JPH01184975A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01184975A
JPH01184975A JP63008267A JP826788A JPH01184975A JP H01184975 A JPH01184975 A JP H01184975A JP 63008267 A JP63008267 A JP 63008267A JP 826788 A JP826788 A JP 826788A JP H01184975 A JPH01184975 A JP H01184975A
Authority
JP
Japan
Prior art keywords
layer
active
active layer
semiconductor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63008267A
Other languages
Japanese (ja)
Inventor
Motoyasu Morinaga
森永 素安
Hideto Furuyama
英人 古山
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63008267A priority Critical patent/JPH01184975A/en
Priority to US07/198,859 priority patent/US4858241A/en
Priority to US07/383,100 priority patent/US4974233A/en
Publication of JPH01184975A publication Critical patent/JPH01184975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:Not only to improve the controllabvility of an active layer and a buried layer in width but also restrain a large stress from generating by a method wherein the side of the active layer is removed through a selective etching to make the central part of the active layer, which is protected against the etching by a pair of stripe-like regions, an active region which is contributory to the light emission. CONSTITUTION:An n-type InP buffer layer 11 (3mum or so in thickness) is laminated on an n-type InP substrate 10. Next, a GaInAs active layer 12 is laminated thereon and the active layer 12 is selectively etched to form a pair of stripes 20 which make the active layer 12 separate into a central active layer 12a and side active layers 12b. In this process, the shape of the stripes 20 is so formed as to make a buried region gradually larger in width near and toward the end face. And, a P-type InP clad layer 13 and a P<+>-type GaInAsP cap layer are laminated to form a mesa 19. In this process, buried layers 13a, which sandwich the active region 12a formed in one piece with the P-type InP clad layer 13 in between them, are formed at the pair of stripes 20. Next, the side active layers 12b are removed through an etching.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、半導体レーザや発光ダイオード等の半導体
装置に係わり、特に高速変調を行なう半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to semiconductor devices such as semiconductor lasers and light emitting diodes, and particularly relates to semiconductor devices that perform high-speed modulation.

(従来の技術) 光通信や元情報処理用の光源として半導体レーザや発光
ダイオード等の半導体装置が用いられている。高速変調
を行なう半導体装置においては、変調特性はR,C時定
数によって制限されるので、特に接合容量を小さくする
ことが求められている。
(Prior Art) Semiconductor devices such as semiconductor lasers and light emitting diodes are used as light sources for optical communication and original information processing. In a semiconductor device that performs high-speed modulation, the modulation characteristics are limited by the R and C time constants, so there is a particular need to reduce the junction capacitance.

従来の技術の中で比較的この要求を満足している例とし
テマス、トランスポート(Mass Transpor
t=以下MTと記す)法を利用したメサ、レーザがあり
、Ga1nAsP/InP 系の半導体レーザに応用さ
れている(例えば、Y、Hirayama et al
、、 LOWTemperature and rap
id mass transport techniq
uefor Ga1nAsP/ InF DFB 1a
sers、Ins t、Phys、Conf。
An example of conventional technology that relatively satisfies this requirement is Mass Transport.
There are mesa lasers using the method (hereinafter referred to as MT), which is applied to Ga1nAsP/InP semiconductor lasers (for example, Y, Hirayama et al.
,, LOWTemperature and rap
id mass transport technology
uefor Ga1nAsP/ InF DFB 1a
sers, Ins t, Phys, Conf.

Ser、N179:Chapt、3Paper pre
sented at Int、Symp+GaAs a
nd Re1ated Compounds Karu
izaw a、Japan。
Ser, N179:Chapt, 3Paper pre
sent at Int, Symp+GaAs a
nd Re1ated Compounds Karu
Japan.

1985 p、175−186 )。このMT埋込みレ
ーザは、第3図に示すように、 InP基板10上にn
−InPバッファ層11とGaInAsP活性層12と
p−InPクラッド層13とp”−GaInAsP キ
ーy 、7プ層14を結晶成長し、次にメサ19をエツ
チングで形成した後、活性層12をサイドエツチングに
より幅1μmの活性領域12aを残して除去し、次にM
T法でMT埋込みR3)を埋め込み、最後にSing膜
18と電極15と裏面電極17と金16を形成して完成
する。
1985 p, 175-186). As shown in FIG. 3, this MT buried laser has n
-InP buffer layer 11, GaInAsP active layer 12, p-InP cladding layer 13, p"-GaInAsP key, 7 layer 14 are crystal grown, then mesa 19 is formed by etching, and then active layer 12 is side-layered. The active region 12a with a width of 1 μm is removed by etching, and then the M
The MT embedding R3) is buried using the T method, and finally the Sing film 18, electrode 15, back electrode 17, and gold 16 are formed to complete the process.

このMT埋込みレーザでは、埋め込み層の接合は比較的
面積の小さなメサ部19のみに限定される。さらに、第
4図に示すようKMT埋込み層3)の幅を小さくするこ
とでよシー層埋め込み層の接合面積を小さくすることも
可能である。したがって、接合容量が小さく、高速変調
特性が優れているという特徴を有する。
In this MT buried laser, the junction of the buried layers is limited to only the mesa portion 19, which has a relatively small area. Furthermore, as shown in FIG. 4, by reducing the width of the KMT buried layer 3), it is possible to reduce the junction area of the Yoshiba layer buried layer. Therefore, it has the characteristics of small junction capacitance and excellent high-speed modulation characteristics.

しかし、このMT埋込みレーザにおいては、活性層12
はメサ19の幅15μm程度からエツチングを初め最終
的に幅1μmの活性領域12aを残すという極めて難し
い制御が必要であるという問題点を有している。また、
特に高速変調特性を曳くするためにMT埋込み層3)0
幅を数μm以下としたときに、MT埋込み層°3)の幅
の制御性が悪いので高速変調特性がばらついてしまう、
また幅15μm程度のメサ19を幅数μm以下のMT埋
込み層3)と活性領域12aで支える不安定な構造とな
シ、歪が生じて活性領域に大きな応力が発生するという
問題点を有している。
However, in this MT buried laser, the active layer 12
This method has the problem that extremely difficult control is required to start etching from the width of the mesa 19 of about 15 μm and ultimately leave the active region 12a with a width of 1 μm. Also,
In particular, in order to obtain high-speed modulation characteristics, the MT buried layer 3)0
When the width is set to several μm or less, the high-speed modulation characteristics vary due to poor controllability of the width of the MT buried layer °3).
In addition, the mesa 19 with a width of about 15 μm is supported by the MT buried layer 3) with a width of several μm or less and the active region 12a, resulting in an unstable structure, which causes distortion and generates large stress in the active region. ing.

(発明が解決しようとする課題) この発明は上記事情を考慮してなされたものであり、活
性層の幅と埋込み層の幅の制御性を向上し、かつ大きな
応力の発生を抑え、さらに光の出射形状をも良好となる
、高速変調特性の秀れた高性能の半導体装置及びその製
造方法を提供することを目的とする。
(Problems to be Solved by the Invention) This invention was made in consideration of the above circumstances, and improves the controllability of the width of the active layer and the width of the buried layer, suppresses the generation of large stress, and further improves the controllability of the width of the active layer and the width of the buried layer. It is an object of the present invention to provide a high-performance semiconductor device with excellent high-speed modulation characteristics and a method for manufacturing the same, which also has a good emission shape.

この発明の骨子は、活性′層に対してエツチングの選択
性のあるl対のストライプ状の領域によって活性層を中
央部と側部とに分離する。この1対のストライプ状の領
域は、端面近傍でその幅を大きく形成する。その後、側
部の活性層を選択エツチングで除去し、1対のストライ
プ状の領域によってエツチングを阻止された中央部の活
性層を発光に寄与する活性領域とする。
The gist of the invention is to separate the active layer into a central portion and side portions by a pair of striped regions that are etched selectively to the active layer. This pair of striped regions has a large width near the end face. Thereafter, the side active layer is removed by selective etching, and the central active layer whose etching is prevented by a pair of striped regions becomes an active region contributing to light emission.

(作用) この発明によれば、側9部の活性層が除去されるためK
 I) n接合の面積は活性領域と1対の埋込み領域に
限定され、かつ埋込み領域の幅はPEP及びエツチング
技術の許す限シ狭くすることができるので、寄生容量を
大幅に低減することが可能である。また、活性領域とな
る中央部の活性層の幅及び埋込み領域の幅はPEPによ
って規定し、かつ側部の活性層は選択エツチングによっ
て除去し、このエツチングに際して中央部の活性層のエ
ツチングは埋込み領域によって阻止されるので、再現性
が極めて良好である。
(Function) According to this invention, since the active layer in the side 9 portion is removed, K
I) The area of the n-junction is limited to the active region and a pair of buried regions, and the width of the buried region can be made as narrow as PEP and etching techniques allow, making it possible to significantly reduce parasitic capacitance. It is. Furthermore, the width of the active layer at the center and the width of the buried region, which will become the active region, are defined by PEP, and the active layer at the sides is removed by selective etching. The reproducibility is extremely good.

さらに、歪による応力は端面近傍に集中するので、端面
近傍の埋込み領域の幅を大きくすることで応力の集中を
緩和し、信頼性が向上した。また、この埋込み領域の幅
が1μmよりも小さなところでは、横方向の光のモード
の閉じ込めが強くなシすぎ、遠視野像が大きくなってし
まうが、端面近傍で埋込み領域の幅を端面に向って除々
に大きくすることで遠視野像を小さくすることができ、
例えば光ファイバ等への結合効率を高めることが可能で
ある。
Furthermore, since stress due to strain is concentrated near the end face, increasing the width of the embedded region near the end face alleviates stress concentration and improves reliability. In addition, when the width of the buried region is smaller than 1 μm, the confinement of the lateral light mode is too strong and the far-field image becomes large. By gradually increasing the distance, the far-field image can be made smaller.
For example, it is possible to increase coupling efficiency to optical fibers and the like.

(実施例) この発明の実施例を第1図および第2図を参照して説明
する。
(Example) An example of the present invention will be described with reference to FIGS. 1 and 2.

第1図はこの発明の半導体装置の各部断面を示すもので
ある。第1図(a)は活性領域12aを含む基板主面に
平行な面z −z’ (第1図(b)に示す)に沿った
断面図、第1図(b)および(C)および(d)は第1
および第2および第3の実施例の活性領域12aに垂直
な而X −XI (第1図(a)に示す)に沿った端面
近傍の断面図である。
FIG. 1 shows a cross section of each part of a semiconductor device of the present invention. FIG. 1(a) is a sectional view along the plane z-z' (shown in FIG. 1(b)) parallel to the main surface of the substrate including the active region 12a, FIGS. 1(b) and 1(C), and (d) is the first
FIG. 2 is a cross-sectional view of the vicinity of the end surface along the line X-XI (shown in FIG. 1(a)) perpendicular to the active region 12a of the second and third embodiments.

第2図はこの発明の半導体装置の製造方法を示す工程断
面図である。まず第2図(a)に示すように、n型In
P基板10上に、n fil InPバッフ7−層11
(厚さ約3μm)を積層する。次に第2図(b)K示す
ように、GaInAsP活性層12(厚さ0.12μm
)を積層し、1対のストライプ状20に活性層をエツチ
ング除去して中央部活性812aと側部活性層12bを
分離形成する。このときストライプ状20の形状を、端
面近傍で第1図(b)ないしくC)ないしくd)の13
3のように形成する。次に第2図(C) K示すように
1p型InPクラッド層13(厚さ約1.5μm)とp
+型GaInAsP # ヤyプ層14(厚さ約1μm
)を積層し、メサ19を形成する。
FIG. 2 is a process sectional view showing the method for manufacturing a semiconductor device of the present invention. First, as shown in FIG. 2(a), n-type In
On the P substrate 10, the n fil InP buffer 7-layer 11
(approximately 3 μm thick). Next, as shown in FIG. 2(b)K, a GaInAsP active layer 12 (thickness 0.12 μm
) are stacked, and the active layer is etched away in a pair of stripes 20 to form a central active layer 812a and a side active layer 12b separately. At this time, the striped shape 20 is shaped like 13 in FIG. 1(b) or C) or d) near the end face.
Form as shown in step 3. Next, as shown in FIG.
+ type GaInAsP #Yap layer 14 (thickness approximately 1 μm
) to form a mesa 19.

このとき、前記した1対のストライプ状20の部分には
、p型InPクラッド層13と一体形成された活性領域
12aを挟む埋込み領域13aを形成する。次に第2図
(d)に示すように、測部活性層12bを硫酸+過酸化
水素水+水の混合溶液を用いてエツチング除去する。こ
の混合溶液はGa I nAsPに対しては作用するけ
れどもInPに対しては作用しない。このため、中央部
活性層12aはこれを挟む埋込み領域13aによってエ
ツチングが阻止される。次に第2図(e)に示すように
1表面全体にS i O,膜18(厚さ約0.5μm)
を積層し、電流を流す領域osiot膜18を除去しA
u/Z n/A u膜(厚さ約0.3μm)を積層して
p側オーミックコンタクトを形成し、表面全体にAu/
Gr膜16(厚さ約0.5μm)を積層する。裏面には
Au/Au−Ge膜17(厚さ約0.5μm)を積層し
てnfIIl電極を形成する。
At this time, a buried region 13a is formed in the pair of stripes 20 described above, sandwiching the active region 12a integrally formed with the p-type InP cladding layer 13. Next, as shown in FIG. 2(d), the active layer 12b of the active part is etched away using a mixed solution of sulfuric acid, hydrogen peroxide, and water. This mixed solution acts on Ga I nAsP but not on InP. Therefore, etching of the central active layer 12a is prevented by the buried regions 13a sandwiching it. Next, as shown in FIG. 2(e), a SiO film 18 (thickness approximately 0.5 μm) is applied to the entire surface.
A
A p-side ohmic contact is formed by laminating u/Z n/A u films (thickness approximately 0.3 μm), and Au/
A Gr film 16 (about 0.5 μm thick) is laminated. On the back surface, an Au/Au-Ge film 17 (about 0.5 μm thick) is laminated to form an nfIIl electrode.

〔発明の効果〕〔Effect of the invention〕

この発明の半導体装置は、高速応答が可能であり、応力
が端面近傍に集中することがなく信頼性が高く、出射光
の遠視野像も小さく結合効率が高い。また、この発明の
製造方法によれば、この半導体装置を再現性および制御
性良く、したがって高歩留りかつ低コストに得ることが
できる。
The semiconductor device of the present invention is capable of high-speed response, has high reliability because stress does not concentrate near the end face, and has a small far-field pattern of emitted light and high coupling efficiency. Further, according to the manufacturing method of the present invention, this semiconductor device can be obtained with good reproducibility and controllability, and therefore with high yield and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体装置の断面図、第2図はこの
発明の半導体装置の製造方法を示す工程断面図、第3図
は従来例を示す工程断面図、第4図は他の従来例を示す
断面図である。 10・・・InP基板 11・・・n−InPバッファー層 12 ・−・GaInAsP活性層 13・・・p−InPクラッド層 14 ・−p+−GaInAsP キャy 7’ 層1
5 =−Au/Zn/Au電極 16−−・Au/Cr膜 17−・−Au/Au−0e電極 18・・・SiO,i 代理人 弁理士  則 近 憲 佑 同        松  山  光  之第2図
FIG. 1 is a sectional view of a semiconductor device of the present invention, FIG. 2 is a process sectional view showing a method of manufacturing a semiconductor device of this invention, FIG. 3 is a process sectional view of a conventional example, and FIG. 4 is a process sectional view of another conventional example. It is a sectional view showing an example. 10 InP substrate 11 n-InP buffer layer 12 GaInAsP active layer 13 p-InP cladding layer 14 -p+-GaInAsP layer 1
5 = -Au/Zn/Au electrode 16--・Au/Cr film 17--・-Au/Au-0e electrode 18...SiO,i Agent Patent attorney Yudo Noriyoshi Chika Mitsuyuki Matsuyama Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)第1導電量の第1の半導体層を有する基板と、こ
の第1の半導体層上方に設けられた第2導電型の第2の
半導体層を有するメサ部と、前記第1の半導体層と前記
第2の半導体層の間に形成され発光に寄与する活性領域
と、前記活性領域の幅方向両側に前記活性領域に接して
前記活性領域とは異なる半導体で形成された1対の前記
活性領域を挟む埋込み領域と、前記第1の半導体層と前
記第2の半導体層の間に位置し前記埋込み領域の両外側
に形成された電気的絶縁領域とを具備する半導体装置に
おいて、活性領域の軸方向端面近傍で前記埋込み領域の
幅が大きく形成されてなることを特徴とする半導体装置
(1) A substrate having a first semiconductor layer with a first conductivity, a mesa portion having a second semiconductor layer of a second conductivity type provided above the first semiconductor layer, and the first semiconductor layer. an active region that is formed between the second semiconductor layer and the second semiconductor layer and contributes to light emission, and a pair of active regions that are in contact with the active region on both sides in the width direction of the active region and are formed of a different semiconductor than the active region. A semiconductor device comprising a buried region sandwiching an active region, and electrically insulating regions located between the first semiconductor layer and the second semiconductor layer and formed on both outer sides of the buried region. A semiconductor device characterized in that the buried region has a large width near an axial end face of the semiconductor device.
(2)端面近傍で前記埋込み領域の幅が、端面に向って
除々に大きく形成されてなることを特徴とする請求項1
記載の半導体装置。
(2) Claim 1 characterized in that the width of the buried region near the end face is gradually increased toward the end face.
The semiconductor device described.
(3)前記埋込み領域は前記第1の半導体層もしくは第
2の半導体層と一体的に形成された1対の凸部からなる
ことを特徴とする請求項1記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the buried region comprises a pair of protrusions integrally formed with the first semiconductor layer or the second semiconductor layer.
(4)第1導電型の第1の半導体層を有する基板上に中
央部活性層と側部活性層とに離隔された活性層を形成す
るとともに、少なくとも前記中央部活性層及び前記側部
活性層の上面に第2導電型の第2の半導体層を有するメ
サ部を形成する工程と、前記側部活性層をエッチングに
より除去し、前記中央部活性層と前記側部活性層の間の
半導体領域によってエッチングが阻止された前記中央部
活性層を発光に寄与する活性領域とする工程とを具備す
る半導体装置の製造方法において、活性領域の軸方向端
面近傍で前記中央部活性層と前記側部活性層の間の半導
体領域の幅を大きく形成することを特徴とする半導体装
置の製造方法。
(4) Forming an active layer separated into a central active layer and a side active layer on a substrate having a first semiconductor layer of a first conductivity type, and at least the central active layer and the side active layer. forming a mesa portion having a second semiconductor layer of a second conductivity type on the upper surface of the layer; and removing the side active layer by etching to remove the semiconductor between the central active layer and the side active layer. In the method of manufacturing a semiconductor device, the method includes the step of making the central active layer whose etching is prevented by a region into an active region that contributes to light emission, wherein the central active layer and the side regions are formed in the vicinity of an axial end surface of the active region. 1. A method of manufacturing a semiconductor device, comprising forming a semiconductor region with a large width between active layers.
(5)端面近傍で前記中央部活性層と側部活性層の間の
半導体領域の幅を、端面に向って除々に大きく形成する
ことを特徴とする請求項4記載の半導体装置の製造方法
(5) The method of manufacturing a semiconductor device according to claim 4, wherein the width of the semiconductor region between the central active layer and the side active layer near the end face is gradually increased toward the end face.
(6)前記活性層の形成は、前記第1の半導体層上に前
記活性層を積層し、エッチングによって、互いに所定間
隔を有して伸びた1対のストライプ状に前記活性層を除
去して前記中央部活性層及び前記側部活性層を形成する
ことを特徴とする請求項4記載の半導体装置の製造方法
(6) The active layer is formed by stacking the active layer on the first semiconductor layer, and removing the active layer in a pair of stripes extending at a predetermined distance from each other by etching. 5. The method of manufacturing a semiconductor device according to claim 4, further comprising forming the central active layer and the side active layer.
JP63008267A 1987-05-26 1988-01-20 Semiconductor device and manufacture thereof Pending JPH01184975A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63008267A JPH01184975A (en) 1988-01-20 1988-01-20 Semiconductor device and manufacture thereof
US07/198,859 US4858241A (en) 1987-05-26 1988-05-26 Semiconductor laser device
US07/383,100 US4974233A (en) 1987-05-26 1989-07-21 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008267A JPH01184975A (en) 1988-01-20 1988-01-20 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01184975A true JPH01184975A (en) 1989-07-24

Family

ID=11688385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008267A Pending JPH01184975A (en) 1987-05-26 1988-01-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01184975A (en)

Similar Documents

Publication Publication Date Title
JP3230785B2 (en) Semiconductor laser and method of manufacturing the same
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
US4958202A (en) Semiconductor light-emitting device and method of manufacturing the same
JPH11112081A (en) Semiconductor laser and manufacture thereof
JPH10290043A (en) Semiconductor laser
US5570385A (en) Semiconductor laser and method for manufacturing the same
US5854090A (en) Method of manufacturing wafer bonded semiconductor laser device
JP4056717B2 (en) Semiconductor laser and manufacturing method thereof
JP3344096B2 (en) Semiconductor laser and manufacturing method thereof
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01184975A (en) Semiconductor device and manufacture thereof
JP4164248B2 (en) Semiconductor element, manufacturing method thereof, and semiconductor optical device
JP2542570B2 (en) Method for manufacturing optical integrated device
JP3241360B2 (en) Optical semiconductor device
JP2674592B2 (en) Semiconductor laser
JP2805094B2 (en) Optical semiconductor device
JP2875440B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPH0770779B2 (en) Semiconductor laser manufacturing method
JP3121684B2 (en) Semiconductor laser device
JPH09129967A (en) Semiconductor laser
JP2814124B2 (en) Embedded semiconductor light emitting device
JPH08222809A (en) Semiconductor light-emitting device
JPH11233884A (en) Manufacture of semiconductor laser element