JPH01183122A - Optical window for vacuum chamber - Google Patents

Optical window for vacuum chamber

Info

Publication number
JPH01183122A
JPH01183122A JP63007720A JP772088A JPH01183122A JP H01183122 A JPH01183122 A JP H01183122A JP 63007720 A JP63007720 A JP 63007720A JP 772088 A JP772088 A JP 772088A JP H01183122 A JPH01183122 A JP H01183122A
Authority
JP
Japan
Prior art keywords
vacuum chamber
glass plate
lens
observation
observation window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63007720A
Other languages
Japanese (ja)
Inventor
Shinichi Wakana
伸一 若菜
Mikio Suetake
末武 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63007720A priority Critical patent/JPH01183122A/en
Publication of JPH01183122A publication Critical patent/JPH01183122A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a glass plate into a convex lens without losing pressure resistance, to expand the observation range in a vacuum chamber and to make a device compact by forming a diffraction pattern serving as a lens on at least one side of a glass plate. CONSTITUTION:A Fresnel lens 11b is directly attached or tilted against on one side of a glass plate 11a which composes an observation window 11. Therefore, among scattered lights generated in a vacuum chamber 1 due to floating impurity particles a, at least the scattered lights which strike on the glass plate 11a become parallel after transmitting the glass plate 11a and pass through the optical system to he irradiated on a counting detector 8. Since the Fresnel lens 11b is tilted against the glass plate 11a and integrated together, two light beams having different wave lengths have different paths due to the difference in diffraction directions after transmitting the Fresnel lens 11b. This expands the observation range, enables the impurity particles to be counted accurately, and makes the device compact.

Description

【発明の詳細な説明】 〔概 要〕 半導体製造装置等における真空チャンバ用光学窓に関し
、 観測領域の拡大と装置の小型化を目的とし、真空チャン
バ壁面に装着する内部観察用観測窓の少なくとも一面に
、レンズ作用を備えた回折パターン板を配設し一体化し
て構成し、 または真空チャンバ壁面に装着する内部観察用観測窓の
少なくとも一面に、レンズ作用を備えた回折パターン板
を傾けた状態に配設し一体化して構成する。
[Detailed Description of the Invention] [Summary] Regarding optical windows for vacuum chambers in semiconductor manufacturing equipment, etc., for the purpose of expanding the observation area and downsizing the equipment, at least one side of the observation window for internal observation attached to the wall surface of the vacuum chamber is provided. A diffraction pattern plate with a lens effect is arranged and integrated into the vacuum chamber, or a diffraction pattern plate with a lens effect is tilted on at least one side of an observation window for internal observation attached to the wall of the vacuum chamber. Arrange, integrate and configure.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体製造装置等における真空チャンバの観測
窓に係り、特に観測領域の拡大と装置の小型化を図った
真空チャンバ用光学窓に関する。
The present invention relates to an observation window for a vacuum chamber in semiconductor manufacturing equipment, etc., and more particularly to an optical window for a vacuum chamber that expands the observation area and reduces the size of the device.

〔従来の技術〕[Conventional technology]

第2図は従来の真空チャンバ用観測窓の構成例を示した
図である。なお図では、真空チャンバ内に浮遊する不純
物粒子にレーザ光を照射しその散乱光から不純物粒子を
計数する粒子計数器に適用した場合を例示している。
FIG. 2 is a diagram showing an example of the configuration of a conventional observation window for a vacuum chamber. Note that the figure illustrates a case where the present invention is applied to a particle counter that irradiates impurity particles floating in a vacuum chamber with a laser beam and counts the impurity particles from the scattered light.

図で、1は真空チャンバ、2は円形の透明なガラス板2
aを金属枠2bにシール固定した観測窓であリ、該観測
窓2は複数のネジ3で真空チャンバ1に螺止固定されて
いる。なお4は密閉を保つためのバッキングである。
In the figure, 1 is a vacuum chamber, 2 is a circular transparent glass plate 2
The observation window a is sealed and fixed to a metal frame 2b, and the observation window 2 is fixed to the vacuum chamber 1 with a plurality of screws 3. Note that 4 is a backing for maintaining airtightness.

この場合、真空チャンバ1の内部には例えば図示aで示
される不純物粒子が一定の密度をもって浮遊している。
In this case, inside the vacuum chamber 1, for example, impurity particles shown as a in the figure are suspended at a certain density.

また5はレーザ光6を照射する光源であり、該レーザ光
6の光路中に浮遊する不純物粒子による、 レーザ光6
の散乱光の一部がガラス板2aを通り更に光学系7によ
って計数ディテクタ8を照射する構成になっている。
Further, 5 is a light source that irradiates laser light 6, and the laser light 6 is caused by impurity particles floating in the optical path of the laser light 6.
A part of the scattered light passes through the glass plate 2a and is further irradiated to the counting detector 8 by the optical system 7.

ここで光源5からレーザ光6を射出すると、該レーザ光
6は真空チャンバ1の内部を直進するが、その光路中に
aで示す不純物粒子が存在するとレーザ光6は該粒子に
よって図示6“の如く各方向に散らばる散乱光となる。
Here, when the laser beam 6 is emitted from the light source 5, the laser beam 6 travels straight inside the vacuum chamber 1, but if there are impurity particles indicated by a in the optical path, the laser beam 6 is caused by the particles as shown in the figure 6''. The result is scattered light scattered in all directions.

そこでこれら散乱光の内、ガラス板2aの方向に向かう
分のみが該ガラス板2aを透過するが、更にその内の光
学系7に入射した分のみが計数ディテクタ8に照射され
て計数される。
Of these scattered lights, only the part directed toward the glass plate 2a passes through the glass plate 2a, and further, only the part of the scattered light that enters the optical system 7 is irradiated onto the counting detector 8 and counted.

一方直進するレーザ光6は該真空チャンバ1の内部でそ
のまま吸収されるように構成している。
On the other hand, the laser beam 6 traveling straight is configured to be absorbed as is inside the vacuum chamber 1.

この場合、例えば光路中の一点P点における上記光学系
7に対する入射角αは、観測窓2の窓径と光学系7の両
者で規定されて小さくなり計数ディテクタ8に到達する
散乱光の数が減少する。例えば図示P点に浮遊する不純
物粒子からの反射光が図示6+  ’の方向であれば計
数ディテクタ8はカウントするが反射光が図示62 ゛
の方向であれば光学系7に入射しないために計数ディテ
クタ8がカウントしない。
In this case, for example, the incident angle α with respect to the optical system 7 at one point P on the optical path is determined by both the window diameter of the observation window 2 and the optical system 7, and becomes smaller, and the number of scattered lights reaching the counting detector 8 decreases. Decrease. For example, if the reflected light from impurity particles floating at point P in the figure is in the direction 6+' in the figure, the counting detector 8 will count, but if the reflected light is in the direction 62' in the figure, the counting detector 8 will not enter the optical system 7. 8 doesn't count.

従って本来カウントされるべきものがカウントされない
ことになり、結果的に観測領域が狭められた場合と同様
の現象を呈する。
Therefore, things that should be counted are not counted, resulting in the same phenomenon as when the observation area is narrowed.

一方上記の入射角αを大きくするために、観測窓2の窓
径と光学系7をそれぞれ大きくする方法や観測窓2のガ
ラス板2aをそのまま凸レンズとする方法等もあるが、
耐圧上の点から大きさや厚みに制約が生じている。
On the other hand, in order to increase the incident angle α, there are methods such as increasing the window diameter of the observation window 2 and the optical system 7, or using the glass plate 2a of the observation window 2 as a convex lens.
There are restrictions on size and thickness due to pressure resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の真空チャンバ用の観測窓では、観測領域が狭く正
確な不純物粒子の計数ができないと云う問題があり、ま
た観測窓外部に設置する光学系が大きくなって装置の小
型化を阻害すると云う問題があった。
Conventional observation windows for vacuum chambers have the problem that the observation area is narrow and accurate counting of impurity particles is not possible, and the optical system installed outside the observation window becomes large, which hinders miniaturization of the device. was there.

また真空チャンバ内でプラズマプロセス等で発光する場
合には、不純物粒子の計数ができないと云う問題があっ
た。
Furthermore, when emitting light in a vacuum chamber through a plasma process or the like, there is a problem in that impurity particles cannot be counted.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、真空チャンバ壁面に装着する内部観察用
観測窓の少なくとも一面に、レンズ作用を備えた回折パ
ターン板を配設し、一体化してなる真空チャンバ用光学
窓によって解決される。
The above-mentioned problem is solved by an optical window for a vacuum chamber, which is formed by disposing a diffraction pattern plate having a lens function on at least one surface of an observation window for internal observation attached to the wall surface of the vacuum chamber.

また真空チャンバ壁面に、装着する内部観察用観測窓の
少なくとも一面に、レンズ作用を備えた回折パターン板
を傾けた状態に配設し、一体化してなる真空チャンバ用
光学窓によって解決される。
The problem can also be solved by an optical window for a vacuum chamber, which is formed by installing a diffraction pattern plate having a lens function in an inclined state on at least one surface of an observation window for internal observation mounted on the wall surface of the vacuum chamber.

〔作 用〕[For production]

ガラス板の少なくとも一方の面にレンズ作用を持つ回折
パターンを形成することによって、耐圧性能を損なうこ
となく該ガラス板を凸レンズ化することができる。
By forming a diffraction pattern having a lens effect on at least one surface of the glass plate, the glass plate can be made into a convex lens without impairing pressure resistance.

本発明になる真空装置用光学窓では、従来の観測窓を構
成するガラス板の一面にフレネルレンズを直接または傾
きを持たせて添着している。
In the optical window for a vacuum device according to the present invention, a Fresnel lens is attached directly or at an angle to one surface of a glass plate constituting a conventional observation window.

従って浮遊する不純物粒子によって真空チャンバ内部で
発生する散乱光の内、少なくともガラス板に入射する散
乱光は該ガラス板を透過した後はすべて平行光となって
光学系を通り、計数ディテクタに照射されるので精度の
よい不純物粒子の計数を実現している。
Therefore, among the scattered light generated inside the vacuum chamber by floating impurity particles, at least the scattered light incident on the glass plate becomes parallel light after passing through the glass plate, passes through the optical system, and is irradiated to the counting detector. This enables highly accurate counting of impurity particles.

またフレネルレンズを上記ガラス板に対して傾けて配設
一体化することにより、波長の異なる二光線は回折方向
が異なるためフレネルレンズ透過後の光路に差異を生ず
る。
Furthermore, by integrating the Fresnel lens at an angle with respect to the glass plate, two light beams with different wavelengths have different diffraction directions, resulting in a difference in the optical path after passing through the Fresnel lens.

従って真空チャンバ内でプラズマプロセス等の発光があ
る場合でも所要の不純物粒子の計数を精度よく実現する
ことができる。
Therefore, even when light is emitted during a plasma process or the like in a vacuum chamber, the required number of impurity particles can be counted with high accuracy.

〔実施例〕〔Example〕

第1図は、本発明になる真空チャンバ用光学窓の実施例
を示した図である。
FIG. 1 is a diagram showing an embodiment of an optical window for a vacuum chamber according to the present invention.

図で、11は観測窓であり”、凸レンズを形成するよ4
に同心円状の回折パターンを片面に形成した透明なアク
リル樹脂板等よりなる円内斜視図■の如きフレネルレン
ズ1.1bが添着された円形の透明なガラス板11aを
、金属枠11cにシール固定して構成している。なお該
観測窓11がバンキング4を介して複数のネジ3で真空
チャンバ1に螺止固定されていることは第2図の場合と
同様である。また真空チャンバ1の内部には第2図同様
に不純物粒子aが浮遊した状態にある。
In the figure, 11 is the observation window and 4 forms a convex lens.
A circular transparent glass plate 11a to which a Fresnel lens 1.1b is attached, as shown in the perspective view (■), which is made of a transparent acrylic resin plate or the like on which a concentric diffraction pattern is formed on one side, is sealed and fixed to a metal frame 11c. It is configured as follows. Note that, as in the case of FIG. 2, the observation window 11 is screwed and fixed to the vacuum chamber 1 via a banking 4 with a plurality of screws 3. Further, impurity particles a are suspended inside the vacuum chamber 1 as in FIG.

5は光源、6はレーザ光6であり、12は集光レンズ、
8は計数ディテクタである。
5 is a light source, 6 is a laser beam 6, 12 is a condensing lens,
8 is a counting detector.

ここで第2図同様に光源5からレーザ光6を照射すると
、光路中に浮遊する不純物粒子aの散乱光6′の内上記
ガラス板11aに入る光はすべてフレネルレンズllb
で平行光となって集光レンズ12を通り計数ディテクタ
8を照射するように構成している。
Here, when the laser beam 6 is irradiated from the light source 5 in the same manner as in FIG.
The configuration is such that the parallel light passes through the condenser lens 12 and irradiates the counting detector 8.

なお直進するレーザ光6が真空チャンバ1内で吸収され
消滅することは第2図と同様である。
Note that the laser beam 6 traveling straight is absorbed and disappears within the vacuum chamber 1, as in FIG. 2.

この場合には、例えば光路中の一点PI点についての集
光レンズ12に対する入射角α1は、観測窓11の窓径
がそのまま対応゛するため、第2図におけるαと比較す
ると、常に、 α1 〉α が成立する。
In this case, for example, the angle of incidence α1 with respect to the condenser lens 12 with respect to one point PI in the optical path corresponds directly to the window diameter of the observation window 11, so when compared with α in FIG. 2, it is always α1 > α holds true.

一方プラズマプロセスを真空チャンバ内で行う場合には
、プラズマ・イオンが発光して浮遊する不純物粒子の散
乱光をカバーし不純物粒子の計数精度を低下させること
がある。
On the other hand, when a plasma process is performed in a vacuum chamber, plasma ions emit light and cover the scattered light of floating impurity particles, which may reduce the accuracy of counting impurity particles.

図(B)はこの場合に適用される例を示したもので、真
空チャンバ1の内部には浮遊する不純物粒子aと×で記
載したプラズマ・イオンbが混在して浮遊している。
Figure (B) shows an example applied to this case, in which floating impurity particles a and plasma ions b indicated by x are mixed and floating inside the vacuum chamber 1.

図で13はこの場合の観測窓を示したもので、図(A)
の観測窓11におけるフレネルレンズIlbを透明なア
クリル樹脂等よりなる円柱を斜めに切断し楕円状の露出
切断面に同心楕円状の回折パターンを形成した円内斜視
図■の如きフレネルレンズ13bに置き換えたものであ
る。
In the figure, 13 shows the observation window in this case.
The Fresnel lens Ilb in the observation window 11 is replaced with a Fresnel lens 13b as shown in the circular perspective view (2), which is obtained by cutting a cylinder made of transparent acrylic resin or the like diagonally and forming a concentric elliptical diffraction pattern on the elliptical exposed cut surface. It is something that

更に図(^)と同様の集光レンズ12と計数ディテクタ
8はその光軸を上記回折パターン形成面の中心垂直軸上
に配設している。
Furthermore, the condensing lens 12 and the counting detector 8 similar to those shown in FIG.

かかる構成になるフレネルレンズでは、光の波長によっ
て透過後の光路に差異が生ずる。
In a Fresnel lens having such a configuration, the optical path after passing through the light varies depending on the wavelength of the light.

例えば図示12点での不純物粒子aからの反射光はフレ
ネルレンズ13b透過後は鎖線で示すP2“となり、ま
た同じ22点での発光プラズマ・イオンbからの光はフ
レネルレンズ13b透過後は二点鎖線で示すp211と
なる。
For example, after the reflected light from the impurity particle a at 12 points shown in the figure passes through the Fresnel lens 13b, it becomes P2'' shown by the chain line, and the light from the luminescent plasma ion b at the same 22 points passes through the Fresnel lens 13b at two points. p211 is indicated by a chain line.

従って、円内斜視図■での傾斜角βを予め設定した値に
形成して、両波の分離を実現している。
Therefore, the inclination angle β in the in-circle perspective view (2) is set to a preset value to realize separation of both waves.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明により、真空チャンバ内の観測領域の
拡大によって精度のよい観測が図れると共に、光学系の
コンパクト化によって装置の小型化を実現した真空チャ
ンバ用光学窓を提供することができる。
As described above, according to the present invention, it is possible to provide an optical window for a vacuum chamber that allows for highly accurate observation by expanding the observation area within the vacuum chamber, and also achieves miniaturization of the device by making the optical system more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる真空チャンバ用光学窓の実施例を
示した図、 第2図は従来の真空チャンバ用観測窓の構成例を示した
図、 である。図において、 1は真空チャンバ、   3はネジ、 4はバッキング、    5は光源、 6はレーザ光、     8は計数ディテクタ、11.
13は観測窓、   lla、13aはガラス板、11
b、 13bはフレネルレンズ、 11c、13cは金属枠、 12は集光レンズ、 をそれぞれ表わす。
FIG. 1 is a diagram showing an example of the optical window for a vacuum chamber according to the present invention, and FIG. 2 is a diagram showing an example of the configuration of a conventional observation window for a vacuum chamber. In the figure, 1 is a vacuum chamber, 3 is a screw, 4 is a backing, 5 is a light source, 6 is a laser beam, 8 is a counting detector, 11.
13 is the observation window, lla, 13a is the glass plate, 11
b, 13b are Fresnel lenses, 11c, 13c are metal frames, and 12 is a condenser lens, respectively.

Claims (2)

【特許請求の範囲】[Claims] (1)真空チャンバ壁面に装着する内部観察用観測窓の
少なくとも一面に、レンズ作用を備えた回折パターン板
を配設し、一体化してなることを特徴とする真空チャン
バ用光学窓。
(1) An optical window for a vacuum chamber, characterized in that a diffraction pattern plate having a lens function is disposed on at least one surface of an observation window for internal observation attached to a wall surface of the vacuum chamber, and is integrated with the observation window.
(2)真空チャンバ壁面に装着する内部観察用観測窓の
少なくとも一面に、レンズ作用を備えた回折パターン板
を傾けた状態に配設し、一体化してなることを特徴とす
る真空チャンバ用光学窓。
(2) An optical window for a vacuum chamber, characterized in that a diffraction pattern plate having a lens function is arranged in an inclined state on at least one surface of an observation window for internal observation attached to the wall surface of the vacuum chamber, and is integrated with the observation window. .
JP63007720A 1988-01-18 1988-01-18 Optical window for vacuum chamber Pending JPH01183122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007720A JPH01183122A (en) 1988-01-18 1988-01-18 Optical window for vacuum chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007720A JPH01183122A (en) 1988-01-18 1988-01-18 Optical window for vacuum chamber

Publications (1)

Publication Number Publication Date
JPH01183122A true JPH01183122A (en) 1989-07-20

Family

ID=11673565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007720A Pending JPH01183122A (en) 1988-01-18 1988-01-18 Optical window for vacuum chamber

Country Status (1)

Country Link
JP (1) JPH01183122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024255A3 (en) * 1999-09-30 2001-12-20 Lam Res Corp Interferometric method for endpointing plasma etch processes
KR100524913B1 (en) * 1998-10-30 2005-12-21 삼성전자주식회사 Semiconductor manufacturing apparatus having magnetic field generating means for preventing adhesion of pollutants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337092B2 (en) * 1973-10-27 1978-10-06
JPS564459A (en) * 1979-06-26 1981-01-17 Tokyo Sheet Kk Bark material for sheet
JPS5967231U (en) * 1982-10-26 1984-05-07 東レ株式会社 Breathable waterproof fabric
JPS6164447A (en) * 1984-09-07 1986-04-02 帝人株式会社 Laminate
JPS6189374A (en) * 1984-10-05 1986-05-07 平岡織染株式会社 Production of water-proof sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337092B2 (en) * 1973-10-27 1978-10-06
JPS564459A (en) * 1979-06-26 1981-01-17 Tokyo Sheet Kk Bark material for sheet
JPS5967231U (en) * 1982-10-26 1984-05-07 東レ株式会社 Breathable waterproof fabric
JPS6164447A (en) * 1984-09-07 1986-04-02 帝人株式会社 Laminate
JPS6189374A (en) * 1984-10-05 1986-05-07 平岡織染株式会社 Production of water-proof sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100524913B1 (en) * 1998-10-30 2005-12-21 삼성전자주식회사 Semiconductor manufacturing apparatus having magnetic field generating means for preventing adhesion of pollutants
WO2001024255A3 (en) * 1999-09-30 2001-12-20 Lam Res Corp Interferometric method for endpointing plasma etch processes
US6400458B1 (en) 1999-09-30 2002-06-04 Lam Research Corporation Interferometric method for endpointing plasma etch processes

Similar Documents

Publication Publication Date Title
JP3228080B2 (en) Multiple reflection sample cell
JP3246811B2 (en) Semiconductor wafer inspection equipment
JP2002267819A (en) Optically transparent film
JP2002148018A (en) Very-small-displacement detector by sound, etc
US5266798A (en) High sensitivity, large detection area particle sensor for vacuum applications
KR890010554A (en) Photoelectric particle detector
JPH01183122A (en) Optical window for vacuum chamber
CN112539697B (en) Light-emitting device, light spot adjusting method thereof and detection equipment
CN112763067A (en) Illumination reflector arrangement for illuminating a sample, optical analysis device and method for producing an illumination reflector arrangement
CN1707307A (en) Optical film thickness monitoring system
US5153674A (en) Semiconductor production control and/or measuring unit
JPH08148116A (en) Micro-laser flight time type mass spectrometer
JP2884583B2 (en) X-ray collector
US6864964B2 (en) Optical distance measuring device
RU2169911C2 (en) Optico-acoustic receiver
EP3757604A1 (en) Photoelectric sensor with coaxial emission and receiving optical paths
JPS61129555A (en) Monitor with space resolution
JPH07218427A (en) Gas concentration measuring instrument
WO2015146429A1 (en) Particle counting device
JP2867718B2 (en) Suspended particle counter
JP4315798B2 (en) Collimator, X-ray detector and spectrometer
JP2001166382A (en) Method for deciding quality of light source unit, and method for manufacturing light source unit by using the method
JPH06294898A (en) Optical element and light condensing element for x-ray
JP2584061B2 (en) Signal light
JPS6258138A (en) Method and apparatus for measuring particle