JPS6258138A - Method and apparatus for measuring particle - Google Patents

Method and apparatus for measuring particle

Info

Publication number
JPS6258138A
JPS6258138A JP60197665A JP19766585A JPS6258138A JP S6258138 A JPS6258138 A JP S6258138A JP 60197665 A JP60197665 A JP 60197665A JP 19766585 A JP19766585 A JP 19766585A JP S6258138 A JPS6258138 A JP S6258138A
Authority
JP
Japan
Prior art keywords
flow cell
particles
particle
measured
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197665A
Other languages
Japanese (ja)
Inventor
Muneharu Ishikawa
石川 宗晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP60197665A priority Critical patent/JPS6258138A/en
Publication of JPS6258138A publication Critical patent/JPS6258138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately perform measurement even when the density of particles is low, in a method for measuring scattered beam from particles to be measured by irradiating the particles to be measured with coherent beam, by reciprocating luminous flux plural times to cover measuring region with coherent luminous flux. CONSTITUTION:Water containing fine particles 20 is made to flow into a flow cell 2 and laser beam 1a is brought to be incident on the side surface 3 of the flow cell 2 from a laser beam source 1. The incident beam refracts on the wall surface of the flow cell 2 to be scattered by the fine particles and the greater part of the remain der reaches the side wall 4 to be emitted to the outside while refracted. A first reflec tive mirror 5 is provided in close vicinity to the side wall 4 and the beam emitted from the flow cell 2 is reflected to be again transmitted through the water in the flow cell 2. A second reflective mirror 6 is provided outside the side wall 3 and the beam emitted from the side wall 3 is again reflected from the flow cell 2 to be recipro cated plural times. At this time, the scattered beam from the fine particles is detected by the photomultiplier tube 10. Because a measuring region is covered with beam, low density fine particles can be measured with high accuracy within a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粒子測定方法及びその装と、さらに詳細には
被測定粒子にレーザー光源のようなコヒーレント光源か
らの光束を照射して粒子からの散乱光を測定し、粒径及
び粒子数など粒子の特性を測定する粒子測定方法及びそ
の装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a particle measurement method and apparatus thereof, and more particularly, to a method for measuring particles by irradiating the particles to be measured with a beam of light from a coherent light source such as a laser light source. The present invention relates to a particle measurement method and apparatus for measuring particle characteristics such as particle size and number of particles by measuring scattered light of particles.

[従来の技術] 従来から光子相関法の原理に基づいてレーザー光源から
の散乱光束を測定し、微粒子の粒径や粒子数などの粒子
特性の測定が行なわれている。例えば純水中の不純物を
測定する場合、測定対象である微粒子の粒径が小さく、
しかも粒子がまばらにしか存在己ないために困難を伴う
、従来では微粒子からの散乱強度を増加させるために入
射光束を小さな領域に集光させ、高輝度の測定領域を設
け、この領域を通過する粒子からの散乱光を受光する方
法が用いられている。例えば、純水中の不純物を検知す
る超微粒子カウンタなどにはこのような方法が用いられ
ている。
[Prior Art] Conventionally, the scattered light flux from a laser light source has been measured based on the principle of the photon correlation method, and particle characteristics such as the particle diameter and number of particles have been measured. For example, when measuring impurities in pure water, the particle size of the particles being measured is small;
Moreover, it is difficult because the particles exist only sparsely. Conventionally, in order to increase the intensity of scattering from fine particles, the incident light beam is focused on a small area, a high-intensity measurement area is created, and the method passes through this area. A method of receiving scattered light from particles is used. For example, such a method is used in ultrafine particle counters that detect impurities in pure water.

[発明が解決しようとする問題点] このように従来の方法では粒子数密度の高い粒を群を対
象としていたために小さな測定領域で充分粒子の母集団
の性質を測定できる粒子計測が可能であったが1例えば
純水中の不純物微粒子を測定するような場合、微粒子密
度は稀薄な状態となっており、そのため測定すべき純水
の処理値を増加する必要が生じてくる。そのために従来
は純水の通過断面積は測定領域の断面積の数百倍となっ
ており、測定している粒子は実際に通過する粒イーのご
くわずかなものとなり、短時間のうちに純水自体の品質
を反映するだけ充分な粒子数を測定することができない
という問題がある。特に粒子数密度が稀薄な純水中の微
粒子を測定し、純水の品質検査をする場合には、純水中
の微粒子の全数検査をできることが望ましい。
[Problems to be solved by the invention] As described above, in the conventional method, because the target was a group of particles with a high particle number density, it was not possible to perform particle measurement that could sufficiently measure the properties of a population of particles in a small measurement area. However, for example, when measuring impurity fine particles in pure water, the fine particle density is in a diluted state, and therefore it becomes necessary to increase the treated value of the pure water to be measured. For this reason, in the past, the cross-sectional area of pure water passing through was several hundred times larger than the cross-sectional area of the measurement area, and the particles being measured were only a small fraction of the particles that actually passed through, making them pure in a short time. The problem is that it is not possible to measure a sufficient number of particles to reflect the quality of the water itself. In particular, when measuring fine particles in pure water with a low particle number density and inspecting the quality of the pure water, it is desirable to be able to inspect all the fine particles in the pure water.

従って本発明はこのような点に鑑みなされたもので1粒
子数密度が稀薄な微粒子であっても、その粒径や粒子数
などを正確に測定することが可能な粒子測定方法及びそ
の装置を提供することを目的とする。
Therefore, the present invention was devised in view of these points, and provides a particle measuring method and device capable of accurately measuring the particle size and number of particles even if the particle number density is low. The purpose is to provide.

[問題点を解決するための手段] 本発明はこのような問題点を解決するために、レーザー
光源などのコヒーレント光源からの光束を被測定粒子の
存在する測定領域で複数回往復させることによって測定
領域をコヒーレント光束で覆い、そのコヒーレント光束
からの散乱光を測定する構成を採用した。
[Means for Solving the Problems] In order to solve these problems, the present invention performs measurement by reciprocating a light beam from a coherent light source such as a laser light source multiple times in a measurement region where particles to be measured are present. We adopted a configuration in which a region is covered with a coherent light beam and the scattered light from the coherent light beam is measured.

[作 用] このような構成において、レーザー光線は、指向性が高
く光束の拡散性が小さなコヒーレント光束であるため、
測定領域で複数回反射させることにより測定領域をコヒ
ーレント光束で覆うことが可能になり、測定領域全体に
わたって有効に粒子を照射することが可能になり正確な
測定ができるようになる。
[Function] In such a configuration, the laser beam is a coherent light beam with high directivity and low diffusivity.
By reflecting the light multiple times in the measurement area, it becomes possible to cover the measurement area with a coherent light beam, and it becomes possible to effectively irradiate the particles over the entire measurement area, making it possible to perform accurate measurements.

し実施例] 以下図面に示す実施例に従い本発明の詳細な説明する。Examples] The present invention will be described in detail below according to embodiments shown in the drawings.

第1図には純水中の不純物微粒子などの微粒子の特性を
測定する測定装置の概略構成が図示されている。同図に
おいて符号1で示すものはコヒーレント光源、例えばレ
ーザー光源であり、このレーザー光源1はその前面から
コヒーレントなレーザー光束1aを発射する。このレー
ザー光源1から出る光束1aは空気中を通ってガラス質
のフローセル2の第1の側面3に入射する。このフロー
セル2には矢印Aで示すように上方部から純水が流入し
その下方部に流出する。この純水には測定すべき不純物
微粒子20が含まれている。フローセル2の第1の側面
3に入射したレーザー光束は壁面で屈折して純水中に透
過する。純水中を透過するレーザー光束は散乱体粒子が
ある場合にはその光量の一部が散乱され、残りの大部分
はフローセルの第1の側面3と対向する第2の側面4に
達し、屈折してフローセルの外部に出る。フローセル2
の第2の側面4に近接して第1の反射鏡5が、またフロ
ーセル2の第1の側面3、すなわちレーザー光源1側に
は第2の反射鏡6が配置される。
FIG. 1 shows a schematic configuration of a measuring device for measuring the characteristics of fine particles such as impurity particles in pure water. In the figure, the reference numeral 1 indicates a coherent light source, for example a laser light source, and this laser light source 1 emits a coherent laser beam 1a from its front surface. A light beam 1a emitted from this laser light source 1 passes through the air and enters a first side surface 3 of a glassy flow cell 2. Pure water flows into this flow cell 2 from the upper part as shown by arrow A and flows out to the lower part. This pure water contains impurity particles 20 to be measured. The laser beam incident on the first side surface 3 of the flow cell 2 is refracted by the wall surface and transmitted into the pure water. If there are scattering particles, part of the laser beam transmitted through pure water is scattered, and most of the remainder reaches the second side 4 opposite the first side 3 of the flow cell and is refracted. and exit the flow cell. flow cell 2
A first reflecting mirror 5 is disposed close to the second side surface 4 of the flow cell 2, and a second reflecting mirror 6 is disposed on the first side surface 3 of the flow cell 2, that is, on the laser light source 1 side.

第2の側面4に達し屈折してフローセル2の外に出たレ
ーザー光束は、第1の反射鏡5でその反射率に応じて反
射され、フローセル2の第2の側面4に入射して屈折さ
れ、再び純水中を透過し、微粒子があればその一部の光
量が微粒子により反射され、フローセルの第1の側面3
に到達する。
The laser beam that reaches the second side surface 4 and is refracted and exits the flow cell 2 is reflected by the first reflecting mirror 5 according to its reflectance, enters the second side surface 4 of the flow cell 2, and is refracted. The light passes through the pure water again, and if there are any fine particles, a portion of the light is reflected by the fine particles, and the light is reflected from the first side surface 3 of the flow cell.
reach.

第1の側面3を透過した光束は第2の反射鏡6に入射し
、その反射率に応じて反射され、再びフローセル2の第
1の側面3に入射する。以下同様な行程を経て2つの反
射鏡5.6間を往復してフローセル2を貫通する数本の
レーザー光束1aが形成され、最後にレーザー光束1a
は光トラップ7によって捕捉され再度放射されないよう
に吸収される。
The light flux transmitted through the first side surface 3 is incident on the second reflecting mirror 6, is reflected according to its reflectance, and is incident on the first side surface 3 of the flow cell 2 again. Thereafter, through the same process, several laser beams 1a are formed which go back and forth between the two reflecting mirrors 5.6 and pass through the flow cell 2, and finally the laser beam 1a
is captured by the optical trap 7 and absorbed so as not to be emitted again.

好ましくはフローセル2の第1と第2の側面と東向する
而8に面して受光レンズ9が配置される。フローセル2
内の純水中に浮遊する散乱粒子群20によって散乱され
たレーザー光束は、フローセルの透明な第3の側面8を
通り、光束にほぼ直角な方向に設置された受光レンズ9
によって光電子増倍管10の受光面10aに結像される
Preferably, a light receiving lens 9 is disposed facing the first and second side surfaces of the flow cell 2 and the face 8 facing east. flow cell 2
The laser beam scattered by the scattering particle group 20 floating in the pure water in the flow cell passes through the transparent third side surface 8 of the flow cell, and passes through the light receiving lens 9 installed in a direction substantially perpendicular to the beam.
An image is formed on the light-receiving surface 10a of the photomultiplier tube 10.

このときフローセル2内を往復しているレーザー光束1
aはコヒーレントな状態を保っているため、異なった光
束中にある粒子からの散乱光もコヒーレントになり互い
に干渉し得ることから、各粒子のブラウン運動に依存し
た散乱光の揺らぎが光電子増倍管の光電面10aで検知
される。この光強度の揺らぎはよく知られているように
光電子増倍管10により光電変換され、処理回路11に
より電気信号として処理され、その後段に接続された相
関計12に入力される。この相関計12により光強度の
揺らぎと粒子の特性間の相関関数が求められ、これがマ
イクロコンピュータ13によって粒子の拡散係数及び粒
子径に算出される。
At this time, the laser beam 1 is reciprocating within the flow cell 2.
Since a maintains a coherent state, the scattered light from particles in different light fluxes also becomes coherent and can interfere with each other, so the fluctuation of the scattered light depending on the Brownian motion of each particle is reflected in the photomultiplier tube. is detected by the photocathode 10a. As is well known, this fluctuation in light intensity is photoelectrically converted by a photomultiplier tube 10, processed as an electrical signal by a processing circuit 11, and inputted to a correlator 12 connected at the subsequent stage. The correlator 12 determines a correlation function between the fluctuation of light intensity and the characteristics of the particles, and the microcomputer 13 calculates this into the diffusion coefficient and particle diameter of the particles.

なお上述した例で、測定領域は1例えばIOX10m腸
で、奥行は10會鳳であり、フローセルからレンズ9ま
での距離は100履鵬、レンズ9かう光′取面10aま
では100+*m、レンズの焦点距離は50mmである
In the above example, the measurement area is 1, for example, IOX 10 m, the depth is 10 m, the distance from the flow cell to the lens 9 is 100 m, the distance from the lens 9 to the light extraction surface 10a is 100 + * m, and the distance from the flow cell to the lens 9 is 100 m. The focal length of is 50 mm.

第2図には測定部の構成がさらに詳細に図示されている
。透IJIなガラス質からなるフローセル2の両側には
第1図に図示したようにその空気中に反射鏡5,6が対
向して配置され、レーザー光束laの入射角及びフロー
セル壁面と各反射鏡5゜6の間隔は、各反射鏡5.6に
入射する光束と反射した光束とが交差して干渉する領域
Bが20−セル内の純水の流路に入りこまないように設
定するものとする。すなわち第2図の上方部に図示され
た例ではこの条件が満たされており、空気の屈折率を1
、フローセル壁の屈折率を1.4.フローセル内の屈折
率を1.33、フローセル壁面の厚さを5m腸、フロー
セル内の距離を10mm、反射鏡と壁面までの距離を4
011■、レーザー光束径を14 amφとして10以
上の入射角が必要となり、また第2図の下方部では交差
して干渉する領域Bが純水の流路に入りこんでおりレー
ザー光束の入射角が小さすぎる例である。
FIG. 2 shows the configuration of the measuring section in more detail. As shown in FIG. 1, reflecting mirrors 5 and 6 are disposed facing each other in the air on both sides of the flow cell 2 made of transparent glass, and the incident angle of the laser beam la and the flow cell wall surface and each reflecting mirror are arranged opposite to each other in the air. The interval of 5°6 is set so that the area B where the light flux incident on each reflecting mirror 5.6 and the reflected light flux intersect and interfere does not enter the pure water flow path in the 20-cell. shall be. In other words, in the example shown in the upper part of Figure 2, this condition is satisfied, and the refractive index of air is set to 1.
, the refractive index of the flow cell wall is 1.4. The refractive index inside the flow cell is 1.33, the thickness of the flow cell wall is 5 m, the distance inside the flow cell is 10 mm, and the distance between the reflector and the wall is 4.
011■, assuming the diameter of the laser beam is 14 amφ, an incident angle of 10 or more is required, and in the lower part of Fig. 2, the intersecting and interfering region B enters the pure water flow path, so the incident angle of the laser beam is This is an example of being too small.

第2図に図示した装置は、空気と接するフローセルの外
壁面で屈折率の大きな差が生じ、それにより光束の透過
率が小さくなって光束の減衰が大きくなってしまうが、
反射鏡と独立にフローセルを交換できるという利点があ
る。
In the device shown in FIG. 2, a large difference in refractive index occurs on the outer wall surface of the flow cell in contact with air, which reduces the transmittance of the light beam and increases the attenuation of the light beam.
This has the advantage that the flow cell can be replaced independently of the reflector.

一方光束の減衰を小さくする装置が第3図に図 −示さ
れている。第3図に図示した例では透明なフローセル2
の外壁23 、24に各々反射層21゜22が設けられ
ている。この実施例の場合には第2図に示したように反
射面とフローセルの外壁間に空気層が存在しないので、
光束の減衰を防止している。また第3図の実施例の場合
にもレーザー光束の入射角は、入射光と反射光が交差し
て干渉する領域Bが純粋の流路に入りこまないように設
定されている。
On the other hand, a device for reducing the attenuation of the luminous flux is shown in FIG. In the example shown in Figure 3, a transparent flow cell 2
Reflective layers 21 and 22 are provided on outer walls 23 and 24, respectively. In the case of this embodiment, as shown in FIG. 2, there is no air layer between the reflective surface and the outer wall of the flow cell.
Prevents light flux from attenuating. Also in the case of the embodiment shown in FIG. 3, the incident angle of the laser beam is set so that the area B where the incident light and reflected light intersect and interfere does not enter the pure flow path.

この場合には、各屈折率は第2図と同様でフローセルの
ガラス壁の厚さは61鳳腸、フローセル間はioamと
してレーザー光束径1.4■層φで10以上の入射角が
必要となる。
In this case, each refractive index is the same as shown in Figure 2, the thickness of the glass wall of the flow cell is 61 mm, the space between the flow cells is ioam, the laser beam diameter is 1.4 mm, and the incident angle is 10 or more. Become.

上述したように本発明では微粒子の測定領域である純水
の流路断面全体をレーザー光束群が覆うように、1つの
レーザー光源から反射手段を使って測定領域に複数の光
束群を形成することであるが、上述したようにフローセ
ル内部で入射光重と反射光束が交差しないように設定し
なければならないので、各光束間la間に第4図(A)
で図示したように、若干の間隙が生じる。しかし第4図
(B)で図示したようにレーザー光束群1aを流れの方
向Aに対して例えば45°傾けることによってこの間隙
Cを見かけ上なくするようにすることが可能である。す
なわちレーザー光束群を流れの方向Aに対して傾けるこ
とにより第4図(A)で図示した間隙CがE、Dの方向
から見た場合見かえ上なくなることになり、より密度の
高い複数のレーザー光束群を測定領域に形成することが
可ず莞となる。このような方法は第2図及び第3図に図
示した2つのいずれの装置にも適用することができるも
のである。
As described above, in the present invention, a plurality of groups of light beams are formed in the measurement area from one laser light source using a reflection means so that the group of laser beams covers the entire cross section of the pure water flow path, which is the measurement area of fine particles. However, as mentioned above, the setting must be made so that the incident light weight and the reflected light flux do not intersect inside the flow cell, so the distance between each light flux la is as shown in Figure 4 (A).
As shown in the figure, there will be some gaps. However, as shown in FIG. 4(B), by tilting the laser beam group 1a by, for example, 45 degrees with respect to the flow direction A, it is possible to make this gap C appear to disappear. In other words, by tilting the laser beam group with respect to the flow direction A, the gap C shown in FIG. It is not possible to form a laser beam group in the measurement area, resulting in a hole. Such a method can be applied to either of the two devices illustrated in FIGS. 2 and 3.

[発明の効果] 以上説明したように本発明によればレーザー光東を被測
定粒子の存在する領域で複数回往復させてall定領域
をコヒーレントな光束で覆うようにしているので、光子
相関法により稀薄な密度の粒子群を高精度に測定するこ
とが=if能になり、超稀薄な微粒子の計測を短時間に
しかも粒子群の母集団の統計性を反映する粒子群をとら
えることができるという優れた効果を得られる。
[Effects of the Invention] As explained above, according to the present invention, the laser beam is reciprocated multiple times in the region where the particles to be measured are present, so that all fixed regions are covered with a coherent light beam, so that the photon correlation method is not possible. This makes it possible to measure particle groups with high precision at a dilute density, making it possible to measure ultra-dilute particles in a short time and to capture particle groups that reflect the statistics of the population of particle groups. You can get this excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を説す1する概略構成図、第2図
は測定部のさらに詳細な構成を説明する断面図、第3図
は測定部の他の実施例を示す断面図、第4図(A)、(
B)は粒子の流れの方向に対しレーザー光束を傾けた場
合の例を説明する説明図である。 l・・・レーザー光束  2・・・フローセル5.6・
・・反射tI2.7・・・光トラップ20・・・微粒子 特許出願人 興 和 株式会社 4−11代理人 弁理
士 加 藤  卓  ゛ 1第3図
FIG. 1 is a schematic configuration diagram illustrating the method of the present invention, FIG. 2 is a sectional view illustrating a more detailed configuration of the measuring section, and FIG. 3 is a sectional diagram showing another embodiment of the measuring section. Figure 4 (A), (
B) is an explanatory diagram illustrating an example in which the laser beam is tilted with respect to the direction of particle flow. l... Laser beam 2... Flow cell 5.6.
...Reflection tI2.7...Light trap 20...Particle patent applicant Kowa Co., Ltd. 4-11 Agent Patent attorney Taku Kato ゛ 1 Figure 3

Claims (1)

【特許請求の範囲】 1)被測定粒子にコヒーレント光源からの光束を照射し
て粒子からの散乱光を測定し、粒子の特性を測定する粒
子測定方法において、前記光束を被測定粒子の存在する
測定領域で複数回往復させることによって測定領域をコ
ヒーレント光束で覆い、そのコヒーレント光束からの散
乱光を測定することを特徴とする粒子測定方法。 2)前記光束を少なくとも測定領域で重畳しないように
往復させることを特徴とする特許請求の範囲第1項に記
載の粒子測定方法。 3)被測定粒子にコヒーレント光源からの光束を照射し
て粒子からの散乱光を測定し、粒子の特性を測定する粒
子測定装置において、第1と第2の反射手段を測定領域
をはさんで配置し、コヒーレント光源からの光束を前記
第1と第2の反射手段間で複数回多重反射させることに
より前記コヒーレント光束を測定領域で複数回往復させ
、そのコヒーレント光束からの散乱光を測定することを
特徴とする粒子測定装置。
[Scope of Claims] 1) A particle measurement method in which a particle to be measured is irradiated with a light beam from a coherent light source and scattered light from the particle is measured to measure the characteristics of the particle. A particle measurement method characterized by covering the measurement area with a coherent light beam by reciprocating the measurement area multiple times and measuring scattered light from the coherent light beam. 2) The particle measuring method according to claim 1, characterized in that the light flux is reciprocated so as not to overlap at least in the measurement area. 3) In a particle measuring device that measures the characteristics of the particles by irradiating the particles to be measured with a light beam from a coherent light source and measuring the scattered light from the particles, the first and second reflecting means are placed across the measurement area. and multiple reflections of the light beam from the coherent light source between the first and second reflecting means to cause the coherent light beam to reciprocate a plurality of times in the measurement area and measure scattered light from the coherent light beam. A particle measuring device featuring:
JP60197665A 1985-09-09 1985-09-09 Method and apparatus for measuring particle Pending JPS6258138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197665A JPS6258138A (en) 1985-09-09 1985-09-09 Method and apparatus for measuring particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197665A JPS6258138A (en) 1985-09-09 1985-09-09 Method and apparatus for measuring particle

Publications (1)

Publication Number Publication Date
JPS6258138A true JPS6258138A (en) 1987-03-13

Family

ID=16378291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197665A Pending JPS6258138A (en) 1985-09-09 1985-09-09 Method and apparatus for measuring particle

Country Status (1)

Country Link
JP (1) JPS6258138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151602B2 (en) 2002-11-21 2006-12-19 Horiba, Ltd. Particle size distribution analyzer
JP2008191151A (en) * 2007-02-05 2008-08-21 Palo Alto Research Center Inc Distinguishing object
WO2017199615A1 (en) * 2016-05-17 2017-11-23 アズビル株式会社 Particle detection device and method for inspecting particle detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663204A (en) * 1979-10-26 1981-05-29 Fujitsu Ltd Monitor device of film thickness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663204A (en) * 1979-10-26 1981-05-29 Fujitsu Ltd Monitor device of film thickness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151602B2 (en) 2002-11-21 2006-12-19 Horiba, Ltd. Particle size distribution analyzer
JP2008191151A (en) * 2007-02-05 2008-08-21 Palo Alto Research Center Inc Distinguishing object
WO2017199615A1 (en) * 2016-05-17 2017-11-23 アズビル株式会社 Particle detection device and method for inspecting particle detection device
JP2017207337A (en) * 2016-05-17 2017-11-24 アズビル株式会社 Particle detection device and inspection method thereof
US10670513B2 (en) 2016-05-17 2020-06-02 Azbil Corporation Particle detecting device and method for inspecting particle detecting device

Similar Documents

Publication Publication Date Title
US3652863A (en) Detection of faults in transparent material using lasers
US5565984A (en) Re-entrant illumination system for particle measuring device
US4917496A (en) Particle size measuring instrument with direct scattered light detection
CA1135971A (en) Radiant energy reradiating flow cell system and method
US7355706B2 (en) Particle detection system implemented with an immersed optical system
GB2126712A (en) Surface flaw inspection apparatus for a convex body
JP2000512764A (en) Inspection apparatus using small-angle topographic method for determining internal structure and composition of object
USRE33213E (en) Light scattering particle detector for wafer processing equipment
US4893929A (en) Particle analyzing apparatus
JPS6258138A (en) Method and apparatus for measuring particle
Kirkwood et al. Imaging backscattered and near to backscattered light in ignition scale plasmas
JPH049464B2 (en)
US3704955A (en) Radiation entrapping, multi-reflection raman sample cell employing a single concave mirror
US4707131A (en) Optical arrangement for photometrical analysis measuring devices
EP0447991B1 (en) Apparatus for measuring the distribution of the size of diffraction-scattering type particles
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
EP0231542A2 (en) Particle detector for wafer processing equipment and method of detecting a particle
JPS61288139A (en) Fine particle detecting device
JPS6258139A (en) Method and apparatus for measuring particle
JPH1062240A (en) Apparatus and method for measuring scattering
RU47547U1 (en) SMOKE DETECTOR
JPH04232837A (en) Light measuring apparatus having scattered light trap
KR101222700B1 (en) Surface plasmon resonance system device
JPH09196841A (en) Scattering type measuring method for particle size distribution
KR100286332B1 (en) In-situ particle monitoring sensor