JPH0118521B2 - - Google Patents

Info

Publication number
JPH0118521B2
JPH0118521B2 JP58026688A JP2668883A JPH0118521B2 JP H0118521 B2 JPH0118521 B2 JP H0118521B2 JP 58026688 A JP58026688 A JP 58026688A JP 2668883 A JP2668883 A JP 2668883A JP H0118521 B2 JPH0118521 B2 JP H0118521B2
Authority
JP
Japan
Prior art keywords
weight
parts
dielectric constant
present
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58026688A
Other languages
Japanese (ja)
Other versions
JPS59154703A (en
Inventor
Yukio Sakabe
Yukio Hamachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP58026688A priority Critical patent/JPS59154703A/en
Publication of JPS59154703A publication Critical patent/JPS59154703A/en
Publication of JPH0118521B2 publication Critical patent/JPH0118521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、主として、磁器コンデンサ用誘電体
として有用な高誘電率磁器組成物に関する。 従来この種の組成物としてはチタン酸バリウム
(BaTiO3)を主成分とし、これにBi2O3−TiO2
Bi2O3−SnO2、Bi2O3−ZrO2などのビスマス化合
物に希土類を副成分として添加したもの、また
は、MgO、SiO2等を副成分として添加したもの
が、誘電率が高く、大きな静電容量が得られるこ
とから広く採用されている。しかしながら、上記
成分を含む組成物では高周波に対する誘電体損失
(tanδ)が大きい。また、誘電率を高くすると静
電容量の温度変化率が大きくなり、逆にその温度
変化率を小さくすると誘電率が低下するという相
反する傾向を示し、このため上記組成物をコンデ
ンサに適用した場合、小型、大容量化には自から
限界があつた。 また、上記組成物のうち、副成分としてビスマ
ス化合物を含むものは、焼結時に、Bi2O3が蒸発
して磁器に歪が生じたり、また、組成割合が変化
して必要な電気特性にばらつきを生じたりする等
の問題がある。さらに、これを積層コンデンサに
適用した場合には、その内部電極としてPdある
いはAg−Pd合金が用いられていると、このPdと
Bi2O3とが反応し電極の特性が損なわれる。この
ため、Bi2O3と反応しない高価なPtを使用せざる
をえないという問題もある。 本発明は上記の問題点に鑑みてなされたもので
あつて、誘電率が2700以上と高く、それにもかか
わらず広い温度範囲にわたつて静電容量の温度変
化率が小さく平坦で、かつ、誘電体損失も小さ
く、さらに、1250℃以下の比較的低温度で焼結で
きる高誘電率磁器組成物を提供することを目的と
する。 本発明者らはチタン酸バリウム中に不純物とし
て存在するSrO、CaO等のアルカリ土類金属酸化
物、Na2O、K2O等のアルカリ金属酸化物、その
他Al2O3、SiO2などの酸化物のうち特にNa2O、
K2O等のアルカリ金属酸化物の含有量が電気的特
性に大きく影響することを見い出した。そこで、
本発明は上記の目的を達成するため、チタン酸バ
リウム中に存在する不純物としてのアルカリ金属
酸化物の含有量を低く制限するとともに、副成分
として従来のようなビスマス化合物を含まず、こ
れに代えて、Nb2O5、Co2O3、SiO2および希土類
酸化物を添加するようにしている。すなわち、本
発明の高誘電率磁器組成物は不純物としてのアル
カリ金属酸化物の含有量が0.04重量%以下のチタ
ン酸バリウム100重量部に対してNb2O5を1.0〜2.5
重量部、Co2O3を0.1〜0.8重量部、SiO2を0.1〜1.2
重量部およびNd2O3、La2O3、Pr6O11の内、1種
または2種以上からなる希土類酸化物(以降これ
をR2O3と略称する)を0.3〜1.0重量部それぞれ含
有している。 上記成分範囲に限定した理由は次のとおりであ
る。まず、Na2O、K2Oなどのアルカリ金属酸化
物については、それがBaTiO3に対して不純物と
して0.04重量%を越えると誘電率が低下し、2700
以下の値となるためである。また、Nb2O5は上記
不純物を含むBaTiO3100重量部に対して1.0重量
部未満では焼結性が悪くなり、また静電容量の温
度変化率も大きくなりEIAに規定するX7R特性を
満足しなくなる。一方2.5重量部を越えると誘電
率が低下して2700以下の値となる。Co2O3
BaTiO3100重量部に対して0.1重量部未満では静
電容量の温度変化率を小さくする効果が乏しく、
また0.8重量部を越えると誘電率の低下や静電容
量の温度変化率の悪化をまねく。SiO2
BaTiO3100重量部に対して0.1重量部未満では焼
結性を向上させる効果に乏しく、また1.2重量部
を越えると誘電率が低下するためである。さらに
R2O3は、BaTiO3100重量部に対して0.3%重量部
未満では焼結性を向上させる効果が乏しく、一方
1.0重量部を越えるとCo2O3が少ない場合には容
量温度変化率が著るしく大きくなり、またCo2O3
量が多い場合は誘電率の低下が著るしく2700以下
の値となるためである。 以下、本発明を実施例に基づいてさらに詳細に
説明する。 実施例 この実施例においては、本発明に係る高誘電率
磁器組成物を製作する手順を第1図に示す製造工
程に沿つて説明し、また、これにより得られた上
記磁器組成物の電気的特性を調べた結果について
も併せて説明することにする。 まず、種々の純度のBaCO3とTiO2とを準備し、
これらをBaCO3とTiO2のモル比が1000となるよ
うに秤量し、メノウ石を用いたボールミルにて5
〜20時間湿式混合した(工程)。この混合物の
水分を蒸発させた後、1150℃の温度で2時間保持
して仮焼し(工程)、再びボールミルにて平均
粒子径が3ミクロン以下になるまで粉砕した(工
程)。こうして、第1表に示すA〜Eの純度が
それぞれ異なる5種類のチタン酸バリウムを得
た。なお、同表中A〜Dまではアルカリ金属酸化
物の含有量が本発明に係る範囲内にあり、Eのも
のは範囲外である。
The present invention relates primarily to high dielectric constant ceramic compositions useful as dielectrics for ceramic capacitors. Conventionally, this type of composition has barium titanate (BaTiO 3 ) as the main component, and Bi 2 O 3 −TiO 2 ,
Bismuth compounds such as Bi 2 O 3 -SnO 2 and Bi 2 O 3 -ZrO 2 to which rare earth elements are added as sub-components, or compounds to which MgO, SiO 2 , etc. are added as sub-components have a high dielectric constant. It is widely used because it provides large capacitance. However, compositions containing the above components have a large dielectric loss (tan δ) at high frequencies. Furthermore, when the dielectric constant is increased, the temperature change rate of capacitance increases, and conversely, when the temperature change rate is decreased, the dielectric constant decreases, which is a contradictory tendency. Therefore, when the above composition is applied to a capacitor, However, there were limits to miniaturization and large capacity. In addition, among the above compositions, those containing bismuth compounds as subcomponents may cause Bi 2 O 3 to evaporate during sintering, causing distortion in the porcelain, or changing the composition ratio, resulting in poor electrical properties. There are problems such as variations. Furthermore, when this is applied to a multilayer capacitor, if Pd or Ag-Pd alloy is used as the internal electrode, this Pd
It reacts with Bi 2 O 3 and the properties of the electrode are impaired. For this reason, there is also the problem that expensive Pt that does not react with Bi 2 O 3 must be used. The present invention has been made in view of the above-mentioned problems, and has a high dielectric constant of 2700 or more, yet has a small temperature change rate of capacitance over a wide temperature range, and has a dielectric constant of 2,700 or more. The object of the present invention is to provide a high dielectric constant ceramic composition which has low body loss and can be sintered at a relatively low temperature of 1250°C or less. The present inventors discovered that alkaline earth metal oxides such as SrO and CaO, alkali metal oxides such as Na 2 O and K 2 O, and other alkaline metal oxides such as Al 2 O 3 and SiO 2 that exist as impurities in barium titanate. Among oxides, especially Na 2 O,
It has been found that the content of alkali metal oxides such as K 2 O greatly affects the electrical characteristics. Therefore,
In order to achieve the above object, the present invention limits the content of alkali metal oxide as an impurity present in barium titanate to a low level, and does not contain a conventional bismuth compound as a subcomponent. Therefore, Nb 2 O 5 , Co 2 O 3 , SiO 2 and rare earth oxides are added. That is, in the high dielectric constant ceramic composition of the present invention, 1.0 to 2.5 parts of Nb 2 O 5 is added to 100 parts by weight of barium titanate in which the content of alkali metal oxide as an impurity is 0.04% by weight or less .
Parts by weight, 0.1-0.8 parts by weight of Co2O3 , 0.1-1.2 parts by weight of SiO2
parts by weight and 0.3 to 1.0 parts by weight of a rare earth oxide consisting of one or more of Nd 2 O 3 , La 2 O 3 , and Pr 6 O 11 (hereinafter abbreviated as R 2 O 3 ). Contains. The reason for limiting the above component ranges is as follows. First, regarding alkali metal oxides such as Na 2 O and K 2 O, when they exceed 0.04% by weight as impurities relative to BaTiO 3 , the dielectric constant decreases, and the dielectric constant decreases to 2700.
This is because the values are as follows. In addition, if Nb 2 O 5 is less than 1.0 part by weight based on 100 parts by weight of BaTiO 3 containing the above impurities, sinterability will deteriorate and the temperature change rate of capacitance will also increase, making it impossible to satisfy the X7R characteristics specified by EIA. I won't. On the other hand, if it exceeds 2.5 parts by weight, the dielectric constant decreases to a value of 2700 or less. Co2O3 is
If it is less than 0.1 part by weight based on 100 parts by weight of BaTiO 3 , the effect of reducing the temperature change rate of capacitance is poor;
Moreover, if it exceeds 0.8 part by weight, the dielectric constant decreases and the temperature change rate of capacitance deteriorates. SiO2 is
This is because if it is less than 0.1 part by weight based on 100 parts by weight of BaTiO 3 , the effect of improving sinterability is poor, and if it exceeds 1.2 parts by weight, the dielectric constant decreases. moreover
If R 2 O 3 is less than 0.3% by weight based on 100 parts by weight of BaTiO 3 , it has little effect on improving sinterability;
If the amount exceeds 1.0 parts by weight, the rate of change in capacity with temperature becomes significantly large when Co 2 O 3 is small;
This is because if the amount is large, the dielectric constant will drop significantly to a value of 2700 or less. Hereinafter, the present invention will be explained in more detail based on examples. Example In this example, the procedure for manufacturing a high dielectric constant ceramic composition according to the present invention will be explained along the manufacturing process shown in FIG. The results of investigating the characteristics will also be explained. First, prepare BaCO 3 and TiO 2 of various purity,
These were weighed so that the molar ratio of BaCO 3 and TiO 2 was 1000, and mixed in a ball mill using agate for 50 minutes.
Wet mixed for ~20 hours (step). After the moisture in this mixture was evaporated, it was calcined by holding at a temperature of 1150° C. for 2 hours (step), and then ground again in a ball mill until the average particle size was 3 microns or less (step). In this way, five types of barium titanate having different purities, A to E shown in Table 1, were obtained. In addition, in the same table, the alkali metal oxide content of A to D is within the range according to the present invention, and that of E is outside the range.

【表】 次いで、Nb2O5、Co2O3、SiO2およびR2O3
上記の各種チタン酸バリウムに対して、第2表に
示す組成割合となるように秤量、混合し、前記と
同様メノウ石を用いたボールミルにて5〜20時間
湿式混合し、蒸発乾燥した(工程)。こうして
得られた各々の粉末を3重量%のポリビニルアル
コールをバインダとして混練し、造粒した後、
2000Kg/cm2の圧力で直径15mm、厚さ1mmの円板に
成形した(工程)。次いで、これらの成形円板
を電気炉にて第2表に示す各温度で2時間焼成し
て磁器を得た(工程)。 こうして得られた各磁器組成物の電気的特性を
調べるため、各磁器円板の両面にそれぞれ通常の
手法により銀電極を焼付けてコンデンサとなし、
各コンデンサの誘電率(ε)、誘電体損失
(tanδ)、および静電容量の温度変化率(ΔC/
C25)を測定した。この結果を同じく第2表に示
す。
[Table] Next, Nb 2 O 5 , Co 2 O 3 , SiO 2 and R 2 O 3 were weighed and mixed with the above various barium titanates so as to have the composition ratios shown in Table 2. The mixture was wet-mixed for 5 to 20 hours in a ball mill using agate, and then evaporated and dried (step). After kneading and granulating each of the powders obtained in this way using 3% by weight of polyvinyl alcohol as a binder,
It was molded into a disc with a diameter of 15 mm and a thickness of 1 mm under a pressure of 2000 Kg/cm 2 (process). Next, these molded disks were fired in an electric furnace at each temperature shown in Table 2 for 2 hours to obtain porcelain (step). In order to investigate the electrical properties of each of the porcelain compositions obtained in this way, silver electrodes were baked on both sides of each porcelain disk using a conventional method to form a capacitor.
The dielectric constant (ε), dielectric loss (tanδ), and temperature change rate of capacitance (ΔC/
C25 ) was measured. The results are also shown in Table 2.

【表】 なお、同表中の各電気特性は次に示す条件で測
定した値である。 誘電率(ε)、誘電体損失(tanδ):温度25℃、
周波数1KHzで測定。 静電容量の温度変化率(ΔC/C25):温度25℃
での静電容量を基準としたときの各−55℃、+125
℃での変化率、および−55℃〜+125℃の範囲内
で絶対値としてその変化率が最大である値(|
ΔC/C25|)。 また、第2表中※印を付したものはこの発明の
範囲外のものであり、それ以外は発明範囲内のも
のである。 第2表から明らかなように、本発明に係る磁器
組成物は、誘電率(ε)がいずれも2700以上と高
く、しかもこのように高誘電率にもかかわらず静
電容量の温度変化率(ΔC/C25)も−55℃〜+
125℃の温度範囲内では±15%以内で平坦であり、
EIAに規定するX7R特性も満足している。また、
誘電体損失(tanδ)も1.1%以下で低く、すぐれ
た電気的特性を有し、さらに、1250℃以下の比較
的低温で焼結可能であることが理解される。 以上のように、本発明によれば誘電率の値が
2700以上と高く、それにもかかわらず−55℃〜+
125℃の広い温度範囲にわたつて容量温度変化率
が±15%と平坦で、誘電体損失も小さく、しかも
1250℃以下の比較的低温度で焼結できる。従つ
て、本発明の高誘電率磁器組成物を積層セラミツ
クコンデンサに適用すれば比較的安価なPdまた
はAg−Pd合金を内部電極に用いることができ、
かつ高誘電率をもつ、小型、大容量のものが得ら
れ、かつ安価に製作できるという優れた効果が発
揮される。なお、製作過程において微量の
MnCO3、Fe2O3等の還元防止剤を添加すること
は本発明に係る組成物の特性を何ら損うものでは
ない。
[Table] Each electrical property in the table is a value measured under the following conditions. Dielectric constant (ε), dielectric loss (tanδ): Temperature 25℃,
Measured at a frequency of 1KHz. Temperature change rate of capacitance (ΔC/C 25 ): Temperature 25℃
-55°C and +125°C, respectively, based on the capacitance at
The rate of change in °C and the value at which the rate of change is maximum as an absolute value within the range of -55°C to +125°C (|
ΔC/C 25 |). Furthermore, those marked with * in Table 2 are outside the scope of this invention, and the others are within the scope of the invention. As is clear from Table 2, the ceramic compositions according to the present invention all have a high dielectric constant (ε) of 2700 or more, and in spite of this high dielectric constant, the temperature change rate of capacitance ( ΔC/C 25 ) also -55℃~+
It is flat within ±15% within the temperature range of 125℃,
The X7R characteristics specified by EIA are also satisfied. Also,
It is understood that the dielectric loss (tan δ) is low at 1.1% or less, has excellent electrical properties, and can be sintered at a relatively low temperature of 1250°C or less. As described above, according to the present invention, the dielectric constant value is
High at over 2700, yet -55℃~+
The capacitance temperature change rate is flat at ±15% over a wide temperature range of 125℃, and dielectric loss is small.
Can be sintered at relatively low temperatures below 1250℃. Therefore, if the high dielectric constant ceramic composition of the present invention is applied to a multilayer ceramic capacitor, relatively inexpensive Pd or Ag-Pd alloy can be used for the internal electrodes.
Moreover, the excellent effects of being able to obtain a compact, large-capacity product with a high dielectric constant, and being able to manufacture it at low cost are exhibited. In addition, a trace amount of
Addition of reduction inhibitors such as MnCO 3 and Fe 2 O 3 does not impair the properties of the composition according to the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る高誘電率磁器組成物を製作
する手順を示す製作工程図である。
The drawings are manufacturing process diagrams showing the procedure for manufacturing the high dielectric constant ceramic composition according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物としてのアルカリ金属酸化物の含有量
が0.04重量%以下のチタン酸バリウム100重量部
に対し、Nb2O5を1.0〜2.5重量部、Co2O3を0.1〜
0.8重量部、SiO2を0.1〜1.2重量部およびNd2O3
La2O3、Pr6O11の内、1種または2種以上からな
る希土類酸化物を0.3〜1.0重量部それぞれ含有す
ることを特徴とする高誘電率磁器組成物。
1. 1.0 to 2.5 parts by weight of Nb 2 O 5 and 0.1 to 0.1 parts by weight of Co 2 O 3 to 100 parts by weight of barium titanate with an alkali metal oxide content of 0.04% by weight or less as an impurity.
0.8 parts by weight, 0.1 to 1.2 parts by weight of SiO2 and Nd2O3 ,
A high dielectric constant ceramic composition containing 0.3 to 1.0 parts by weight of a rare earth oxide consisting of one or more of La 2 O 3 and Pr 6 O 11 .
JP58026688A 1983-02-20 1983-02-20 High dielectric constant porcelain composition Granted JPS59154703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026688A JPS59154703A (en) 1983-02-20 1983-02-20 High dielectric constant porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026688A JPS59154703A (en) 1983-02-20 1983-02-20 High dielectric constant porcelain composition

Publications (2)

Publication Number Publication Date
JPS59154703A JPS59154703A (en) 1984-09-03
JPH0118521B2 true JPH0118521B2 (en) 1989-04-06

Family

ID=12200331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026688A Granted JPS59154703A (en) 1983-02-20 1983-02-20 High dielectric constant porcelain composition

Country Status (1)

Country Link
JP (1) JPS59154703A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855266A (en) * 1987-01-13 1989-08-08 E. I. Du Pont De Nemours And Company High K dielectric composition for use in multilayer ceramic capacitors having copper internal electrodes
JPH01278474A (en) * 1988-04-29 1989-11-08 Tdk Corp Porcelain composition of high dielectric constant system
JP2928260B2 (en) * 1989-03-15 1999-08-03 松下電器産業株式会社 Multilayer ceramic capacitors
JP2508373B2 (en) * 1990-07-10 1996-06-19 株式会社村田製作所 Dielectric ceramic composition and method for producing dielectric ceramic
JP2508374B2 (en) * 1990-07-10 1996-06-19 株式会社村田製作所 Dielectric porcelain composition
US5550092A (en) * 1995-02-10 1996-08-27 Tam Ceramics Inc. Ceramic dielectrics compositions
JP4967599B2 (en) * 2006-10-23 2012-07-04 Tdk株式会社 Barium titanate powder, dielectric ceramic composition and electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959299A (en) * 1972-10-12 1974-06-08
JPS51143899A (en) * 1975-06-06 1976-12-10 Tdk Corp Dielectric ceramic composition
JPS5788612A (en) * 1980-11-25 1982-06-02 Tdk Electronics Co Ltd Dielectric porcelain composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959299A (en) * 1972-10-12 1974-06-08
JPS51143899A (en) * 1975-06-06 1976-12-10 Tdk Corp Dielectric ceramic composition
JPS5788612A (en) * 1980-11-25 1982-06-02 Tdk Electronics Co Ltd Dielectric porcelain composition

Also Published As

Publication number Publication date
JPS59154703A (en) 1984-09-03

Similar Documents

Publication Publication Date Title
KR100259321B1 (en) Dielectric ceramic composition and monolitic ceramic capacitor using the same
US6960547B2 (en) Dielectric ceramic composition and capacitor using the same
JP3383623B2 (en) Capacitor and dielectric ceramic powders based on binary sintering flux of barium borate and zinc silicate
US5571767A (en) Low fire X7R dielectric compositions and capacitors made therefrom
JPH0118521B2 (en)
JP2978580B2 (en) High dielectric constant dielectric porcelain composition
JPH05109319A (en) High dielectric constant dielectric porcilain composition
JPH0118522B2 (en)
JPS6348826B2 (en)
JP3064518B2 (en) Dielectric porcelain composition
JPH0477698B2 (en)
JPH0332163B2 (en)
JP3106371B2 (en) Dielectric porcelain composition
JP3303453B2 (en) Dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JP3064519B2 (en) Dielectric porcelain composition
JPH02279561A (en) Dielectric porcelain composition
JP3185333B2 (en) Non-reducing dielectric ceramic composition
JPS6223405B2 (en)
JPH0249307A (en) Dielectric porcelain compound
JPH04334807A (en) Dielectric porcelain composite
JP2849837B2 (en) High dielectric constant porcelain composition
KR920006731B1 (en) Ceramic material
JP3185331B2 (en) Non-reducing dielectric ceramic composition
JPH0536308A (en) High permittivity dielectric ceramic composition