JPH01184388A - Method of measuring burning material in kiln - Google Patents

Method of measuring burning material in kiln

Info

Publication number
JPH01184388A
JPH01184388A JP701788A JP701788A JPH01184388A JP H01184388 A JPH01184388 A JP H01184388A JP 701788 A JP701788 A JP 701788A JP 701788 A JP701788 A JP 701788A JP H01184388 A JPH01184388 A JP H01184388A
Authority
JP
Japan
Prior art keywords
temperature
burning
temperature measuring
firing
ceramic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP701788A
Other languages
Japanese (ja)
Inventor
Kiyosuke Niko
精祐 児子
Yoshitoshi Ikeda
池田 義俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP701788A priority Critical patent/JPH01184388A/en
Publication of JPH01184388A publication Critical patent/JPH01184388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To make it possible to measure with a good reproducibility a highest tempera ture of thermal history of a material to be burnt by charging refractory blocks accom modating temperature measuring ceramic rings and having a heat transfer characteris tic which is substantially the same as that of the burning material, and after burning the burning raw material, and measuring the variation in the dimension of the tempera ture measuring ceramic rings. CONSTITUTION:Five accommodating space 13 are provided on the upper surface of refractory blocks 11. Four temperature measuring ceramic rings 12 are accommodated in four stages in one accommodating space 13 by a partition lid 14 made of a refrac tory material having a heat transfer factor which is substantially the same as that of the burning material 2. Refractory blocks 11 accommodating temperature measuring ceramic pings 12 and having a heat transfer factor substantially the same as that of the burning material for charged into a kiln 1 together with the burning material and are passed through a burning step, whereby the temperature measuring ceramic ring receives a thermal history which is the same as that of the burning material. Accordingly, the highest temperature of thermal history of the temperature measuring ceramic ring obtained from the change in the dimension of the temperature measuring ceramic ring 12 is equal to the highest history temperature received by the burning material.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、焼成炉で粉体を焼成する際に、粉体の受けた
履歴最高温度を測定する方法に関し、特に炉長が長いト
ンネル型焼成炉に好適な測温方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for measuring the historical maximum temperature experienced by powder when it is fired in a firing furnace, particularly for tunnel type furnaces with a long furnace length. The present invention relates to a temperature measurement method suitable for a firing furnace.

〈従来の技術〉 焼成炉で粉体を焼成する場合、焼成ケース内の粉体の温
度履歴を均一にすることが重要であり、このために、粉
体の温度を測定する必要がある。
<Prior Art> When firing powder in a firing furnace, it is important to make the temperature history of the powder in the firing case uniform, and for this purpose it is necessary to measure the temperature of the powder.

従来の粉体の温度の測定方法を第7図、第8図によって
説明する。第7図において、1はトンネル型焼成炉であ
り、粉体2を収納した台板4と枠5からなる焼成ケース
3はローラー6上を矢印方向に進行する。そして、粉体
2の測温のために、適宜選ばれた焼成ケース3において
、第8図のように、粉体2内に複数個の熱電対7をセッ
トする。
A conventional method for measuring the temperature of powder will be explained with reference to FIGS. 7 and 8. In FIG. 7, 1 is a tunnel type firing furnace, and a firing case 3 consisting of a base plate 4 and a frame 5 containing powder 2 moves on rollers 6 in the direction of the arrow. In order to measure the temperature of the powder 2, a plurality of thermocouples 7 are set inside the powder 2 in an appropriately selected firing case 3, as shown in FIG.

熱電対7は、粉体の温度分布を知る必要上、通常5個程
度セットする。8は熱電対の保護管、9は熱電対7の保
護チューブ入り補償導線、10は炉外の温度計である。
Generally, about five thermocouples 7 are set because it is necessary to know the temperature distribution of the powder. 8 is a protective tube for the thermocouple, 9 is a compensating lead wire in the protective tube for the thermocouple 7, and 10 is a thermometer outside the furnace.

〈発明が解決しようとする課題〉 しかしながら、上記の従来の測温方法は、第7図のよう
に熱電対をセットした焼成ケース3が炉内を移動するに
従って、作業員が手動で補償導線9を炉内に送り込まな
ければならず極めて非能率な作業であった。
<Problems to be Solved by the Invention> However, in the conventional temperature measuring method described above, as the firing case 3 in which the thermocouple is set moves inside the furnace, as shown in FIG. It was an extremely inefficient operation as it had to be fed into the furnace.

また、炉内移動中に熱電対7の保護管8がずれて、粉体
ではなく雰囲気ガスの温度を測定する場合があった。ま
た、補償導管9が高温雰囲気に曝されて測定電流がリー
クしたり、補償導管9が絡まって断線する場合があった
。これらの問題は、焼成炉の炉長が10m以上となると
特に重大な問題となった。
In addition, there were cases in which the protective tube 8 of the thermocouple 7 was displaced during movement within the furnace, and the temperature of the atmospheric gas instead of the powder was measured. In addition, the compensating conduit 9 may be exposed to a high temperature atmosphere and the measurement current may leak, or the compensating conduit 9 may become tangled and break. These problems became particularly serious when the length of the firing furnace was 10 m or more.

更に熱電対の費用も高く問題もあった。Furthermore, the cost of thermocouples was high, which caused problems.

本発明は、上記の問題を解消した測温方法を提供するこ
とを目的とする。
An object of the present invention is to provide a temperature measuring method that solves the above problems.

く課題を解決するための手段〉 本発明は、測温用セラミックリングを収納した伝熱特性
が焼成原料と略等しい耐火物ブロックを焼成原料と共に
焼成炉に装入し、焼成原料の焼成後に上記測温用ゼラミ
ックリングの寸法の変化を測定することによって上記測
温用セラミックリングの履歴最高温度を求め、この温度
を焼成原料の履歴最高温度とするものである。
Means for Solving the Problems> The present invention involves charging a refractory block containing a temperature-measuring ceramic ring and having heat transfer characteristics substantially equal to that of the firing raw material into a firing furnace together with the firing raw material, and after firing the firing raw material. By measuring the change in dimensions of the ceramic ring for temperature measurement, the highest temperature in history of the ceramic ring for temperature measurement is determined, and this temperature is taken as the highest temperature in history for the firing raw material.

く作   用〉 測温用セラミックリングを収容した熱伝達率が焼成原料
と略等しい耐火物ブロックを焼成原料と共に焼成炉に装
入して、焼成工程を経過させることにより、測温用セラ
ミックリングは焼成原料と同じ熱履歴を受ける。従って
、この測温用セラミックリングの寸法の変化から求めら
れる測温用セラミックリングの履歴最高温度は、焼成原
料の受けた履歴最高温度に等しい。
Function> By charging the refractory block containing the temperature-measuring ceramic ring and having a heat transfer coefficient approximately equal to that of the firing raw material into the firing furnace together with the firing raw material, and allowing the firing process to proceed, the temperature-measuring ceramic ring is It undergoes the same thermal history as the firing raw material. Therefore, the maximum historical temperature of the temperature-measuring ceramic ring determined from the change in the dimensions of the temperature-measuring ceramic ring is equal to the historical maximum temperature experienced by the firing raw material.

〈実施例〉 第1図は、本発明の実施に使用する装置の第1の実施例
であり、11は焼成原料2に略等しい熱伝達率を有する
耐火物ブロックであり、耐火物ブロック11内には、測
温位1に測温用セラミックリング12を収容する収容空
間13が設けである。
<Example> FIG. 1 shows a first example of the apparatus used for carrying out the present invention, in which 11 is a refractory block having approximately the same heat transfer coefficient as the firing raw material 2, and the inside of the refractory block 11 is The temperature measuring position 1 is provided with an accommodation space 13 for accommodating a temperature measuring ceramic ring 12.

第1図の実施例では、収容空間13は耐火物ブロック1
1の上面に5個設けられていて、焼成原料2に略等しい
熱伝達率を有する耐火物製の仕切蓋14によって、1個
所の収容空間13につき4個の測温用セラミックリング
12が4段に収容されている。
In the embodiment shown in FIG.
1.Four ceramic rings 12 for temperature measurement are arranged in four stages per housing space 13 by partition lids 14 made of a refractory material and having a heat transfer coefficient substantially equal to that of the firing raw material 2. is housed in.

なお、測温用セラミックリングは、一般に市販されてい
るものを使用することができる。
In addition, the ceramic ring for temperature measurement can use the thing generally marketed.

本実施例を炉長10mの焼成炉に適用したところ、熱電
対費用及び熱電対を炉内へ送り込む作業が無くなったた
め、上記の従来方法に比べて費用が数百骨の−に削減で
きた。また測温精度が高く、再現性がよいめで通常の工
程管理に使用できた。
When this example was applied to a firing furnace with a furnace length of 10 m, the cost of thermocouples and the work of feeding the thermocouple into the furnace were eliminated, so the cost could be reduced to several hundred pounds compared to the conventional method described above. In addition, the temperature measurement accuracy was high and the reproducibility was good, so it could be used for normal process control.

第3図、第4図は、本発明の実施に使用する耐火物ブロ
ックの第2の実施例を示したものであり、測温用セラミ
ックリング12を収容する穴16を複数個所設けた厚さ
が薄い耐火物ブロック15を重ねて使用するものである
。17は耐火物ブロックの上蓋である。
FIGS. 3 and 4 show a second embodiment of the refractory block used in the implementation of the present invention. In this case, thin refractory blocks 15 are stacked one on top of the other. 17 is the upper cover of the refractory block.

第4図は、耐火物ブロック15の例を示したもので、第
4図(a)は穴16が5個所設けたもの、第4図(b)
は穴16が6個所設けたものである。具体的な寸法は、
外径20鴫、内径10mm、厚み8閣の測温用セラミッ
クリングを使用する場合は、耐火物ブロック15の厚み
は20閣、穴16の寸法は内径23maφ、深さ10閣
程度でよい。
FIG. 4 shows an example of the refractory block 15. FIG. 4(a) shows one with five holes 16, and FIG. 4(b) shows an example of the refractory block 15.
In this example, six holes 16 are provided. The specific dimensions are
When using a ceramic ring for temperature measurement with an outer diameter of 20 mm, an inner diameter of 10 mm, and a thickness of 8 mm, the thickness of the refractory block 15 may be 20 mm, and the dimensions of the hole 16 may be approximately 23 mm in inner diameter and 10 mm in depth.

この方式の特徴は、測定個所に応じた耐火物ブロック1
5を適宜選択することができる点にある。
The feature of this method is that the refractory blocks 1
5 can be selected as appropriate.

また、雰囲気ガスの侵入を防止でき、測定誤差が少ない
利点もある。
It also has the advantage of being able to prevent the intrusion of atmospheric gases and reducing measurement errors.

第5図、第6図は、本発明の実施に使用する耐火物ブロ
ックの第3の実施例を示したものであり、第2の実施例
よりも更に測温位置の選択の自由度が高いものである。
Figures 5 and 6 show a third embodiment of the refractory block used to carry out the present invention, and the degree of freedom in selecting temperature measurement positions is greater than in the second embodiment. It is something.

第5図のように、測温用セラミックリング12を収容す
る穴16を1個所設けた単位耐火物ブロック18と、穴
を設けない単位耐火物ブロック19を用意し、これらを
第6図(a)のように平面的に組合せて、測温位置を任
意に設定し、更に、第6図俤)のように穴の無い耐火物
ブロックと重ねて使用するものである。
As shown in FIG. 5, a unit refractory block 18 with one hole 16 for accommodating the temperature measuring ceramic ring 12 and a unit refractory block 19 without a hole are prepared, and these are assembled as shown in FIG. 6(a). ), the temperature measurement position can be arbitrarily set, and the refractory blocks without holes are stacked on top of each other, as shown in Fig. 6(忤).

〈発明の効果〉 本発明の方法は、焼成炉において被焼成物の履歴最高温
度を低コストで再現性よく測定でき、焼成作業の管理に
有効な情報が得られる。また、複数個所の測温に便利で
あり、温度分布の測定に特に効果を奏する。
<Effects of the Invention> According to the method of the present invention, the highest historical temperature of a fired object in a firing furnace can be measured with good reproducibility at low cost, and information useful for managing firing operations can be obtained. It is also convenient for measuring temperatures at multiple locations, and is particularly effective for measuring temperature distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を適用する焼成炉の1例の断面図
、第2図は本発明の方法に使用する耐火物ブロックの第
1の1実施例を示し、第2図(a)は平面図、第2図(
b)は第2図(a)のI−I線断面図である。第3図は
本発明の方法に使用する耐火物ブロックの第2の実施例
を示す斜視図である。第4図は第3図の耐火物ブロック
の具体例を示す斜視図である。第5図、第6図は本発明
の方法に使用する耐火物ブロックの第3の実施例を示し
、第5図は単位耐火物ブロックの斜視図、第6図は単位
耐火物ブロックを平面に組合せた斜視図である。 第7図は、従来の焼成炉における粉体の測温方法を説明
するための断面図、第8図は第7図の1部拡大図である
。 1・・・焼成炉、   2・・・被焼成物、3・・・焼
成ケース、 4・・・台板、5・・・枠、      
6・・・ローラー、11、15.18.19・・・耐火
物ブロック、12・・・測温用セラミックリング、 13・・・収容空間、  14・・・仕切蓋、16・・
・穴、     17・・・上蓋。 特許出願人    川崎製鉄株式会社 第1図 第2図(b) 第3図 第4図(a) 第4図(b) 第5図(a) IR 第5図(b) 第7図
Fig. 1 is a sectional view of an example of a firing furnace to which the method of the present invention is applied, Fig. 2 shows a first embodiment of a refractory block used in the method of the present invention, and Fig. 2(a) is a plan view, Fig. 2 (
b) is a sectional view taken along the line I--I in FIG. 2(a). FIG. 3 is a perspective view showing a second embodiment of a refractory block used in the method of the present invention. FIG. 4 is a perspective view showing a specific example of the refractory block shown in FIG. 3. 5 and 6 show a third embodiment of the refractory block used in the method of the present invention, FIG. 5 is a perspective view of the unit refractory block, and FIG. 6 is a plan view of the unit refractory block. It is a combined perspective view. FIG. 7 is a cross-sectional view for explaining a method of measuring the temperature of powder in a conventional firing furnace, and FIG. 8 is a partially enlarged view of FIG. 7. DESCRIPTION OF SYMBOLS 1... Firing furnace, 2... Firing object, 3... Firing case, 4... Base plate, 5... Frame,
6... Roller, 11, 15.18.19... Refractory block, 12... Ceramic ring for temperature measurement, 13... Accommodation space, 14... Partition lid, 16...
- Hole, 17...Top lid. Patent applicant Kawasaki Steel Corporation Figure 1 Figure 2 (b) Figure 3 Figure 4 (a) Figure 4 (b) Figure 5 (a) IR Figure 5 (b) Figure 7

Claims (1)

【特許請求の範囲】[Claims] 測温用セラミックリングを収納した伝熱特性が焼成原料
を略等しい耐火物ブロックを焼成原料と共に焼成炉に装
入し、焼成原料の焼成後に上記測温用セラミックリング
の寸法の変化を測定することによって上記測温用セラミ
ックリングの履歴最高温度を求め、この温度を焼成原料
の履歴最高温度とすることを特徴とする焼成炉における
焼成原料の測温方法。
A refractory block containing a temperature-measuring ceramic ring and having heat transfer characteristics substantially equal to that of the firing raw material is charged into a firing furnace together with the firing raw material, and after the firing raw material is fired, a change in the dimension of the temperature-measuring ceramic ring is measured. A method for measuring the temperature of a firing raw material in a firing furnace, characterized in that the historical maximum temperature of the ceramic ring for temperature measurement is determined by the above-mentioned method, and this temperature is set as the historical maximum temperature of the firing raw material.
JP701788A 1988-01-18 1988-01-18 Method of measuring burning material in kiln Pending JPH01184388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP701788A JPH01184388A (en) 1988-01-18 1988-01-18 Method of measuring burning material in kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP701788A JPH01184388A (en) 1988-01-18 1988-01-18 Method of measuring burning material in kiln

Publications (1)

Publication Number Publication Date
JPH01184388A true JPH01184388A (en) 1989-07-24

Family

ID=11654270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP701788A Pending JPH01184388A (en) 1988-01-18 1988-01-18 Method of measuring burning material in kiln

Country Status (1)

Country Link
JP (1) JPH01184388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026027A1 (en) * 2007-08-09 2009-02-18 Gary Childress Furnace temperature monitoring device and method
JP2017024983A (en) * 2011-02-28 2017-02-02 コーニング インコーポレイテッド Method for manufacturing porous ceramic articles with reduced shrinkage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026027A1 (en) * 2007-08-09 2009-02-18 Gary Childress Furnace temperature monitoring device and method
JP2017024983A (en) * 2011-02-28 2017-02-02 コーニング インコーポレイテッド Method for manufacturing porous ceramic articles with reduced shrinkage

Similar Documents

Publication Publication Date Title
JPH0244186Y2 (en)
EP0928958A2 (en) Sheathed thermocouple lance for measuring temperature in molten metal bath
US2839594A (en) Contact thermocouple assembly
JPH01184388A (en) Method of measuring burning material in kiln
JP2006284156A (en) Firing furnace
GB2317014B (en) Improvements in and relating to the measurement of heat flux in ovens
JPS5492505A (en) Gas fired crucible furnace for high temperature melting
GB990415A (en) High temperature furnace
JPH09113372A (en) Multi-point temperature measuring element
US4102708A (en) Self-healing thermocouple
US5267609A (en) Heat radiation tube
US3181847A (en) Temperature gradient furnace apparatus, and method of forming same
JPS6234022A (en) Thermocouple thermometer for measuring temperature in vacuumfurnace
Raj et al. Temperature measurements in a laboratory scale furnace for manufacturing of silicon carbide through Acheson process
EP0321427B1 (en) Heat radiation tube
JP6653282B2 (en) Method for measuring temperature of honeycomb formed body
US3061415A (en) Apparatus for treatment of hydrocarbons
Mraw et al. Calvet-type calorimeter for the study of high-temperature processes I. Description of an apparatus appropriate for organic materials
JP5398186B2 (en) Protective insert for lining holes in parts for semiconductor process equipment
SU467243A1 (en) High-Temperature Thermocouple Graduation Furnace
US3328558A (en) Thermal instrumentation apparatus
JPS5852502Y2 (en) High temperature resistant thermocouple
SU1303928A1 (en) Device for differential-thermal analysis
CN111854419A (en) Directly-heated type electric heating shaft kiln
SU765622A1 (en) Method of determining physical characteristics of materials