような猛毒ガスの配管系からのもれの心配がな
く、危険性が少なく、扱いが容易である。It has been impossible to perform extremely shallow doping with arsenic at such a high concentration because of the large diffusion coefficient of arsenic in Si. Moreover, since metallic arsenic is used as an impurity source in the present invention, there is no need to worry about highly toxic gas leaking from the piping system, which is the case when gases such as arsine (AsHs) are used, resulting in less danger and ease of handling. .
第1図は本発明の一実施例のための装置の構成を示す断
面図、第2図は本発明の一実施例により得られたSi基
板中の深さ方向のひ素濃度分布図である。
1:反応槽、21.22:@極、4:Si基板、51゜
52:ヒータ、61,62:真空排気系、7:ガス導入
管、8:真空加熱容器、81:金属ひ素、9:キャリア
ガスボンベ。FIG. 1 is a sectional view showing the configuration of an apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the arsenic concentration distribution in the depth direction in a Si substrate obtained according to an embodiment of the present invention. 1: Reaction tank, 21.22: @pole, 4: Si substrate, 51°52: Heater, 61, 62: Vacuum exhaust system, 7: Gas introduction tube, 8: Vacuum heating container, 81: Metallic arsenic, 9: carrier gas cylinder.
Claims (1)
を配置して所定の温度に保持し、金属ひ素を加熱し昇華
させたガスをキャリアガスと共に前記対向電極間に導入
し、対向電極間に電圧を印加してグロー放電を発生させ
ることを特徴とするひ素のドーピング方法。1) A semiconductor substrate is placed on one of the opposing electrodes in a vacuum container, maintained at a predetermined temperature, and a gas in which metallic arsenic is heated and sublimated is introduced between the opposing electrodes together with a carrier gas. An arsenic doping method characterized by applying a voltage between the two to generate a glow discharge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1118788A JPH01185917A (en) | 1988-01-21 | 1988-01-21 | Doping of arsenic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1118788A JPH01185917A (en) | 1988-01-21 | 1988-01-21 | Doping of arsenic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01185917A true JPH01185917A (en) | 1989-07-25 |
Family
ID=11771066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1118788A Pending JPH01185917A (en) | 1988-01-21 | 1988-01-21 | Doping of arsenic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01185917A (en) |
-
1988
- 1988-01-21 JP JP1118788A patent/JPH01185917A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4293589A (en) | Process for high pressure oxidation of silicon | |
JPS586300B2 (en) | Annealing method | |
JPS60245218A (en) | Method and apparatus for producing semiconductor element | |
JPH03178126A (en) | Impurity doping device | |
US3348984A (en) | Method of growing doped crystalline layers of semiconductor material upon crystalline semiconductor bodies | |
JPS6021959B2 (en) | Method for manufacturing a layer with a surface composition of Hg↓1-xCdxTe | |
JPH01185917A (en) | Doping of arsenic | |
JPS61229319A (en) | Thin film forming method | |
US6251183B1 (en) | Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process | |
KR960013580B1 (en) | Purification process for dendritic web silicon crystal growth system | |
JPH06105694B2 (en) | Boron solid phase diffusion method | |
JPH01129413A (en) | Introduction of impurity into semiconductor substrate | |
JPS6287499A (en) | Heat treatment of single crystal cdte | |
JPH0232240B2 (en) | ||
JPH01211930A (en) | Heat treatment apparatus | |
JP3250271B2 (en) | Method of diffusing impurities into group 3-5 compound semiconductor | |
JPS61136224A (en) | Method of introducing impurity to one side of semiconductor substrate | |
JPH03195016A (en) | Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus | |
JPS5844712A (en) | Heat treatment device for semiconductor | |
JPS607715A (en) | Manufacture of compound semiconductor device | |
JPH0397692A (en) | Gasifying and supplying device for organic metallic compound | |
JPH03257166A (en) | Method and device for chemical vapor growth of tantalum oxide film | |
JPS61156742A (en) | Short period heat treatment device | |
JPH0245916A (en) | Vapor phase growth device | |
JPH0243720A (en) | Molecular beam epitaxial growth method |