JPH01183061A - Flat type battery - Google Patents

Flat type battery

Info

Publication number
JPH01183061A
JPH01183061A JP63001652A JP165288A JPH01183061A JP H01183061 A JPH01183061 A JP H01183061A JP 63001652 A JP63001652 A JP 63001652A JP 165288 A JP165288 A JP 165288A JP H01183061 A JPH01183061 A JP H01183061A
Authority
JP
Japan
Prior art keywords
resin layer
melting point
positive
terminal plate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63001652A
Other languages
Japanese (ja)
Inventor
Yoshiaki Asami
義明 阿左美
Yasutaka Kojiyou
湖上 泰任
Tomoaki Kamagata
鎌形 智明
Kunihiko Miyamoto
邦彦 宮本
Hirohito Teraoka
浩仁 寺岡
Shintaro Suzuki
信太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63001652A priority Critical patent/JPH01183061A/en
Publication of JPH01183061A publication Critical patent/JPH01183061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a flat type battery having high performance and high reliability by forming an insulating seal with a hot melt adhesive resin layer having low melting point bonded to a hot melt adhesive resin layer having high melting point bonded to each of positive and negative terminal plates. CONSTITUTION:A resin layer 22a (melting point 130 deg.C) and a resin layer 22b (melting point 100 deg.C) are stacked in order on the periphery of a positive terminal plate 21 and melt-bonded by heating from the terminal plate 21 side at 135 deg.C. A resin layer 24a and a resin layer 24b are melt-bonded to a negative terminal plate in the same way. A power generating element 28 comprising a positive mix 25, a separator 26, and a negative electrode 27 is arranged in the central part of the terminal plate 21, then the terminal plate 23 is arranged so that the resin layer 24b comes in contact with the resin layer 22b. The frame 32 of a fixture 31 kept at 105 deg.C is pressed against the part, corresponding to the resin layer 24a, of the terminal plate 23 to form an insulating seal 29 between the terminal plates 21, 23.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は扁平形電池に関し、特に正負極の端子板を封口
する絶縁封口体の構造を改良した扁平形電池に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flat battery, and more particularly to a flat battery in which the structure of the insulating sealing body that seals the positive and negative terminal plates is improved.

[従来の技術及びその課題] 近年、電子機器の薄型化、小形化に伴いそれらの電源と
なる電池にも薄型化の要求が高まっている。このような
ことから本出願人は厚さをり、0mm以下に薄型化が可
能な第3図に示す構造の扁平形電池を既に提案した。即
ち、図中の1.2は夫々正極及び負極端子板である。こ
れら端子板1.2間には例えば熱融着性樹脂からなる枠
状の絶縁封口体3が介在されている。また、これら端子
板1.2と枠状の絶縁封口体3とにより囲繞された空間
内には、正極合剤シート4、負極シート5と、これら正
極合剤シート4及び負極シート5の間に介在され、非水
電解液を含浸したセパレータ6とからなる発電要素7が
収納されている。そして、前記正負極の両端子板1.2
と絶縁封口体3とか加熱融着されて前記発電要素7が密
閉されている。
[Background Art and its Problems] In recent years, as electronic devices have become thinner and smaller, there has been an increasing demand for thinner batteries that serve as power sources for these devices. For this reason, the present applicant has already proposed a flat battery having the structure shown in FIG. 3, which can be made thinner to 0 mm or less. That is, 1.2 in the figure is a positive electrode terminal plate and a negative electrode terminal plate, respectively. A frame-shaped insulating sealing body 3 made of, for example, heat-fusible resin is interposed between these terminal plates 1.2. In addition, in the space surrounded by the terminal board 1.2 and the frame-shaped insulating sealing body 3, there is a positive electrode mixture sheet 4, a negative electrode sheet 5, and a space between the positive electrode mixture sheet 4 and the negative electrode sheet 5. A power generation element 7 consisting of a separator 6 interposed therebetween and impregnated with a non-aqueous electrolyte is housed. Both the positive and negative terminal plates 1.2
The power generation element 7 is hermetically sealed by heat-sealing the insulating sealing body 3 and the insulating sealing body 3.

ところで、上述した構造の扁平形電池は例えば特開昭8
1−225759号公報のように従来、非水電解液を含
浸したセパレータ6を介し正極合剤シート4と負極シー
ト5を積層して発電要素7を構成して、この発電要素7
を低融点のアイオノマー樹脂を高融点のポリプロピレン
樹脂の両面に配した熱融着性樹脂からなる枠状の絶縁封
口体3で囲繞し、該封口体3の上下面に正負極の端子板
1.2を配置した後、各端子板1.2と前記封口体3と
を加熱融着することにより前記発電要素7を密閉して製
造する方法が採用されている。しかしながら、かかる扁
平形電池にあっては枠状の絶縁封口体3により電解液を
含浸したセパレータ6を含む発電要素7を囲繞した状態
で、封口体3とその樹脂に対して接着性の劣る金属から
なる正負極の端子板1.2とを加熱融着するため、正負
極の端子板側が加熱治具と当接して高温となり封口体の
アイオノマー樹脂層が先に溶融し、該アイオノマー樹脂
の封口体3と端子板1.2との間に電解液が流入して、
接着性が阻害され、封口性の悪化を招くという問題があ
った。
By the way, a flat battery with the above-mentioned structure is disclosed in Japanese Patent Application Laid-open No. 8
As disclosed in Japanese Patent No. 1-225759, a power generation element 7 is conventionally constructed by laminating a positive electrode mixture sheet 4 and a negative electrode sheet 5 with a separator 6 impregnated with a nonaqueous electrolyte interposed therebetween.
is surrounded by a frame-shaped insulating sealing body 3 made of a heat-fusible resin in which a low-melting point ionomer resin is placed on both sides of a high-melting point polypropylene resin, and positive and negative terminal plates 1. After arranging the terminal plates 1.2, the power generation element 7 is manufactured by heat-sealing each terminal plate 1.2 and the sealing body 3 to seal the power generation element 7. However, in such a flat battery, the power generation element 7 including the separator 6 impregnated with an electrolytic solution is surrounded by the frame-shaped insulating sealing body 3, and a metal having poor adhesiveness to the sealing body 3 and its resin is used. In order to thermally fuse the terminal plates 1.2 of the positive and negative electrodes, the terminal plate side of the positive and negative electrodes comes into contact with the heating jig and becomes high temperature, and the ionomer resin layer of the sealing body melts first, causing the sealing of the ionomer resin to melt. Electrolyte flows between the body 3 and the terminal plate 1.2,
There was a problem in that adhesiveness was inhibited, leading to deterioration in sealing properties.

そこで、特開昭61−287257号公報に示す従来電
池すなわち第2図に示すように予め正負極各端子板1.
2の周縁部に低融点のアイオノマー樹脂の熱融着性樹脂
層8a、8bを形成した後、高融点の熱融着性樹脂層8
Cを介してこれらの熱融着性樹脂層88% 8 bを重
ね合せ加熱加圧して該樹脂層8a、8bを高融点の熱融
着性樹脂層8Cに相互に融着することにより絶縁封口体
3を形成し前記発−要゛素7を密閉口せしめる扁平形電
池が知られている。
Therefore, in the conventional battery shown in Japanese Patent Application Laid-Open No. 61-287257, as shown in FIG. 2, each positive and negative terminal plate 1.
After forming heat-fusible resin layers 8a and 8b made of a low-melting point ionomer resin on the peripheral edge of 2, a high-melting-point heat-fusible resin layer 8 is formed.
These heat-fusible resin layers 88% 8b are superimposed via the heat-fusible resin layer 8B and heat-pressed to fuse the resin layers 8a and 8b to the high-melting-point heat-fusible resin layer 8C, thereby sealing the insulation. A flat battery is known in which a body 3 is formed and the power generating element 7 is sealed.

しかしながら、上述した扁平形電池では加熱加圧工程に
おいて正負極端子板1.2の樹脂層8as8bに対応す
る部分に該樹脂層8a、8bの融点付近にまで加熱され
た治具を押し当て行なう。その際、加熱治具から熱は正
負極端子板1.2を伝わり樹脂層8a、8bに達し、さ
らに樹脂層8Cを溶融させる必要がある。そのため加熱
治具の温度は樹脂層8Cの融点以上の温度でなければな
らない。このような理由から電池対日時には樹脂層8c
よりも樹脂層8a、gbの方が早く溶融されその結果、
正負極端子板1.2間に収容された電解液がそれら端子
板1.2と溶融された低融点のアイオノマー樹脂層8 
a、 8 bの界面に流入し、冷却後において各端子板
1.2に対する樹脂層8a、gbの接着不良を招く。従
って、製造された扁平形電池の貯蔵中等において水蒸気
等のガスが絶縁封口体の接着不良箇所を通して内部に侵
入し電池性能を著しく低下させる問題があった。
However, in the above-mentioned flat battery, a jig heated to around the melting point of the resin layers 8a and 8b is pressed against the portions of the positive and negative terminal plates 1.2 corresponding to the resin layers 8as8b in the heating and pressurizing process. At this time, heat from the heating jig must be transmitted through the positive and negative terminal plates 1.2 to reach the resin layers 8a and 8b, and further melt the resin layer 8C. Therefore, the temperature of the heating jig must be higher than the melting point of the resin layer 8C. For this reason, the resin layer 8c is used for batteries.
The resin layers 8a and gb are melted faster than the above, and as a result,
A low melting point ionomer resin layer 8 in which the electrolytic solution accommodated between the positive and negative terminal plates 1.2 is melted with the terminal plates 1.2.
The resin flows into the interface between the resin layers 8a and 8b, causing poor adhesion of the resin layers 8a and 8b to each terminal board 1.2 after cooling. Therefore, during storage of the manufactured flat battery, there is a problem in that gas such as water vapor infiltrates the inside of the battery through poor adhesion of the insulating sealing member, significantly degrading the battery performance.

本発明は、上記従来の問題点を解決するためになされた
もので、絶縁封口体と端子板との接着性を向上して水蒸
気等のガスの侵入を防止できる扁平形電池を提供しよう
とするものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a flat battery that can improve the adhesiveness between the insulating seal and the terminal board and prevent the intrusion of gases such as water vapor. It is something.

[課題を解決するための手段] 本発明は、枠状の絶縁封口体をシート状の正負極の両端
子板の間に介在させ、かつ該両端子板及び封口体で囲ま
れた空間内に電池発電要素を収納した状態で前記封口体
と正負極両端子板とを密閉口した扁平形電池において、
前記絶縁封口体が正負極両端子板に融着された高融点の
熱融着性樹脂層の間に融着された低融点の熱融着性樹脂
層を備えていることを特徴とする扁平形電池である。
[Means for Solving the Problems] The present invention provides for a frame-shaped insulating sealing body to be interposed between both terminal plates of sheet-shaped positive and negative electrodes, and for generating battery power in a space surrounded by both terminal plates and the sealing body. In a flat battery in which the sealing body and both positive and negative terminal plates are sealed in a state where the elements are housed,
A flat structure characterized in that the insulating sealing body is provided with a low-melting point heat-fusible resin layer fused between high-melting point heat-fusible resin layers fused to both the positive and negative terminal plates. It is a type battery.

上記熱融着性樹脂層としては、例えば融点が高いものか
ら順番にポリプロピレン(融点160°C)、変性高密
度ポリエチレン(融点130℃)、変性低密度ポリエチ
レン(融点100℃)、エチレン−酢酸ビニル共重合体
(融点90°C)、アイオノマー樹脂(融点80℃)等
を挙げることができる。こうした樹脂の中で正負極端子
板側に予め形成される熱融着性樹脂層はそれらの間に介
在される熱融着性樹脂層の融点より高いものを選定すれ
ばよい。また、正負極端子板に予め形成された熱融着性
樹脂層の間にそれより融点の低い熱融着性樹脂層を介在
させる手段としては、例えば高融点の樹脂層となるフィ
ルム間にこれよりも低融点の樹脂層となるフィルムをは
さみ、互いに熱融着したラミネートフィルムとして、こ
れを枠状に打抜いて用いられる。これらの高融点と低融
点の熱融着性樹脂の組合せは、ポリプロピレンと変性高
密度ポリエチレン、変性高密度ポリエチレンと変性低密
度ポリエチレン、ポリプロピレンとアイオノマー樹脂あ
るいは変性高密度ポリエチレンとアイオノマー樹脂等が
ある。また、正負極端子板の熱融着性樹脂層の一方もし
くは両者にそれより融点の低い熱融着性樹脂層を発電要
素を組込む前に融着させる方法、加熱加圧の時に正負極
端子板の熱融着性樹脂層間に融点の低い熱融着性樹脂層
を別途介在させる方法を採用し得る。
Examples of the heat-fusible resin layer include, in descending order of melting point, polypropylene (melting point 160°C), modified high-density polyethylene (melting point 130°C), modified low-density polyethylene (melting point 100°C), and ethylene-vinyl acetate. Examples include copolymers (melting point: 90°C), ionomer resins (melting point: 80°C), and the like. Among these resins, a resin having a melting point higher than that of the heat-fusible resin layer interposed between the positive and negative electrode terminal plates may be selected for the heat-fusible resin layer formed in advance on the positive and negative electrode terminal plates. In addition, as a means for interposing a heat-fusible resin layer having a lower melting point between the heat-fusible resin layers previously formed on the positive and negative electrode terminal plates, for example, interposing a heat-fusible resin layer having a lower melting point than the heat-fusible resin layer between the films that will become the high melting point resin layer is possible. It is used as a laminate film in which a film serving as a resin layer with a lower melting point is sandwiched and heat-sealed to each other, and this is punched out into a frame shape. Combinations of these high melting point and low melting point heat-fusible resins include polypropylene and modified high-density polyethylene, modified high-density polyethylene and modified low-density polyethylene, polypropylene and ionomer resin, or modified high-density polyethylene and ionomer resin. In addition, a method of fusing a heat-fusible resin layer with a lower melting point to one or both of the heat-fusible resin layers of the positive and negative terminal plates before incorporating the power generation element, and a method of fusing the heat-fusible resin layer of the positive and negative terminal plates with a heat-fusible resin layer having a lower melting point than that of the heat-fusible resin layer before incorporating the power generation element, A method may be adopted in which a heat-fusible resin layer having a low melting point is separately interposed between the heat-fusible resin layers.

」二記正負極端子板への熱融着樹脂層の形成手段として
は、例えば各端子板へ熱融着性樹脂層を加熱加圧する方
法、または水性もしくは有機溶媒性のディスバージョン
を各端子板上に塗布し乾燥することにより熱融着性樹脂
層を形成する方法等を採用し得る。このようにして製造
された正負極の端子板を加熱封口する場合に、加熱治具
の温度は高融点の樹脂の融着温度より低い温度である。
As a method for forming the heat-fusible resin layer on the positive and negative terminal plates described in 2., for example, a method of heating and pressurizing the heat-fusible resin layer onto each terminal plate, or a method of applying water-based or organic solvent-based dispersion to each terminal plate. A method may be adopted in which a heat-fusible resin layer is formed by coating on top and drying. When sealing the terminal plates of the positive and negative electrodes manufactured in this manner by heating, the temperature of the heating jig is lower than the fusing temperature of the high melting point resin.

[作用] 本発明によれば、高融点の熱融着性樹脂層の間にこれよ
り低融点の熱融着性樹脂層を介在させた後、正負極端子
板側から該低融点の熱融着性樹脂層の溶融温度で加熱加
圧することによって、前記正負極端子板と接する熱融着
性樹脂層の再溶融を生じることなく、正負極端子板と高
融点の熱融着性樹脂層からの電解液の洩れはなくなると
ともにそれら樹脂層間に介在されている融点の低い熱融
着性樹脂層を溶融するので各端子板間にそれらに対して
密着性の優れた絶縁封口体を形成できる。
[Function] According to the present invention, after a heat-fusible resin layer having a lower melting point is interposed between the heat-fusible resin layers having a higher melting point, the heat-fusible resin layer having a lower melting point is inserted from the positive and negative terminal plate sides. By heating and pressurizing at the melting temperature of the adhesive resin layer, the heat-fusible resin layer with a high melting point can be bonded to the positive and negative terminal plates without remelting the heat-fusible resin layer in contact with the positive and negative terminal plates. Since leakage of the electrolytic solution is eliminated and the heat-fusible resin layer with a low melting point interposed between the resin layers is melted, an insulating sealing body with excellent adhesion can be formed between each terminal plate.

その結果、貯蔵中等において正負極端子板と絶縁封口体
の界面を通して水蒸気等のガスが侵入するのを防止した
信頼性の高い扁平形電池を得ることができる。
As a result, it is possible to obtain a highly reliable flat battery that prevents gas such as water vapor from entering through the interface between the positive and negative electrode terminal plates and the insulating sealing body during storage or the like.

[実施例] 以下、本発明の一実施例を第1図を参照にして詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to FIG.

まず、ステンレス鋼製の正極端子板21の周縁に枠状の
変性高密度ポリエチレンフィルム(融点130℃)から
なる樹脂層22aと変性低密度ポリエチレンフィルム(
融点LOO’C)からなる樹脂層22bを順次積層し、
温度135℃の加熱治具を用い3秒間、加圧力2 、に
9 / cJで正極端子板21側がら当接して熱融着し
た。また、ニッケル製の負極端子板23の周縁に枠状の
変性高密度ポリエチレンフィルム(融点130°C)か
らなる樹脂層24aと変性低密度ポリエチレンフィルム
(融点100℃)からなる樹脂層24bをこの順序で積
層し、温度13.5°Cの加熱治具を負極端子板23側
に3秒間、2Kg/ciの加圧力にて熱融着した。つづ
いて、前記正極端子板21の中央部付近に、焼成二酸化
マンガン、アセチレンブラック及びポリテトラフルオロ
エチレンとから構成される正極合剤25と、過塩素酸リ
チウムを溶解しているプロ′ピレンカーボネイトが含浸
されたポリプロピレン不織布製のセパレータ26と、リ
チウムからなる負極27とを順次積層して発電要素28
を配置した。ひきつづき、前記負極端子板23をその樹
脂層24bが前記正極端子板21の樹脂層22b上に接
触するように配置した(第1図(a)図示)。次いで、
前記変性低密度ポリエチレンの融点(100°C)より
やや高い温度105℃にまで加熱された治具31の枠状
部32を前記負極端子板a上の樹脂層24aに対応する
部分に押し当てて3秒間、2に9/clで加熱加圧する
ことによって前記樹脂層22b、24bを溶融、圧着一
体化して正負極端子板21.23間に絶縁封口体29を
形成し扁平形電池を製造した(同図(b)図示)。この
時、正負極端子板21.23に形成された変性高密度ポ
リエチレンフィルムからなる樹脂層22as’24aは
溶融することはなかった。
First, a resin layer 22a made of a frame-shaped modified high-density polyethylene film (melting point 130°C) and a modified low-density polyethylene film (
The resin layers 22b made of melting point LOO'C) are sequentially laminated,
Using a heating jig at a temperature of 135° C., the positive electrode terminal plate 21 was brought into contact with the positive terminal plate 21 side for 3 seconds at a pressing force of 2 to 9/cJ to thermally fuse. Further, a frame-shaped resin layer 24a made of a modified high-density polyethylene film (melting point 130°C) and a resin layer 24b made of a modified low-density polyethylene film (melting point 100°C) are placed in this order around the periphery of the negative electrode terminal plate 23 made of nickel. and a heating jig at a temperature of 13.5° C. was heat-sealed to the negative electrode terminal plate 23 side for 3 seconds at a pressure of 2 kg/ci. Next, near the center of the positive electrode terminal plate 21, a positive electrode mixture 25 composed of calcined manganese dioxide, acetylene black, and polytetrafluoroethylene, and propylene carbonate in which lithium perchlorate is dissolved are placed. A power generation element 28 is constructed by sequentially laminating a separator 26 made of impregnated polypropylene nonwoven fabric and a negative electrode 27 made of lithium.
was placed. Subsequently, the negative terminal plate 23 was placed so that its resin layer 24b was in contact with the resin layer 22b of the positive terminal plate 21 (as shown in FIG. 1(a)). Then,
The frame portion 32 of the jig 31 heated to a temperature of 105° C., which is slightly higher than the melting point (100° C.) of the modified low-density polyethylene, is pressed against the portion corresponding to the resin layer 24a on the negative terminal plate a. The resin layers 22b and 24b were melted and crimped together by heating and pressurizing at 2 to 9/cl for 3 seconds to form an insulating sealing body 29 between the positive and negative terminal plates 21 and 23, thereby manufacturing a flat battery ( Figure (b) shown). At this time, the resin layer 22as'24a made of a modified high-density polyethylene film formed on the positive and negative terminal plates 21 and 23 was not melted.

比較例 変性低密度ポリエチレン(融点too℃)単体のみを用
いて絶縁封口体を構成した以外、本実施例と同一材料を
用い加熱温度105℃として本実施例と同様な方法の加
熱時間および加圧力により扁平形電池を組立でた。
Comparative Example The same materials as in this example were used, the heating temperature was 105°C, and the heating time and pressure were the same as in this example, except that the insulating sealing body was constructed using only modified low-density polyethylene (melting point: too °C). I was able to assemble a flat battery.

しかして、本実施例及び比較例の扁平形電池夫々100
個について、温度60℃、湿度90%で貯蔵し、貯蔵日
数に対する電池の総厚の変化を調べた。その結果、第4
図に示す特性図を得た。なお、図中のAは本実施例の電
池を、Bは比較例の電池を示す。この第4図から明らか
なように、比較例の電池は20日間、の貯蔵前後から総
厚が高くなり30日間の貯蔵で0.2mInも増加する
。これは、貯蔵中に絶縁封口体と正負極端子板との界面
から水蒸気が侵入しリチウムと反応して水素等のガスが
発生したためと考えれる。一方、本実施例の電池は長期
の貯蔵においても総厚にほとんど変化がみられずわずか
に0.’01M増加しただけであった。このことから、
本実施例の電池においては端一子板と絶縁封口体との接
着性が良好であり長期の貯蔵によっても水蒸気等の侵入
がほとんど発生していないことかわかる。
Therefore, each of the flat batteries of this example and the comparative example was 100
Each battery was stored at a temperature of 60° C. and a humidity of 90%, and changes in the total thickness of the battery with respect to the number of days of storage were examined. As a result, the fourth
The characteristic diagram shown in the figure was obtained. In addition, A in the figure shows the battery of this example, and B shows the battery of the comparative example. As is clear from FIG. 4, the total thickness of the battery of the comparative example increases before and after storage for 20 days, increasing by 0.2 mIn after storage for 30 days. This is considered to be because water vapor entered from the interface between the insulating sealing body and the positive and negative terminal plates during storage and reacted with lithium to generate gas such as hydrogen. On the other hand, the total thickness of the battery of this example shows almost no change even after long-term storage, and the total thickness is only 0. '01 It only increased by 1M. From this,
It can be seen that in the battery of this example, the adhesion between the terminal plate and the insulating sealant was good, and almost no intrusion of water vapor or the like occurred even during long-term storage.

なお、上記実施例では、正負極端子板とも平板状の扁平
形電池について説明したがこれに限定されず、正負極端
子板の少なくとも一方が周縁を除く部分を断面台形状に
屈曲された構造の扁平形電池についても同様に適用でき
る。
In the above embodiments, a flat battery in which both the positive and negative terminal plates are flat is described, but the present invention is not limited to this. The same applies to flat batteries.

[発明の効果] 以上詳述したように、本発明によれば端子板に対して絶
縁封口体を良好に接着して水蒸気等のガスの□侵入を防
止でき、ひいては貯蔵時等での電池総厚の増加、ガス発
生、放電容量劣化を防止した高性能、高信頼性の扁平形
電池を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, the insulating sealing member can be well bonded to the terminal board to prevent the intrusion of gases such as water vapor, and as a result, the overall battery size during storage etc. can be prevented. It is possible to provide a high-performance, highly reliable flat battery that prevents increase in thickness, gas generation, and deterioration of discharge capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の実施例における扁平形
電池を得るための製造工程を示す断面図、第2図は従来
の絶縁封口体を改良した扁平形電池の断面図、第3図は
従来の扁平形電池を示す断面図、第4図は60°C19
0%の雰囲気下で電池を貯蔵した際の貯蔵日数に対する
電池の総厚の変化を示す特性図である。 21・・・正極端子板、22a、22b・・・樹脂層、
23・・・負極端子板、24a、24b・・・樹脂層、
25・・・正極合剤、26・・・セパレータ、27・・
・負極、28・・発電要素、29・・絶縁封口体、31
・・・治具。 出願人代理人 弁理士 鈴江武彦 (a) 第2図 r−一一一一一) 第3図 鮪# 、a仏 (1,3’) 第4図
FIGS. 1(a) and (b) are cross-sectional views showing the manufacturing process for obtaining a flat battery according to an embodiment of the present invention; FIG. 2 is a cross-sectional view of a flat battery with an improved conventional insulating seal; Figure 3 is a cross-sectional view of a conventional flat battery, and Figure 4 is a 60°C19
FIG. 3 is a characteristic diagram showing changes in the total thickness of the battery with respect to the number of days of storage when the battery is stored in a 0% atmosphere. 21...Positive terminal plate, 22a, 22b...Resin layer,
23... Negative terminal plate, 24a, 24b... Resin layer,
25... Positive electrode mixture, 26... Separator, 27...
- Negative electrode, 28... Power generation element, 29... Insulating sealing body, 31
···jig. Applicant's agent Patent attorney Takehiko Suzue (a) Figure 2 r-1111) Figure 3 Tuna #, a Buddha (1,3') Figure 4

Claims (1)

【特許請求の範囲】[Claims]  枠状の絶縁封口体をシート状の正負極の両端子板の間
に介在させ、かつ該両端子板及び封口体で囲まれた空間
内に電池発電要素を収納した状態で前記封口体と正負極
両端子板とを密閉口した扁平形電池において、前記絶縁
封口体が正負極両端子板に融着された高融点の熱融着性
樹脂層の間に融着された低融点の熱融着性樹脂層を備え
ていることを特徴とする扁平形電池。
A frame-shaped insulating sealing body is interposed between both the terminal plates of the sheet-shaped positive and negative electrodes, and the battery power generation element is housed in the space surrounded by the terminal plates and the sealing body, and the sealing body and both ends of the positive and negative electrodes are placed. In a flat battery having a sealed port with a daughter plate, the insulating sealing body is a low melting point heat fusible resin layer fused between a high melting point heat fusible resin layer that is fused to both the positive and negative terminal plates. A flat battery characterized by having a resin layer.
JP63001652A 1988-01-07 1988-01-07 Flat type battery Pending JPH01183061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001652A JPH01183061A (en) 1988-01-07 1988-01-07 Flat type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001652A JPH01183061A (en) 1988-01-07 1988-01-07 Flat type battery

Publications (1)

Publication Number Publication Date
JPH01183061A true JPH01183061A (en) 1989-07-20

Family

ID=11507452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001652A Pending JPH01183061A (en) 1988-01-07 1988-01-07 Flat type battery

Country Status (1)

Country Link
JP (1) JPH01183061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248139B1 (en) 1998-03-16 2001-06-19 Sanyo Electric Co., Ltd. Method of manufacturing a sealed battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248139B1 (en) 1998-03-16 2001-06-19 Sanyo Electric Co., Ltd. Method of manufacturing a sealed battery
US6428926B2 (en) 1998-03-16 2002-08-06 Sanyo Electric Co., Ltd. Sealed battery

Similar Documents

Publication Publication Date Title
JPH1055792A (en) Thin battery
JPH11233133A (en) Battery in which laminated sheet is used for sheath case
JPH10261386A (en) Battery case and battery
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP4636223B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP5114018B2 (en) Film-clad electrical device and manufacturing method thereof
JP2000200593A (en) Battery pack
JPH01183061A (en) Flat type battery
JPS6086754A (en) Sheet battery
JP2000353498A (en) Manufacture of thin battery
JP2002190283A (en) Manufacturing method of thin secondary battery and thin secondary battery
JPH087859A (en) Flat cell and manufacture thereof
JP2003086172A (en) Secondary battery and its method of manufacture
JPH05325923A (en) Flat type battery
JP2005259621A (en) Laminated film sheathed battery
JP2000235844A (en) Battery
JPS60220553A (en) Flat-type nonaqueous electrolyte cell
JP2019220333A (en) Stacked battery and method for manufacturing stacked battery
JP2001110374A (en) Manufacturing method of thin cell
JPH11329382A (en) Film-like battery
JP2807292B2 (en) Paper battery
JP2001102034A (en) Method of using lead line for battery, battery of thin film type using the lead line, and lead line for battery
KR100948849B1 (en) Lithium ion polymer cell and sealing methode thereof
JP2017045710A (en) Flat battery
JP2794796B2 (en) Manufacturing method of organic electrolyte battery and its sealing plate