JP2005259621A - Laminated film sheathed battery - Google Patents

Laminated film sheathed battery Download PDF

Info

Publication number
JP2005259621A
JP2005259621A JP2004071893A JP2004071893A JP2005259621A JP 2005259621 A JP2005259621 A JP 2005259621A JP 2004071893 A JP2004071893 A JP 2004071893A JP 2004071893 A JP2004071893 A JP 2004071893A JP 2005259621 A JP2005259621 A JP 2005259621A
Authority
JP
Japan
Prior art keywords
battery
laminated film
electrode
electrode group
resin frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071893A
Other languages
Japanese (ja)
Inventor
Yoshin Yagi
陽心 八木
Yoshimasa Koishikawa
佳正 小石川
Koji Higashimoto
晃二 東本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004071893A priority Critical patent/JP2005259621A/en
Publication of JP2005259621A publication Critical patent/JP2005259621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated film sheathed battery in which a force loaded on electrode groups and heat conduction when heated and sealed can be suppressed, and in which inside short-circuit is reduced. <P>SOLUTION: In the laminated film sheathed battery 1, the outer rim of the sheathed body of the laminated film 2 is thermally fused. In the sheathed body, the electrode groups 10 in which the positive electrodes and the negative electrodes are laminated via a separator and a framed state resin frame 5 to protect the electrode groups 10 are sealed. In the one side of the resin frame 5, a groove part of a roughly U-shaped cross-section is formed in the one face side in the height direction, and into the groove, the electrode terminal is fitted. The electrode terminal is fixed to the outer rim part of the laminated film 2, and taken out to the outside of the laminated film sheathed battery 1. The height h of the resin frame 5 is in the range of 90-110% of the thickness a of the electrode groups. Even if external force is applied, the resin frame 5 protects the electrode groups 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はラミネートフィルム外装電池に係り、特に、正極と負極とをセパレータを介して積層した電極群がラミネートフィルムの外装体内に封入されたラミネートフィルム外装電池に関する。   The present invention relates to a laminated film-clad battery, and more particularly to a laminated film-clad battery in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is enclosed in a laminated film.

近年、電子機器の発達にともない、小型で軽量、かつエネルギー密度が高く、更に繰り返し充放電が可能な非水電解液二次電池の開発が要望されている。このような非水電解液二次電池としては、リチウム又はリチウム合金を負極活物質とする負極と、モリブデン、バナジウム、チタン若しくはニオブ等の酸化物、硫化物又はセレン化物を正極活物質として含む懸濁液が集電体に塗布された正極と、非水電解液とを具備したリチウム二次電池が知られている。また、最近では負極活物質として、例えば、コークス、黒鉛、炭素繊維、樹脂焼成体、熱分解気相炭素等のリチウムイオンを吸蔵放出可能な炭素質材料を含む負極と、正極活物質としてリチウムコバルト複酸化物やリチウムマンガン複酸化物を含む正極とを用いるリチウムイオン二次電池の開発、商品化が活発に行われている。   In recent years, with the development of electronic devices, there has been a demand for development of a non-aqueous electrolyte secondary battery that is small and lightweight, has high energy density, and can be repeatedly charged and discharged. Such a nonaqueous electrolyte secondary battery includes a negative electrode using lithium or a lithium alloy as a negative electrode active material, and an oxide, sulfide, or selenide such as molybdenum, vanadium, titanium, or niobium as a positive electrode active material. A lithium secondary battery including a positive electrode in which a turbid liquid is applied to a current collector and a non-aqueous electrolyte is known. Recently, as a negative electrode active material, for example, a negative electrode including a carbonaceous material capable of occluding and releasing lithium ions such as coke, graphite, carbon fiber, a resin fired body, pyrolytic vapor phase carbon, and lithium cobalt as a positive electrode active material. Development and commercialization of lithium ion secondary batteries using a positive electrode containing a double oxide or a lithium manganese double oxide are being actively carried out.

これらの非水電解液二次電池では、従来、コイン形や円筒形の形態が主流であったが、用途の多様化に伴い角形や長円形等の体積効率の優れた形態を有するものの要求が高まっている。また、更なる軽量化及び小型化を目的として、電極群及び非水電解液を収容する外装体を、従来の金属製外装缶からフィルム材料に変更することが検討されている。このフィルム材料としては、フィルムの内外で水蒸気や酸素等の気体の入出を防止するため、中央にアルミニウム箔等の金属箔が配置されており、最外層に金属箔を物理的衝撃から保護するポリアミド樹脂等の樹脂層が、最内層にポリプロピレン樹脂等の熱融着性樹脂層がそれぞれ形成された多層フィルム(以下、ラミネートフィルムという。)が一般的に用いられている。   Conventionally, in these nonaqueous electrolyte secondary batteries, coin-shaped and cylindrical shapes have been mainstream, but with the diversification of applications, there is a demand for those having excellent volume-efficiency shapes such as square and oval. It is growing. In addition, for the purpose of further reducing the weight and size, it has been studied to change the electrode body and the exterior body containing the nonaqueous electrolyte from a conventional metal exterior can to a film material. As this film material, in order to prevent gas such as water vapor and oxygen from entering and exiting the inside and outside of the film, a metal foil such as an aluminum foil is arranged in the center, and the outermost layer protects the metal foil from physical impact. A multilayer film (hereinafter referred to as a laminate film) in which a resin layer such as a resin is formed and a heat-fusible resin layer such as a polypropylene resin is formed in the innermost layer is generally used.

外装体にラミネートフィルムを用いたラミネートフィルム外装電池では、2枚のラミネートフィルム間に、電極群と熱融着性樹脂層とが接するように配置され、2枚のラミネートフィルムの4辺(周縁)が加熱密封されることで、非水電解液と共に、外装体内に封入される。このとき、電極群に接続された電極端子がラミネートフィルムの融着部に挟み込まれる。従って、発電要素が軽量のラミネートフィルム内に封入されるので、電池の軽量化を図ることができる。また、加熱圧着を減圧雰囲気下で行うことで、ラミネートフィルムの外装体内が減圧状態となるため、ラミネートフィルム外装電池には外部から大気圧が掛かり、正負極がセパレータを介して適度に加圧(拘束)されるので、電池の出力を向上させることができる。   In a laminate film package battery using a laminate film as an exterior body, the electrode group and the heat-fusible resin layer are disposed between two laminate films so that the four sides (periphery) of the two laminate films are in contact with each other. Is sealed in the exterior together with the non-aqueous electrolyte. At this time, the electrode terminal connected to the electrode group is sandwiched between the fused portions of the laminate film. Therefore, since the power generation element is enclosed in the lightweight laminate film, the weight of the battery can be reduced. In addition, by performing thermocompression bonding in a reduced-pressure atmosphere, the laminate film exterior is in a reduced-pressure state, so the laminate-film exterior battery is exposed to atmospheric pressure from the outside, and the positive and negative electrodes are appropriately pressurized via the separator ( The battery output can be improved.

一方、ラミネートフィルムは、従来の金属製外装缶のような強度がない。このため、例えば、非水電解液成分の蒸気等により電池内圧が上昇すると、電池が膨張し容易に形状変化が生じる。これを回避するため、発電要素とラミネートフィルムとの間に絶縁性の接着層を備える技術が開示されている(例えば、特許文献1参照)。   On the other hand, the laminate film is not as strong as the conventional metal outer can. For this reason, for example, when the battery internal pressure rises due to the vapor of the non-aqueous electrolyte component, the battery expands and easily changes its shape. In order to avoid this, a technique is disclosed that includes an insulating adhesive layer between a power generation element and a laminate film (see, for example, Patent Document 1).

特開2003−151512号公報JP 2003-151512 A

しかしながら、電池作製時に電池内部が減圧状態になると、ラミネートフィルムが発電要素(電極群)に沿って変形するため、ラミネートフィルムが発電要素の外周部に押し付けられる。このため、発電要素の外周部に大きな力がかかるので、発電要素の損傷やこれに伴う活物質層の剥離が起こり易くなる。また、発電要素の封入時にラミネートフィルムが加熱密封されるため、この熱が発電要素に伝導して正極及び負極間のセパレータの収縮や溶融が起こるおそれもある。これらの現象が起こると内部短絡が発生しやすくなるので、電池の歩留まりが悪くなり、電池の生産性を著しく低下させる。更に、複数のラミネートフィルム外装電池を組み合わせて使用する場合にも電池外部から力が加わることがあるため、発電要素の損傷等を引き起こすことがある。   However, when the inside of the battery is in a reduced pressure state when the battery is manufactured, the laminate film is deformed along the power generation element (electrode group), so that the laminate film is pressed against the outer peripheral portion of the power generation element. For this reason, since a large force is applied to the outer peripheral portion of the power generation element, the power generation element is easily damaged and the active material layer is easily separated. In addition, since the laminate film is heated and sealed when the power generation element is sealed, the heat may be conducted to the power generation element and the separator between the positive electrode and the negative electrode may contract or melt. When these phenomena occur, an internal short circuit is likely to occur, resulting in poor battery yield and markedly reduced battery productivity. Further, when a plurality of laminated film-clad batteries are used in combination, force may be applied from the outside of the battery, which may cause damage to the power generation element.

本発明は上記事案に鑑み、電極群にかかる力及び加熱密封時の熱伝導を抑制可能で内部短絡を減少させたラミネートフィルム外装電池を提供することを課題とする。   An object of the present invention is to provide a laminated film-clad battery in which the force applied to the electrode group and the heat conduction at the time of heat sealing can be suppressed and the internal short circuit is reduced.

上記課題を解決するために、本発明は、正極と負極とをセパレータを介して積層した電極群がラミネートフィルムの外装体内に封入されたラミネートフィルム外装電池において、前記電極群の周囲に前記電極群を保護する枠状の保護部材を備えたことを特徴とする。   In order to solve the above problems, the present invention provides a laminated film-clad battery in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is enclosed in a laminate film outer package, and the electrode group is disposed around the electrode group. A frame-shaped protective member for protecting the frame is provided.

本発明では、ラミネートフィルムの外装体内に正極と負極とをセパレータを介して積層した電極群の周囲に電極群を保護する枠状の保護部材を備えるため、外部から力が加えられても電極群が枠状の保護部材で保護されるので、電極群の損傷が防止されると共に、ラミネートフィルムの加熱密封時の電極群への熱伝導が遮断されてセパレータの溶融や収縮が抑制されるので、内部短絡を減少させることができる。   In the present invention, since the frame-shaped protective member for protecting the electrode group is provided around the electrode group in which the positive electrode and the negative electrode are laminated via the separator in the laminate film outer package, the electrode group can be applied even if force is applied from the outside. Is protected by a frame-shaped protective member, so that damage to the electrode group is prevented, and heat conduction to the electrode group at the time of heat sealing of the laminate film is interrupted, so that melting and shrinkage of the separator are suppressed. Internal short circuit can be reduced.

この場合において、保護部材の高さが電極群の厚さの90%より小さいと、保護部材の高さを越える部分で電極群に外力が作用し、保護部材の高さが電極群の厚さの110%より大きいと、正極負極間の拘束力が低下し出力低下を引き起こすので、保護部材の高さを電極群の厚さの90%以上110%以下とすることが好ましい。また、保護部材に、電極群に接続された電極端子を支持する溝が形成されていれば、電極端子に外力が作用しても電極端子が溝で支持されるので、電極端子が溝で移動を規制されるため、外力による電極端子の疲労及び電極端子が挟み込まれたラミネートフィルムの融着部にかかる力を抑制することができる。   In this case, if the height of the protective member is smaller than 90% of the thickness of the electrode group, an external force acts on the electrode group at a portion exceeding the height of the protective member, and the height of the protective member is the thickness of the electrode group. If it is larger than 110%, the binding force between the positive electrode and the negative electrode is reduced, and the output is reduced. Therefore, the height of the protective member is preferably 90% to 110% of the thickness of the electrode group. In addition, if the protective member has a groove for supporting the electrode terminal connected to the electrode group, the electrode terminal is supported by the groove even if an external force is applied to the electrode terminal. Therefore, the fatigue of the electrode terminal due to external force and the force applied to the fused portion of the laminate film in which the electrode terminal is sandwiched can be suppressed.

本発明によれば、ラミネートフィルムの外装体内に電極群の周囲に電極群を保護する保護部材を備えるため、外部から力が加えられても電極群の損傷が防止されると共に、ラミネートフィルムの加熱密封時の電極群への熱伝導が遮断されてセパレータの溶融や収縮が抑制されるので、内部短絡を減少させることができる、という効果を得ることができる。   According to the present invention, since the protective member for protecting the electrode group is provided around the electrode group in the laminate body of the laminate film, the electrode group is prevented from being damaged even when an external force is applied, and the laminate film is heated. Since heat conduction to the electrode group at the time of sealing is interrupted and the melting and shrinkage of the separator are suppressed, an effect that the internal short circuit can be reduced can be obtained.

以下、図面を参照して、本発明に係るラミネートフィルム外装電池の実施の形態について説明する。   Hereinafter, an embodiment of a laminated film-clad battery according to the present invention will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態のラミネートフィルム外装電池1は、一面側(図1の下側)が略平坦で他面側(上側)が凸状の形状を有している。ラミネートフィルム外装電池1は、外装体のラミネートフィルム2の外縁部の4辺が熱融着で封止されている。ラミネートフィルム外装電池1の外縁部の1辺からは、正負極の電極端子3がそれぞれ導出されており、電極端子3はラミネートフィルム2の融着部で固定(支持)されている。図2に示すように、ラミネートフィルム2の外装体内には、正負極がセパレータを介して積層された電極群10、電極群10を保護する保護部材としての枠状の樹脂枠5及び図示を省略した非水電解液が封入されている。樹脂枠5は、電極群10の4側面(全周)に配置されている。
(Constitution)
As shown in FIG. 1, the laminated film-clad battery 1 of the present embodiment has a shape in which one surface side (lower side in FIG. 1) is substantially flat and the other surface side (upper side) is convex. In the laminated film-clad battery 1, the four sides of the outer edge portion of the laminated film 2 of the outer package are sealed by heat sealing. Positive and negative electrode terminals 3 are led out from one side of the outer edge portion of the laminated film-clad battery 1, and the electrode terminals 3 are fixed (supported) at the fusion part of the laminated film 2. As shown in FIG. 2, an electrode group 10 in which positive and negative electrodes are laminated via a separator, a frame-shaped resin frame 5 as a protective member for protecting the electrode group 10, and illustration are omitted in the exterior of the laminate film 2. The non-aqueous electrolyte solution is enclosed. The resin frame 5 is disposed on the four side surfaces (entire circumference) of the electrode group 10.

ラミネートフィルム2には、基材となる金属箔、金属箔を保護する保護樹脂層及び熱融着樹脂層で構成された三層構造の多層膜が用いられている。ラミネートフィルム2は、保護樹脂層、金属箔、熱融着樹脂層がこの順に接着剤を介して積層されプレス加工で成形されている。金属箔には、厚さ40μmのアルミニウム箔が用いられている。このアルミニウム箔が水蒸気及び酸素等の気体の入出を防止するため、ラミネートフィルム2はガスバリア性を有している。保護樹脂層には厚さ25μmのナイロン製フィルム、熱融着樹脂層にはポリプロピレン(以下、PPと略記する。)製フィルムがそれぞれ用いられている。   For the laminate film 2, a multilayer film having a three-layer structure including a metal foil serving as a base material, a protective resin layer protecting the metal foil, and a heat-sealing resin layer is used. In the laminate film 2, a protective resin layer, a metal foil, and a heat-sealing resin layer are laminated in this order via an adhesive and are formed by press working. As the metal foil, an aluminum foil having a thickness of 40 μm is used. Since this aluminum foil prevents the entry and exit of gases such as water vapor and oxygen, the laminate film 2 has gas barrier properties. A 25 μm-thick nylon film is used for the protective resin layer, and a polypropylene (hereinafter abbreviated as PP) film is used for the heat-sealing resin layer.

図3に示すように、電極群10は、正極11と負極12との複数枚ずつがセパレータ13を介して垂直方向に積層された構造を有している。正極11と負極12とは、上下両端が負極12となるように1枚ずつ交互に積層されており、これら正極11と負極12との間にそれぞれ1枚ずつのセパレータ13が積層されている。このとき、各正極11に接続された図示しない正極リード片が電極群10の1辺の一側に、各負極12に接続された不図示の負極リード片が他側に位置するように積層されている。ラミネートフィルム外装電池1では、正極11と負極12との内部短絡を防止するために、正極11が負極12より若干小さいサイズに裁断されている。セパレータ13には、正負極間の絶縁を図ると共に、電極群10の小型化を図り樹脂枠5の内側に挿入するために、負極12と同じサイズに裁断された微多孔性のPP製フィルムが用いられている。電極群10の厚さaは、電極群10の積層方向の上下両端間の距離を示している。なお、図3において、電極群10の構成を分かり易くするため、正極11、負極12及びセパレータ13の厚さを実際よりも厚く示している。   As shown in FIG. 3, the electrode group 10 has a structure in which a plurality of positive electrodes 11 and negative electrodes 12 are stacked in the vertical direction via separators 13. The positive electrode 11 and the negative electrode 12 are alternately stacked one by one so that the upper and lower ends become the negative electrode 12, and one separator 13 is stacked between each of the positive electrode 11 and the negative electrode 12. At this time, the positive electrode lead piece (not shown) connected to each positive electrode 11 is laminated on one side of the electrode group 10 and the negative lead piece (not shown) connected to each negative electrode 12 is laminated on the other side. ing. In the laminated film exterior battery 1, the positive electrode 11 is cut to a size slightly smaller than the negative electrode 12 in order to prevent an internal short circuit between the positive electrode 11 and the negative electrode 12. The separator 13 is made of a microporous PP film cut to the same size as the negative electrode 12 in order to achieve insulation between the positive and negative electrodes and to reduce the size of the electrode group 10 and insert it inside the resin frame 5. It is used. The thickness a of the electrode group 10 indicates the distance between the upper and lower ends in the stacking direction of the electrode group 10. In FIG. 3, the thicknesses of the positive electrode 11, the negative electrode 12, and the separator 13 are shown to be thicker than the actual thickness for easy understanding of the configuration of the electrode group 10.

正極リード片及び負極リード片は、それぞれ全てが集合されて正負極の電極端子3にそれぞれ接続されている。正極の電極端子3にはアルミニウム板が、負極の電極端子3にはニッケル板がそれぞれ用いられている。正負極の電極端子3は、断面が厚さ0.3mm、幅15mmの矩形の形状とされている。正負極の電極端子3の外周には、シールテープとして厚さ100μm、幅10mmのPP製テープが貼り付けられている。   All of the positive electrode lead piece and the negative electrode lead piece are assembled and connected to the positive and negative electrode terminals 3, respectively. An aluminum plate is used for the positive electrode terminal 3 and a nickel plate is used for the negative electrode terminal 3. The positive and negative electrode terminals 3 have a rectangular cross section with a thickness of 0.3 mm and a width of 15 mm. A PP tape having a thickness of 100 μm and a width of 10 mm is attached to the outer periphery of the positive and negative electrode terminals 3 as a seal tape.

正極11には、正極活物質としてリチウムマンガン複合酸化物が用いられている。正極11は、厚さ20μmのアルミニウム箔(正極集電体)の両面に正極合剤が塗着されており、厚さ90μmの薄板状で方形の形状を有している。正極集電体の一辺の一側には、アルミニウム製で帯状の正極リード片が超音波溶接で接続されている。正極合剤には、正極活物質100重量部に対して、導電剤として10重量部の鱗片状黒鉛及び結着剤として5重量部のポリフッ化ビニリデン(以下、PVDFと略記する。)が配合されている。なお、正極11は、正極合剤の成分に分散溶媒としてN−メチルピロリドン(以下、NMPと略記する。)を添加、混練したスラリをアルミニウム箔に塗布後、乾燥、プレスすることで成形されている。   The positive electrode 11 uses a lithium manganese composite oxide as a positive electrode active material. The positive electrode 11 has a positive electrode mixture coated on both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 μm, and has a thin plate shape with a thickness of 90 μm and a rectangular shape. A band-like positive electrode lead piece made of aluminum is connected to one side of one side of the positive electrode current collector by ultrasonic welding. In the positive electrode mixture, 10 parts by weight of flaky graphite as a conductive agent and 5 parts by weight of polyvinylidene fluoride (hereinafter abbreviated as PVDF) are blended as a conductive agent with respect to 100 parts by weight of the positive electrode active material. ing. The positive electrode 11 is formed by adding N-methylpyrrolidone (hereinafter abbreviated as NMP) as a dispersion solvent to the components of the positive electrode mixture, applying the kneaded slurry to an aluminum foil, and then drying and pressing. Yes.

一方、負極12には、負極活物質として黒鉛粉末が用いられている。負極12は、厚さ10μmの圧延銅箔(負極集電体)の両面に負極合剤が塗着されており、70μmの薄板状で方形の形状を有している。負極集電体の一辺の一側には、銅製で帯状の負極リード片が超音波溶接で接続されている。負極合剤には、負極活物質90重量部に対して、結着剤のPVDF10重量部が配合されている。なお、負極12は、負極合剤の成分に分散溶媒としてNMPを添加、混練したスラリを圧延銅箔に塗布後、乾燥、プレスすることで成形されている。   On the other hand, graphite powder is used for the negative electrode 12 as a negative electrode active material. The negative electrode 12 has a negative electrode mixture coated on both sides of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm, and has a thin plate shape of 70 μm and a square shape. A copper strip-like negative electrode lead piece is connected to one side of one side of the negative electrode current collector by ultrasonic welding. In the negative electrode mixture, 10 parts by weight of PVDF as a binder is blended with 90 parts by weight of the negative electrode active material. The negative electrode 12 is formed by adding NMP as a dispersion solvent to the components of the negative electrode mixture and applying a kneaded slurry to the rolled copper foil, followed by drying and pressing.

図4に示すように、樹脂枠5は、PP樹脂製で内側に電極群10を挿入可能な枠状とされている。樹脂枠5の1辺には、挿入する電極群10の積層方向(厚さa方向)の片面に正負極の電極端子3を支持する断面略コ字状の2つの溝部6が形成されている。溝部6は、上述した大きさの電極端子3を嵌合可能な大きさに形成されている。樹脂枠5の高さhは、電極群10の厚さa(図3参照)に対し、90〜110%の範囲に設定されている。   As shown in FIG. 4, the resin frame 5 is made of PP resin and has a frame shape into which the electrode group 10 can be inserted. On one side of the resin frame 5, two grooves 6 having a substantially U-shaped cross section for supporting the positive and negative electrode terminals 3 are formed on one side in the stacking direction (thickness a direction) of the electrode group 10 to be inserted. . The groove 6 is formed in a size that allows the electrode terminal 3 having the above-described size to be fitted therein. The height h of the resin frame 5 is set in the range of 90 to 110% with respect to the thickness a of the electrode group 10 (see FIG. 3).

なお、非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶媒にリチウム塩(電解質)として6フッ化リン酸リチウム(LiPF)を1モル/リットル(1M)溶解したものが用いられている。 In addition, 1 mol / liter (1M) of lithium hexafluorophosphate (LiPF 6 ) as a lithium salt (electrolyte) is dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) in the non-aqueous electrolyte. Is used.

(電池組立)
ラミネートフィルム外装電池1の組立では、まず、電極群10を樹脂枠5の内側に挿入する。このとき、正負極の電極端子3を樹脂枠5の2つの溝部6にそれぞれ嵌合させる。次に、樹脂枠5の形状に合わせて凹部が形成されたシリコンゴム製の受け台にラミネートフィルム2を載置し、内側に電極群10を挿入した樹脂枠5を受け台の凹部に合わせてラミネートフィルム2上に載置する。これにより、ラミネートフィルム2が受け台の凹部に沿って変形し、電極群10及び樹脂枠5が凹部に入り込む。
(Battery assembly)
In assembling the laminated film-clad battery 1, first, the electrode group 10 is inserted inside the resin frame 5. At this time, the positive and negative electrode terminals 3 are fitted into the two grooves 6 of the resin frame 5, respectively. Next, the laminate film 2 is placed on a cradle made of silicon rubber having a recess formed in accordance with the shape of the resin frame 5, and the resin frame 5 with the electrode group 10 inserted therein is aligned with the recess of the cradle. Place on the laminate film 2. Thereby, the laminate film 2 is deformed along the recess of the cradle, and the electrode group 10 and the resin frame 5 enter the recess.

次いで、変形したラミネートフィルム2の凹部に非水電解液を注入後、別のラミネートフィルム2を被せて2枚のラミネートフィルムの外縁部を重ね合わせる。このとき、正負極の電極端子3の先端部がラミネートフィルム2の外縁部から外側に突出するようにしておく。続いて、重ね合わせたラミネートフィルム2の上側にPP製フィルムの溶融温度の170〜190°C程度に加熱した金属板を押し当て、減圧雰囲気下でラミネートフィルム2の外縁部を加熱圧着して2枚のラミネートフィルム2を熱融着させる。これにより、熱融着部の電極端子3の周囲には、軟化したPP樹脂が密着して隙間が充塞され、密閉構造のラミネートフィルム外装電池1の組立が完成する。   Next, after injecting the non-aqueous electrolyte into the concave portion of the deformed laminate film 2, another laminate film 2 is covered and the outer edges of the two laminate films are overlapped. At this time, the tips of the positive and negative electrode terminals 3 are projected outward from the outer edge of the laminate film 2. Subsequently, a metal plate heated to about 170 to 190 ° C., which is the melting temperature of the PP film, is pressed on the upper side of the laminated laminate film 2, and the outer edge portion of the laminate film 2 is thermocompression-bonded under a reduced pressure atmosphere. The laminated film 2 is heat-sealed. As a result, the softened PP resin is brought into close contact with the periphery of the electrode terminal 3 in the heat-sealed portion, and the gap is filled, and the assembly of the laminated film-clad battery 1 having a sealed structure is completed.

(作用等)
図5に示すように、樹脂枠5を具備せずに電極群10のみがラミネートフィルム2の外装体内に封入された従来のラミネートフィルム外装電池20では、電池の内部が減圧状態とされているので、外部から大気圧で押され、電極群10の外周部に大きな力がかかる。このため、正極、負極の外周部の折れ曲がりやこれに伴う活物質層の剥離等の電極群10の損傷を引き起こし、電極群10の外周部で内部短絡等の不良が発生する。また、ラミネートフィルム2の外縁部の加熱圧着が170〜190°C程度で行われるため、この熱が電極群10を構成しているセパレータ13に伝導し、セパレータ13が収縮や溶融を起こして、同様に内部短絡等の不良が発生する場合がある。
(Action etc.)
As shown in FIG. 5, in the conventional laminated film-clad battery 20 in which only the electrode group 10 is enclosed in the outer package of the laminate film 2 without the resin frame 5, the inside of the battery is in a reduced pressure state. A large force is applied to the outer peripheral portion of the electrode group 10 by being pressed from the outside at atmospheric pressure. For this reason, damage to the electrode group 10 such as bending of the outer peripheral portions of the positive electrode and the negative electrode and accompanying peeling of the active material layer is caused, and defects such as an internal short circuit occur at the outer peripheral portion of the electrode group 10. In addition, since the thermocompression bonding of the outer edge portion of the laminate film 2 is performed at about 170 to 190 ° C., this heat is conducted to the separator 13 constituting the electrode group 10, and the separator 13 contracts and melts, Similarly, a defect such as an internal short circuit may occur.

本実施形態のラミネートフィルム外装電池1では、電池作製時に、電極群10が樹脂枠5内に挿入されて樹脂枠5と共にラミネートフィルム2の外装体内に封入される。このため、電極群10の封入時には、ラミネートフィルム2が樹脂枠5の形状に沿って変形するので、電池内部が減圧状態となり外部から大気圧で押されても、電極群10の外周部には力がかからず、電極群10の外周部の折れ曲がりや活物質層の剥離等の損傷を防止することができる(図2参照)。また、ラミネートフィルム2の加熱圧着時には、電極群10への熱伝導が樹脂枠5で遮断されるので、セパレータ13の溶融や収縮も防止することができる。従って、本実施形態のラミネートフィルム外装電池1では、内部短絡を発生することなく作製することができるので、電池作製時の不良率を低減することができる。   In the laminated film exterior battery 1 of the present embodiment, the electrode group 10 is inserted into the resin frame 5 and enclosed in the exterior body of the laminate film 2 together with the resin frame 5 when the battery is manufactured. For this reason, when the electrode group 10 is sealed, the laminate film 2 is deformed along the shape of the resin frame 5, so that even if the inside of the battery is in a reduced pressure state and is pressed from the outside at atmospheric pressure, No force is applied, and damage such as bending of the outer peripheral portion of the electrode group 10 and peeling of the active material layer can be prevented (see FIG. 2). Moreover, since the heat conduction to the electrode group 10 is blocked by the resin frame 5 when the laminate film 2 is thermocompression bonded, the separator 13 can be prevented from melting and shrinking. Therefore, since the laminated film-clad battery 1 according to the present embodiment can be produced without causing an internal short circuit, the defective rate during battery production can be reduced.

また、本実施形態のラミネートフィルム外装電池1では、使用時においても、樹脂枠5が電極群10を保護するため、外部から力が加えられても電極群10にかかる力が抑制されるので、電極群10の損傷を防止してラミネートフィルム外装電池1を長期間に亘り使用することが可能となる。更に、複数個のラミネートフィルム外装電池1を組み合わせた組電池として使用する場合に、外部から力が加えられても個々の電池の電極群10にかかる力が樹脂枠5で抑制されるので、電極群10の損傷を引き起こすことなく組電池を使用することができる。   Further, in the laminated film-clad battery 1 of the present embodiment, even when in use, the resin frame 5 protects the electrode group 10, so that the force applied to the electrode group 10 is suppressed even when a force is applied from the outside. It is possible to prevent damage to the electrode group 10 and use the laminated film-clad battery 1 for a long period of time. Furthermore, when using as an assembled battery in which a plurality of laminated film-clad batteries 1 are combined, the force applied to the electrode group 10 of each battery is suppressed by the resin frame 5 even when a force is applied from the outside. The assembled battery can be used without causing damage to the group 10.

更に、樹脂枠5をラミネートフィルム外装電池1の外側に配置すると、電池より大きい樹脂枠を使用するため、電池全体が大きくなり、特に、組電池では全体が相当の大きさとなる。本実施形態のラミネートフィルム外装電池1では、樹脂枠5がラミネートフィルム2の外装体内に封入されるため、ラミネートフィルム外装電池1をコンパクトにすることができる。   Furthermore, when the resin frame 5 is disposed outside the laminated film-clad battery 1, since the resin frame larger than the battery is used, the entire battery becomes large. In particular, the assembled battery has a considerable size. In the laminated film-clad battery 1 of the present embodiment, since the resin frame 5 is enclosed in the laminated body of the laminated film 2, the laminated film-clad battery 1 can be made compact.

また更に、外部に突出した電極端子3の先端部には配線接続等の外力がかかりやすい。このため、従来のラミネートフィルム外装電池20では、電極端子3が固定されたラミネートフィルム2の融着部や電極端子3と接続された電極群10に力がかかるので、融着部の破損(密閉性の低下)や電極群10の損傷を引き起こす。本実施形態のラミネートフィルム外装電池1では、電極端子3が樹脂枠5の1辺に形成された溝部6に支持されている。このため、電極端子3に外力が加えられても、電極端子3の移動が溝部6で防止されるので、外力による電極端子3の疲労を抑制し、融着部の破損や電極群10の損傷を抑制することができる。   Furthermore, an external force such as wiring connection is likely to be applied to the tip of the electrode terminal 3 protruding outward. For this reason, in the conventional laminated film-clad battery 20, force is applied to the fused portion of the laminated film 2 to which the electrode terminal 3 is fixed and the electrode group 10 connected to the electrode terminal 3. The electrode group 10 is damaged). In the laminated film-clad battery 1 of this embodiment, the electrode terminal 3 is supported by a groove 6 formed on one side of the resin frame 5. For this reason, even if an external force is applied to the electrode terminal 3, the movement of the electrode terminal 3 is prevented by the groove 6. Therefore, fatigue of the electrode terminal 3 due to the external force is suppressed, and the fusion part is damaged or the electrode group 10 is damaged. Can be suppressed.

次に、本実施形態に従って作製したラミネートフィルム外装電池1の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。   Next, examples of the laminated film-clad battery 1 manufactured according to this embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、電極群10の厚さaに対する樹脂枠5の高さhの割合を85%として、ラミネートフィルム外装電池1を作製した。
(Example 1)
As shown in Table 1 below, in Example 1, the laminated film-clad battery 1 was manufactured with the ratio of the height h of the resin frame 5 to the thickness a of the electrode group 10 being 85%.

(実施例2〜実施例5)
表1に示すように、実施例2〜実施例5では、電極群10の厚さaに対する樹脂枠5の高さhの割合を変える以外は実施例1と同様にした。厚さaに対する高さhの割合を、実施例2では90%とし、実施例3では100%とし、実施例4では110%とし、実施例5では115%とした。
(Example 2 to Example 5)
As shown in Table 1, Example 2 to Example 5 were the same as Example 1 except that the ratio of the height h of the resin frame 5 to the thickness a of the electrode group 10 was changed. The ratio of the height h to the thickness a was 90% in Example 2, 100% in Example 3, 110% in Example 4, and 115% in Example 5.

(比較例1)
表1に示すように、比較例1では、樹脂枠5を配置せず、電極群10のみをラミネートフィルム2内に封入した。すなわち、比較例1の電池は、従来のラミネートフィルム外装電池である。
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, the resin frame 5 was not disposed, and only the electrode group 10 was enclosed in the laminate film 2. That is, the battery of Comparative Example 1 is a conventional laminated film-clad battery.

<試験・評価>
以上のようにして作製した実施例及び比較例の各電池20個について、以下の試験を行い評価した。
<Test and evaluation>
The following tests were performed and evaluated for each of the 20 batteries of Examples and Comparative Examples produced as described above.

非水電解液の注液前に、各電池の正負極端子間の抵抗をデジタルマルチメータで測定するショートチェックを行い、抵抗値が50MΩ以上の電池を良品とした。この結果から、試験電池数に対する不良品の割合を百分率で算出して各電池の作製時の不良率とした。次に、実施例及び比較例の各電池を、環境温度25±2°Cの雰囲気下において、充電した後放電して初期化を行った。充電条件は、4.1V定電圧、制限電流5A、2.5時間とし、放電条件は、1A定電流、終止電圧2.7Vとした。更に、各電池を上述した充電条件で充電(満充電状態)した後、環境温度25±2°Cの雰囲気下において、出力を測定した。測定では、10A、30A、90Aの電流値で各10秒間放電し、横軸電流値に対して、各5秒目の電池電圧値を縦軸にプロットした。3点を直線近似した直線が終止電圧である2.7Vと交差する点の電流値を読み取り、この電流値と2.7Vとの積をその電池の出力とした。測定した不良率及び出力の結果から、各電池の総合評価を行った。総合評価では、不良が発生せず出力に優れた電池を◎、若干の不良が発生した電池を○、出力が若干低下した電池を△、不良が著しく増加した電池を×でそれぞれ示した。下表2に各電池の不良率、出力及び総合評価の結果を示す。   Before injecting the non-aqueous electrolyte, a short check was performed in which the resistance between the positive and negative terminals of each battery was measured with a digital multimeter, and a battery having a resistance value of 50 MΩ or higher was determined as a good product. From this result, the ratio of defective products with respect to the number of test batteries was calculated as a percentage to obtain the defective rate at the time of manufacturing each battery. Next, each battery of the example and the comparative example was initialized after being charged and discharged in an atmosphere having an environmental temperature of 25 ± 2 ° C. Charging conditions were 4.1V constant voltage, limiting current 5A, 2.5 hours, and discharging conditions were 1A constant current, final voltage 2.7V. Furthermore, after each battery was charged under the above-mentioned charging conditions (fully charged state), the output was measured in an atmosphere having an environmental temperature of 25 ± 2 ° C. In the measurement, discharge was performed at current values of 10A, 30A, and 90A for 10 seconds each, and the battery voltage value at each 5 seconds was plotted on the vertical axis with respect to the horizontal axis current value. A current value at a point where a straight line obtained by approximating three points intersected with 2.7 V, which is the end voltage, was read, and the product of this current value and 2.7 V was used as the output of the battery. Based on the measured defect rate and output results, a comprehensive evaluation of each battery was performed. In the overall evaluation, a battery having no defect and excellent output was indicated by 、, a battery having a slight defect was indicated by ◯, a battery having a slightly reduced output was indicated by Δ, and a battery having a markedly increased defect was indicated by ×. Table 2 below shows the failure rate, output, and comprehensive evaluation results for each battery.

表2に示すように、樹脂枠5を配置せずに作製した比較例1の電池では、不良率が50%となり、十分な生産性を得ることができなかった。これに対し、樹脂枠5で電極群10の周囲を保護し、樹脂枠5の高さhを電極群10の厚さaの85〜115%の範囲とした実施例1〜5の電池では、不良率が著しく低下しており良好な結果を得ることができた。このことから、樹脂枠5の高さhは、電極群10の厚さaの85%以上115%以下とすることが好ましいことが判った。   As shown in Table 2, in the battery of Comparative Example 1 manufactured without arranging the resin frame 5, the defect rate was 50%, and sufficient productivity could not be obtained. On the other hand, in the batteries of Examples 1 to 5 in which the periphery of the electrode group 10 is protected by the resin frame 5 and the height h of the resin frame 5 is in the range of 85 to 115% of the thickness a of the electrode group 10, The defective rate was significantly reduced, and good results could be obtained. From this, it was found that the height h of the resin frame 5 is preferably 85% or more and 115% or less of the thickness a of the electrode group 10.

また、樹脂枠5の高さhを電極群10の厚さaの85%とした実施例1の電池では、比較例1の電池に比べ不良率は改善されたものの、不良率5%で不良品が発生した。反対に、樹脂枠5の高さhを電極群10の厚さaの115%とした実施例5の電池では、不良率0%で不良品は発生しなかったものの、出力が他の電池と比較して15%程度低下する結果となった。樹脂枠5の高さhを電極群10の厚さaの90〜110%の範囲とした実施例2〜実施例4の電池では、不良品の発生がなく、出力の低下も小さい優れた結果を示した。この原因としては、樹脂枠5の高さhが電極群の厚さaの90%より小さい場合には、樹脂枠5の高さを越える電極群10に力がかかるため、電極群10の保護が不十分となり不良率が増加し、樹脂枠5の高さhが電極群の厚さaの110%より大きい場合には、積層された正極及び負極間に適度な圧力がかからなくなる(拘束力が低下する)ため、電気伝導性が低下し電池の出力が低下することが考えられる。従って、複数個のラミネートフィルム外装電池1を組電池として使用する場合や電池の量産体制を考慮すると、樹脂枠5の高さhを電極群の厚さaの90%以上110%以下とすることがより好ましいことが判明した。   Further, in the battery of Example 1 in which the height h of the resin frame 5 was 85% of the thickness a of the electrode group 10, the defect rate was improved as compared with the battery of Comparative Example 1, but the defect rate was 5%. A good product was generated. On the contrary, in the battery of Example 5 in which the height h of the resin frame 5 is 115% of the thickness a of the electrode group 10, the defective rate was 0%, but no defective product was generated, but the output was different from that of other batteries. As a result, the result decreased by about 15%. In the batteries of Examples 2 to 4 in which the height h of the resin frame 5 is in the range of 90 to 110% of the thickness a of the electrode group 10, there is no generation of defective products, and the output is excellent. showed that. This is because when the height h of the resin frame 5 is smaller than 90% of the thickness a of the electrode group, a force is applied to the electrode group 10 exceeding the height of the resin frame 5, so that the electrode group 10 is protected. When the height h of the resin frame 5 is greater than 110% of the thickness a of the electrode group, an appropriate pressure is not applied between the stacked positive and negative electrodes (restraint). Therefore, it is conceivable that the electrical conductivity is lowered and the output of the battery is lowered. Therefore, when using a plurality of laminated film-clad batteries 1 as an assembled battery or considering the mass production system of the batteries, the height h of the resin frame 5 should be 90% to 110% of the thickness a of the electrode group. Was found to be more preferred.

なお、本実施形態では、樹脂枠5の材質として、ポリプロピレン樹脂を例示したが、本発明はこれに限定されるものではない。本実施形態以外で用いることのできる樹脂枠5の材質としては、使用する非水電解液に溶解することなく、電気絶縁性の樹脂であればよく、例えば、ポリエチレン等のポリオレフィン系樹脂等を挙げることができる。   In the present embodiment, polypropylene resin is exemplified as the material of the resin frame 5, but the present invention is not limited to this. The material of the resin frame 5 that can be used in other than the present embodiment may be an electrically insulating resin without being dissolved in the non-aqueous electrolyte used, and examples thereof include polyolefin resins such as polyethylene. be able to.

また、本実施形態では、正極11、負極12及びセパレータ13を方形に裁断して積層した電極群10を例示したが、本発明は電池の形状に制限されるものではなく、例えば、長円形状の電池にも適用可能である。更に、電池の大きさについても特に制限されるものではない。電極群10の形状、大きさに合わせた樹脂枠5を使用することで、同様の効果を得ることができる。また、本実施形態のラミネートフィルム外装電池1を、例えば、カード型等の外装ケースに更に収容することで、カード型二次電池として使用することも可能である。   In the present embodiment, the electrode group 10 in which the positive electrode 11, the negative electrode 12, and the separator 13 are cut into a rectangular shape and stacked is illustrated, but the present invention is not limited to the shape of the battery. It can also be applied to other batteries. Further, the size of the battery is not particularly limited. Similar effects can be obtained by using the resin frame 5 that matches the shape and size of the electrode group 10. Further, the laminate film-covered battery 1 of the present embodiment can be used as a card-type secondary battery by further accommodating it in an outer case such as a card-type, for example.

更に、本実施形態では、樹脂枠5の1辺に2つの溝部6を形成した例を示したが、本発明はこれに限定されるものではない。例えば、3つ以上の溝部6を形成してもよく、また、相対する2辺にそれぞれ溝部6を形成してもよい。このようにすれば、正負極の電極端子3を並べて配設する以外に電極端子3を電極群10に対して互いに反対側に配設する電池等にも共通の樹脂枠5を適用することが可能となる。   Furthermore, in this embodiment, although the example which formed the two groove parts 6 in 1 side of the resin frame 5 was shown, this invention is not limited to this. For example, three or more groove portions 6 may be formed, and the groove portions 6 may be formed on two opposite sides. In this way, the common resin frame 5 can be applied to a battery or the like in which the electrode terminals 3 are arranged on the opposite sides of the electrode group 10 in addition to arranging the positive and negative electrode terminals 3 side by side. It becomes possible.

また更に、本実施形態では、ラミネートフィルム外装電池1を例示したが、本発明はこれに限定されるものではなく、他の二次電池や一次電池に適用しても同様の効果を得ることができる。また、本発明を適用する電池の種類等に合わせて、正極11及び負極12を構成する活物質等の成分、セパレータ13の材質等を任意に変更することができる。   Furthermore, in the present embodiment, the laminated film-clad battery 1 is illustrated, but the present invention is not limited to this, and the same effect can be obtained even when applied to other secondary batteries and primary batteries. it can. Moreover, according to the kind etc. of the battery to which this invention is applied, components, such as an active material which comprises the positive electrode 11 and the negative electrode 12, and the material of the separator 13 can be changed arbitrarily.

本発明に係るラミネートフィルム外装電池によれば、電極群にかかる力及び加熱密封時の熱伝導を抑制可能で内部短絡を減少させたため、製造、販売に寄与し、産業上利用することができる。   According to the laminated film-clad battery according to the present invention, the force applied to the electrode group and the heat conduction at the time of heat sealing can be suppressed and the internal short circuit is reduced, so that it contributes to manufacturing and sales and can be used industrially.

本発明に係る実施形態のラミネートフィルム外装電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of the laminated film exterior battery of embodiment which concerns on this invention. 実施形態のラミネートフィルム外装電池の概略を示す断面図である。It is sectional drawing which shows the outline of the laminated film exterior battery of embodiment. 実施形態のラミネートフィルム外装電池の電極群の概略を示す断面図である。It is sectional drawing which shows the outline of the electrode group of the laminate film exterior battery of embodiment. 実施形態のラミネートフィルム外装電池の電極群を保護する樹脂枠の外観を示す斜視図である。It is a perspective view which shows the external appearance of the resin frame which protects the electrode group of the laminate film exterior battery of embodiment. 従来のラミネートフィルム外装電池の概略を示す断面図である。It is sectional drawing which shows the outline of the conventional laminated film exterior battery.

符号の説明Explanation of symbols

1 ラミネートフィルム外装電池
2 ラミネートフィルム
5 樹脂枠(保護部材)
6 溝部(溝)
10 電極群
1 Laminated film exterior battery 2 Laminated film 5 Resin frame (protective member)
6 Groove (groove)
10 Electrode group

Claims (3)

正極と負極とをセパレータを介して積層した電極群がラミネートフィルムの外装体内に封入されたラミネートフィルム外装電池において、前記電極群の周囲に前記電極群を保護する枠状の保護部材を備えたことを特徴とするラミネートフィルム外装電池。   In a laminated film-clad battery in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is enclosed in a laminate film outer package, a frame-shaped protective member that protects the electrode group is provided around the electrode group A laminated film exterior battery characterized by. 前記保護部材の高さは、前記電極群の厚さの90%以上110%以下であることを特徴とする請求項1に記載のラミネートフィルム外装電池。   2. The laminated film-clad battery according to claim 1, wherein a height of the protective member is 90% to 110% of a thickness of the electrode group. 前記保護部材には、前記電極群に接続された電極端子を支持する溝が形成されていることを特徴とする請求項1に記載のラミネートフィルム外装電池。   The laminated film-clad battery according to claim 1, wherein a groove for supporting an electrode terminal connected to the electrode group is formed in the protective member.
JP2004071893A 2004-03-15 2004-03-15 Laminated film sheathed battery Pending JP2005259621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071893A JP2005259621A (en) 2004-03-15 2004-03-15 Laminated film sheathed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071893A JP2005259621A (en) 2004-03-15 2004-03-15 Laminated film sheathed battery

Publications (1)

Publication Number Publication Date
JP2005259621A true JP2005259621A (en) 2005-09-22

Family

ID=35085117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071893A Pending JP2005259621A (en) 2004-03-15 2004-03-15 Laminated film sheathed battery

Country Status (1)

Country Link
JP (1) JP2005259621A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181897A (en) * 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Laminated battery and its manufacturing method
KR101495948B1 (en) * 2011-07-29 2015-02-26 주식회사 엘지화학 Pouched type secondary battery
CN107204406A (en) * 2016-03-17 2017-09-26 昭和电工包装株式会社 Electrical storage device housing material and electrical storage device
KR20180107884A (en) * 2017-03-23 2018-10-04 주식회사 엘지화학 Battery Cell Comprising Receiving Frame
JP2020140874A (en) * 2019-02-28 2020-09-03 古河電池株式会社 Laminate outer package battery
JP2022067753A (en) * 2020-10-21 2022-05-09 プライムプラネットエナジー&ソリューションズ株式会社 Laminate-type power storage device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181897A (en) * 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Laminated battery and its manufacturing method
KR101495948B1 (en) * 2011-07-29 2015-02-26 주식회사 엘지화학 Pouched type secondary battery
CN107204406A (en) * 2016-03-17 2017-09-26 昭和电工包装株式会社 Electrical storage device housing material and electrical storage device
CN107204406B (en) * 2016-03-17 2022-08-12 昭和电工包装株式会社 Outer packaging material for electricity storage device and electricity storage device
KR20180107884A (en) * 2017-03-23 2018-10-04 주식회사 엘지화학 Battery Cell Comprising Receiving Frame
KR102263444B1 (en) * 2017-03-23 2021-06-11 주식회사 엘지에너지솔루션 Battery Cell Comprising Receiving Frame
JP2020140874A (en) * 2019-02-28 2020-09-03 古河電池株式会社 Laminate outer package battery
JP7212547B2 (en) 2019-02-28 2023-01-25 古河電池株式会社 Laminated exterior battery
JP2022067753A (en) * 2020-10-21 2022-05-09 プライムプラネットエナジー&ソリューションズ株式会社 Laminate-type power storage device
JP7273773B2 (en) 2020-10-21 2023-05-15 プライムプラネットエナジー&ソリューションズ株式会社 Laminated power storage device

Similar Documents

Publication Publication Date Title
JP5830953B2 (en) Secondary battery, battery unit and battery module
KR100430123B1 (en) Nonaqueous electrolyte battery and production method therefor
JP5699559B2 (en) Non-aqueous electrolyte battery
JP6250921B2 (en) battery
US20110244304A1 (en) Stack type battery
US20120244423A1 (en) Laminate case secondary battery
US20120202105A1 (en) Stack type battery and method of manufacturing the same
JP4458145B2 (en) Battery pack and manufacturing method thereof
JP5953549B2 (en) Lithium ion battery
JP2008130360A (en) Nonaqueous electrolyte secondary battery
WO2018092640A1 (en) High power battery and battery case
JP4670275B2 (en) Bipolar battery and battery pack
JP3494558B2 (en) Battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP4925427B2 (en) Laminated non-aqueous secondary battery
JP3863135B2 (en) battery
JP4218400B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP2005129344A (en) Secondary battery, battery pack, compound battery pack, vehicle, and manufacturing method of secondary battery
JP4224739B2 (en) Battery with frame
JP2009181899A (en) Laminated battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP2005259621A (en) Laminated film sheathed battery
JP5025277B2 (en) Battery manufacturing method
JP5472941B2 (en) Non-aqueous electrolyte battery