JPH01182388A - Sealing material - Google Patents

Sealing material

Info

Publication number
JPH01182388A
JPH01182388A JP63004702A JP470288A JPH01182388A JP H01182388 A JPH01182388 A JP H01182388A JP 63004702 A JP63004702 A JP 63004702A JP 470288 A JP470288 A JP 470288A JP H01182388 A JPH01182388 A JP H01182388A
Authority
JP
Japan
Prior art keywords
tetrafluoroethylene resin
fluororubber
sealing material
mixture
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63004702A
Other languages
Japanese (ja)
Other versions
JPH0819396B2 (en
Inventor
Minoru Yoshida
実 吉田
Yasuyori Sasaki
康順 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP63004702A priority Critical patent/JPH0819396B2/en
Publication of JPH01182388A publication Critical patent/JPH01182388A/en
Publication of JPH0819396B2 publication Critical patent/JPH0819396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a sealing material capable of filling a surface gap even under low compressive force and exhibiting high sealbility, by forming a dried coating film composed of a mixture of fine powder of tetrafluoroethylene resin and a fluororubber solution to a surface of a sintered tetrafluoroethylene resin. CONSTITUTION:The objective sealing material is produced by coating a surface of a sintered tetrafluoroethylene resin with a mixture of (A) tetrafluoroethylene resin powder having primary particle diameter of about <=5mum (preferably about <=0.5mum) and (B) a solution produced by dissolving a fluororubber in an organic solvent such as methyl ethyl ketone or ethyl acetate, and drying the mixture to form a coating film. The ratio of the component A is about 83-52vol.% and that of the component B is about 17-48vol.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シール材に関する。更に詳しくは、テトラフ
ルオロエチレン樹脂焼結体を基材とするシール材に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sealing material. More specifically, the present invention relates to a sealing material using a sintered tetrafluoroethylene resin as a base material.

〔従来の技術〕[Conventional technology]

従来から、接合面にシール性が要求される金属、樹脂な
どの製品には、ゴムや樹脂などがシール材料として使用
されている。しかしながら、強酸や腐食性ガスなどをシ
ールしたり、耐熱性が要求される場合には、劣化などに
よりシール性が損われることがあるので、テトラフルオ
ロエチレン樹脂の焼結体や生テープなどが使用されるこ
とが多い。
Conventionally, rubber, resin, and the like have been used as sealing materials for metal, resin, and other products that require sealing properties on joint surfaces. However, when sealing strong acids or corrosive gases, or when heat resistance is required, the sealing performance may be impaired due to deterioration, so sintered bodies of tetrafluoroethylene resin or raw tape are used. It is often done.

テトラフルオロエチレン樹脂の焼結体がシール材として
使用される場合、それが硬く、表面に凹凸のある多孔質
体であるので、・ある程度強い力で圧縮することにより
シール性を持たせているが、シールする製品に強度がな
い場合などには、逆に製品の方を圧縮したり、破壊した
りすることがしばしばみられる。
When a sintered body of tetrafluoroethylene resin is used as a sealing material, it is hard and porous with an uneven surface, so it is compressed with a certain amount of force to give it sealing properties. However, if the product to be sealed is not strong enough, the product is often compressed or destroyed.

このような例としては、燃料電池のシール材が挙げられ
る。このシール材として用いられるテトラフルオロエチ
レン樹脂焼結体の表面には、数μ腸程度の凹凸部が形成
されており、これが形成する隙間のため低圧縮では満足
なシール性が得られないので高圧縮を与えると、強度的
に弱い多孔質カーボン電極が破壊してしまうようになる
An example of this is a fuel cell sealant. The surface of the tetrafluoroethylene resin sintered body used as this sealing material has irregularities of several micrometers in size, and due to the gaps formed by these, satisfactory sealing performance cannot be obtained with low compression. If compression is applied, the porous carbon electrode, which is weak in strength, will be destroyed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような問題点を解決するために、低圧縮で表面に形
成された隙間を埋め、シール性を向上させるような材料
による被覆が当然に考えられるが、かかる要求を十分満
足させるような被覆材料は未だ開発されていない。
In order to solve these problems, it is natural to think of coating with a material that fills the gaps formed on the surface with low compression and improves sealing performance, but there is no coating material that fully satisfies these requirements. has not been developed yet.

本発明は、低圧縮でも表面に形成された隙間を埋め、シ
ール性も向上させるような被覆材料によって被覆された
シール材を提供する。ことを目的としている。
The present invention provides a sealing material coated with a coating material that fills gaps formed on the surface even under low compression and improves sealing performance. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明のかかる目的は、テトラフルオロエチレン樹脂焼
結体の表面に一次粒径約5μ園以下のテトラフルオロエ
チレン樹脂粉末およびフッ素ゴム溶液の混合物の乾燥被
膜を形成させたシール材となすことにより達成される。
This object of the present invention is achieved by forming a sealing material in which a dried film of a mixture of a tetrafluoroethylene resin powder with a primary particle size of about 5 μm or less and a fluororubber solution is formed on the surface of a sintered tetrafluoroethylene resin body. be done.

一次粒径約5μ■以下、好ましくは約0.5μm以下の
テトラフルオロエチレン樹脂粉末としては、−般に現在
市販されている一次粒径約0.05〜0.5μ馬のもの
が用いられる。これらの樹脂粉末は、乳化重合法などに
よって分子量約数万以上のものとして得られ、これより
粒径の小さいものも充填効率、分散性などの点から当然
に用い得るが、これより大きい粒径のものを用いると、
分散性が悪いだけではなく、充填時に粒子間に新たな隙
間を形成させ、高温時や圧縮時にバインダーとなるゴム
成分を流出させてシール性を妨げることがあるので好ま
しくない、なお、これより大径の二次粒径を有する市販
のファインパウダーは、かかる−次位径範囲のものを造
粒したものであり1分散時には元の一次粒径範囲に戻る
ので、これをそのまま用いることもできる。
As the tetrafluoroethylene resin powder having a primary particle size of about 5 .mu.m or less, preferably about 0.5 .mu.m or less, those currently commercially available having a primary particle size of about 0.05 to 0.5 .mu.m are generally used. These resin powders are obtained with a molecular weight of approximately tens of thousands or more using emulsion polymerization methods, etc., and those with a smaller particle size can naturally be used from the viewpoint of packing efficiency and dispersibility, but particles with a larger particle size than this can naturally be used. If you use the
Not only is the dispersibility poor, but it is also undesirable because it forms new gaps between particles during filling, and the rubber component that serves as the binder flows out at high temperatures or when compressed, which may impede sealing performance. Commercially available fine powders having a secondary particle size of the same diameter are obtained by granulating powders having a secondary particle size in the above-mentioned secondary particle size range, and return to the original primary particle size range at the time of one dispersion, so they can be used as they are.

フッ素ゴムとしては、市販されている各種の含フツ素エ
ラストマーを直接用いることができ、これはメチルエチ
ルケトン、メチルイソブチルケトン、アセトン、酢酸エ
チル、酢酸ブチル、メタノールなどの可溶性有機溶媒中
に溶解させた溶液として用いられる。この溶液中には、
ゴム成分の特性を向上させるために、各種の充填剤、加
硫剤。
As the fluororubber, various commercially available fluorine-containing elastomers can be used directly, and these can be prepared by dissolving them in a soluble organic solvent such as methyl ethyl ketone, methyl isobutyl ketone, acetone, ethyl acetate, butyl acetate, or methanol. used as. In this solution,
Various fillers and vulcanizing agents to improve the properties of rubber components.

分散剤などを適宜添加することができる。A dispersant and the like can be added as appropriate.

テトラフルオロエチレン樹脂粉末とフッ素ゴム溶液とは
、一般にはフッ素ゴム溶液の調製に用いられた有機溶媒
中にテトラフルオロエチレン樹脂粉末を分散させた上で
、テトラフルオロエチレン樹脂粉末が約83〜52体積
算を、またフッ素ゴムが約17〜48体積算を占めるよ
うな割合で混合して用いられる。このような割合は、最
密充填された樹脂粉末の隙間部分を充填するのに必要な
フッ素ゴム量として規定され、実際には樹脂粉末の粒径
によってフッ素ゴムの必要量が決められる。
Tetrafluoroethylene resin powder and fluororubber solution are generally prepared by dispersing the tetrafluoroethylene resin powder in the organic solvent used to prepare the fluororubber solution, and then dispersing the tetrafluoroethylene resin powder into a mixture containing approximately 83 to 52 units of the tetrafluoroethylene resin powder. The fluororubber is mixed in proportions such that the fluororubber accounts for about 17 to 48 volumes. Such a ratio is defined as the amount of fluororubber required to fill the gaps between the resin powders packed in the closest density, and the required amount of fluororubber is actually determined by the particle size of the resin powder.

テトラフルオロエチレン樹脂焼結体への混合物の塗布は
、吹き付け、浸漬など任意の方法で行なうことができ、
乾燥被膜の形成はシール材の装着前および装着後のいず
れの時期においても行なうことができる。
The mixture can be applied to the tetrafluoroethylene resin sintered body by any method such as spraying or dipping.
The dry film can be formed either before or after the sealant is installed.

〔発明の効果〕〔Effect of the invention〕

テトラフルオロエチレン樹脂焼結体よりなる基材の表面
にテトラフルオロエチレン樹脂微粉末およびフッ素ゴム
の混合物被膜を形成させることにより、低圧縮でもシー
ル性のよいシール材が得られる。かかるシール材として
は、例えばガスケット、継手パツキンなどが挙げられる
By forming a mixture film of tetrafluoroethylene resin fine powder and fluororubber on the surface of a base material made of a tetrafluoroethylene resin sintered body, a sealing material with good sealing properties even under low compression can be obtained. Examples of such sealing materials include gaskets and joint packings.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例1 粒径0.1〜0.5μ履の低分子量テトラフルオロエチ
レン樹脂粉末(ダイキン製品ルブロンL−2)147.
4gをメチルエチルケトン148.5mfi中に分散さ
せた分散液中に、フッ素ゴム(昭和電工デュポン製品パ
イトンGF) 63gをメチルエチルケトン148.5
m Q中に溶解させた溶液をゆっくり攪拌しながら添加
した。
Example 1 Low molecular weight tetrafluoroethylene resin powder with a particle size of 0.1 to 0.5 μm (Daikin product Lublon L-2) 147.
In a dispersion of 4 g of methyl ethyl ketone (148.5 mfi), 63 g of fluororubber (Showa Denko DuPont product Piton GF) was added to 148.5 mfi of methyl ethyl ketone.
The solution dissolved in mQ was added slowly with stirring.

このようにして形成された塗布液を、厚さ100μIの
テトラフルオロエチレン樹脂焼結体フィルムに塗膜の厚
さが30μ−程度になるように塗布し、60℃の真空乾
燥器で6時間乾燥させて溶媒のメチルエチルケトンを除
去した。
The coating liquid thus formed was applied to a sintered tetrafluoroethylene resin film with a thickness of 100 μI so that the coating film had a thickness of about 30 μ-I, and dried for 6 hours in a vacuum dryer at 60°C. The solvent methyl ethyl ketone was removed.

テトラフルオロエチレン樹脂67体積%(70重量%)
およびフッ素ゴム33体積メ(30重重量上りなる被膜
を形成させた焼結体フィルムを、外径3c+a、内径2
c膳のリング状に切り抜き、第1図に示されるようなガ
ス洩れ量測定セルに装着し、第2図に示されるような測
定装置によりシール性能の測定を行った。
Tetrafluoroethylene resin 67% by volume (70% by weight)
and a sintered film on which a film of 33 volume (30 weight) of fluororubber was formed with an outer diameter of 3c+a and an inner diameter of 2
A ring-shaped sample was cut out from the c-plate and attached to a gas leak measurement cell as shown in FIG. 1, and the sealing performance was measured using a measuring device as shown in FIG. 2.

この測定では、リング状サンプルのガス透過量を測定す
るというよりは、一定圧縮条件下でのセルとリングとの
隙間からのガスの洩れ量を比較している。即ち、m定試
料1の両側に位置する高圧側ガス溜め2および低圧側(
透過側)ガス溜め3を減圧にした後、ガス溜め2側に水
素ガス4を充填し、このときガス溜め3側はバルブによ
り減圧下−で一定体積に隔離されており、これらガス溜
め2゜3間の差圧により、ガス溜め3側に水素ガスが洩
れ、透過してくるのを検出器5により検出する。
In this measurement, rather than measuring the amount of gas permeation through the ring-shaped sample, the amount of gas leaking from the gap between the cell and the ring under constant compression conditions is compared. That is, the high pressure side gas reservoir 2 and the low pressure side (
Permeation side) After reducing the pressure in the gas reservoir 3, the gas reservoir 2 side is filled with hydrogen gas 4. At this time, the gas reservoir 3 side is isolated to a constant volume under reduced pressure by a valve, and these gas reservoirs 2° The detector 5 detects hydrogen gas leaking to the gas reservoir 3 side due to the pressure difference between the gas reservoirs 3 and 3 and passing through the gas reservoir 3 side.

具体的な検出方法は、ガス洩れ量測定セル6からの洩れ
透過ガスを圧力センサ7によって検出し、この検出され
た圧力変化により、単位時間当りのガス洩れ量として計
測する。なお、符号8は水素ガス導入ラインであり、9
はガス溜め、また10は真空ポンプである。
A specific detection method is to detect the leaked gas from the gas leak amount measuring cell 6 using the pressure sensor 7, and measure the gas leak amount per unit time based on the detected pressure change. In addition, the code 8 is a hydrogen gas introduction line, and 9
is a gas reservoir, and 10 is a vacuum pump.

実施例2 実施例1において、低分子量テトラフルオロエチレン樹
脂粉末の代りに、同量のテトラフルオロエチレン樹脂フ
ァインパウダー(三井・デュポンフロロケミカル製品テ
フロン6−G、−次粒径0.1〜0.5μ厘)が用いら
れた。得られたリング状サンプルについて、同様の測定
が行われた。
Example 2 In Example 1, instead of the low molecular weight tetrafluoroethylene resin powder, the same amount of tetrafluoroethylene resin fine powder (Mitsui DuPont Fluorochemical product Teflon 6-G, -order particle size 0.1-0. 5 μl) was used. Similar measurements were performed on the obtained ring-shaped sample.

比較例1 実施例1と同寸法のリング状テトラフルオロエチレン樹
脂シート(厚さ100μ■)について、同様の測定が行
われた。
Comparative Example 1 Similar measurements were performed on a ring-shaped tetrafluoroethylene resin sheet (thickness: 100 μm) having the same dimensions as in Example 1.

比較例2 実施例1と同寸法のリング状フッ素ゴムシート(厚さ1
00μm)について、同様の測定が行われた。
Comparative Example 2 A ring-shaped fluororubber sheet with the same dimensions as Example 1 (thickness 1
00 μm), similar measurements were performed.

以上の測定結果は、次の表に示される。なお、測定温度
は210℃(恒温槽温度)で、セルの圧縮力(セルとサ
ンプルとを密着させるために負荷する力)1.2.3.
5または8.4Kg/d、測定時間1時間の条件下での
洩れ量(単位: X 10−” a#/hr)を、濃リ
ン酸浸漬前(条件1)または30日間浸漬後(条件2)
のサンプルについて、圧力センサで測定した。各セル圧
縮力下での測定結果は1次の表に示される。
The above measurement results are shown in the following table. The measurement temperature was 210°C (thermal oven temperature), and the compressive force of the cell (force applied to bring the cell and sample into close contact) 1.2.3.
5 or 8.4 Kg/d, measurement time 1 hour (unit: )
The samples were measured using a pressure sensor. The measurement results under each cell compression force are shown in the following table.

1       」■しし 実施例1   2.4   1.8   .1.3  
 3.5#2     2.1    1.5    
1.2    2.9比較例1  162.4   8
2.1   12.3   88.1tt  2  1
40.3  136.4  103.5  (測定不能
1 ” ■ Shishi Example 1 2.4 1.8 . 1.3
3.5 #2 2.1 1.5
1.2 2.9 Comparative Example 1 162.4 8
2.1 12.3 88.1tt 2 1
40.3 136.4 103.5 (unmeasurable)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ガス洩れ量測定セルの概要図である。 また、第2図は、ガス洩れ量測定装置の概要図である。 (符号の説明) 6・・・・・ガス洩れ量測定セル フ・・・・・圧力センサ FIG. 1 is a schematic diagram of a gas leakage measurement cell. Moreover, FIG. 2 is a schematic diagram of the gas leak amount measuring device. (Explanation of symbols) 6... Gas leakage measurement cell F...Pressure sensor

Claims (1)

【特許請求の範囲】[Claims] 1、テトラフルオロエチレン樹脂焼結体の表面に、一次
粒径約5μm以下のテトラフルオロエチレン樹脂粉末お
よびフッ素ゴム溶液の混合物の乾燥被膜を形成させてな
るシール材。
1. A sealing material formed by forming a dry film of a mixture of a tetrafluoroethylene resin powder with a primary particle size of about 5 μm or less and a fluororubber solution on the surface of a sintered tetrafluoroethylene resin body.
JP63004702A 1988-01-14 1988-01-14 Seal material Expired - Lifetime JPH0819396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004702A JPH0819396B2 (en) 1988-01-14 1988-01-14 Seal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004702A JPH0819396B2 (en) 1988-01-14 1988-01-14 Seal material

Publications (2)

Publication Number Publication Date
JPH01182388A true JPH01182388A (en) 1989-07-20
JPH0819396B2 JPH0819396B2 (en) 1996-02-28

Family

ID=11591213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004702A Expired - Lifetime JPH0819396B2 (en) 1988-01-14 1988-01-14 Seal material

Country Status (1)

Country Link
JP (1) JPH0819396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086081A1 (en) * 2004-12-30 2006-08-17 3M Innovative Properties Company Fluoropolymer nanoparticle coating composition
CN113150624A (en) * 2021-04-21 2021-07-23 东莞新能德科技有限公司 Protective agent and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086081A1 (en) * 2004-12-30 2006-08-17 3M Innovative Properties Company Fluoropolymer nanoparticle coating composition
JP2008527081A (en) * 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer nanoparticle coating composition
US7638581B2 (en) 2004-12-30 2009-12-29 3M Innovative Properties Company Fluoropolymer nanoparticle coating composition
CN113150624A (en) * 2021-04-21 2021-07-23 东莞新能德科技有限公司 Protective agent and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0819396B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
US2833686A (en) Bonding polytetrafluoroethylene resins
Harkins et al. Surfaces of solids. XII. An absolute method for the determination of the area of a finely divided crystalline solid
US5792525A (en) Creep resistant shaped article of densified expanded polytetrafluoroethylene
EP0578755A1 (en) Electrically conductive gasket materials.
US3077638A (en) Method for producing a sealing gasket
CA2380926C (en) Low stress to seal gasket
Thies-Weesie et al. Liquid permeation of bidisperse colloidal hard-sphere packings and the Kozeny-Carman scaling relation
US6268020B1 (en) Method of fabricating high sealing gaskets
JPH01182388A (en) Sealing material
CN107543655A (en) Graphene oxide referance leak and graphene oxide ooze helium component
US2676485A (en) Method of sealing cores while determining their permeability
JP3441654B2 (en) Heat resistant resin sealing material for zeolite membrane
CN114593775B (en) Method for obtaining heat sealing parameters of aluminum-plastic composite film
Mukaida Density measurement of small porous particles by mercury porosimetry
Weise et al. Behaviour of elastomeric seals at low temperature
WO2001027501A1 (en) Low stress to seal form-in-place gasket
Bartell et al. Adhesion Tension. Pressure of Displacement Method.
JPH0293171A (en) Gland packing and manufacture thereof
Gregg Adsorption of gases-tool for the study of the texture of solids
JP2006258222A (en) Valve
US20020147551A1 (en) Pore structure analysis of individual layers of multi-layered composite porous materials
JPS59142447A (en) Humidity sensor
CN109728230A (en) Lithium battery diaphragm and preparation method thereof
JPH09155169A (en) Gas permeable film
JP2526628B2 (en) Process for producing gas permeable resistant composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term