JPS59142447A - Humidity sensor - Google Patents

Humidity sensor

Info

Publication number
JPS59142447A
JPS59142447A JP58017106A JP1710683A JPS59142447A JP S59142447 A JPS59142447 A JP S59142447A JP 58017106 A JP58017106 A JP 58017106A JP 1710683 A JP1710683 A JP 1710683A JP S59142447 A JPS59142447 A JP S59142447A
Authority
JP
Japan
Prior art keywords
humidity
plasma
sensor
substrate
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58017106A
Other languages
Japanese (ja)
Other versions
JPH0415413B2 (en
Inventor
Kunihiro Inagaki
稲垣 訓宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP58017106A priority Critical patent/JPS59142447A/en
Publication of JPS59142447A publication Critical patent/JPS59142447A/en
Publication of JPH0415413B2 publication Critical patent/JPH0415413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Non-Adjustable Resistors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a sensor having quick responsiveness, excellent durability and high detecting sensitivity even in a high-humidity atompshere by using a gas contg. an organosilicon compd. and NH3 within a specified mol ratio range, and forming plasma-polymerized membrane on a substrate to obtain a humidity-sensitive resistance body. CONSTITUTION:In a polymerization vessel 1, a gaseous organosilicon compd. represented by SiR1R2R3R4 (R1-R4 are the same or different alkyls such as CH3 or C2H5) and gaseous NH3 are supplied to a glass or ceramic substrate 9 respectively from bombs 5 and 6. Plasma is generated by a plasma generating coil 2 excited through a high-frequency electric source 3 for exciting plasma, and a polymerized membrane is formed. Temps. of electrons in polymerization are measured by probes 10 close to the substrate 9. The mol ratio of the organosilicon compd. to NH3 to be supplied is regulated within 0.1-1.5 range, and the thickness of the polymerized membrane to 500-6,000Angstrom . In this way, the lightweight humidity sensor which can be made small-sized and has excellent heat resistance, follow-up property to temp. change and mechanical strength can be obtained.

Description

【発明の詳細な説明】 本発明は湿度センサーに関する。さらに詳しくは有機ケ
イ素化合物とアンモニア(以下MH3と略す。)の混合
ガスをモノマーとして用いたプラズマ重合膜を湿度敏感
抵抗体として用いた湿度センサーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a humidity sensor. More specifically, the present invention relates to a humidity sensor using a plasma polymerized film using a mixed gas of an organosilicon compound and ammonia (hereinafter abbreviated as MH3) as a monomer as a humidity sensitive resistor.

従来、湿度センサーとしては、使用されている材料から
みて■電解質系センサー■有機物系センサー■金属およ
び金属酸化物系センサーがある。電解質系センサー■に
おいては、例えばポリスチレン硫酸化膜、メタリン酸カ
リウム膜、五酸化リン膜等が用いられ、これらの膜に水
分が吸着されることによって電解質水溶液を生じ、それ
による電気抵抗の変化により湿度を検知している。また
、有機物系センサー■では、含カーボンセルロース、含
カーボン樹脂等を用い。
Conventionally, humidity sensors include: - Electrolyte-based sensors - Organic substance-based sensors - Metal and metal oxide-based sensors, based on the materials used. In electrolyte-based sensors■, for example, polystyrene sulfate membranes, potassium metaphosphate membranes, phosphorus pentoxide membranes, etc. are used.Moisture is adsorbed to these membranes, creating an electrolyte aqueous solution, and the resulting change in electrical resistance causes Detecting humidity. In addition, organic matter sensors (■) use carbon-containing cellulose, carbon-containing resin, etc.

水分の吸着による膨潤による電気抵抗の変化を検知する
ことにより、湿度を測定する。金属および金属酸化物系
センサー■では、Si焼結膜、酸化スズ超微粒子膜、C
r、O,、s N1tOs h F e、Q3、Alt
Os%ZnQ等の塗布膜、N11−XFe2+xO+、
Fe1OH−KtOm ZnO−L120 V2O5等
のセラミックスを用い、主としてセラミックスの多孔性
を利用して湿度を測定している。
Humidity is measured by detecting changes in electrical resistance due to swelling due to moisture adsorption. For metal and metal oxide sensors■, Si sintered film, tin oxide ultrafine particle film, C
r, O,, s N1tOs h F e, Q3, Alt
Coating film such as Os%ZnQ, N11-XFe2+xO+,
Humidity is measured using ceramics such as Fe1OH-KtOm ZnO-L120 V2O5 and mainly utilizing the porosity of the ceramics.

しかしながら、前記のセンサー■、■、■には、それぞ
れ下記に示すような問題点があった。
However, the above-mentioned sensors (1), (2), and (3) each had the following problems.

■は高感度であるが50%以上の高湿度を検知をするこ
とは困難である。
(3) has high sensitivity, but it is difficult to detect high humidity of 50% or more.

■は膨潤を利用しているため、検知速度が遅い、そのた
め、湿度の速い変化に追従できない。
(2) uses swelling, so the detection speed is slow, and therefore cannot follow rapid changes in humidity.

■は高温に劇え、高感度であり、さらに検知できる湿度
範囲も広くきわめて高性能であるが、多孔質であるため
、いったん水が吸着すると加熱するか減圧するかしない
と、吸着水を脱離させることができない。
■It can handle high temperatures, has high sensitivity, and can detect a wide range of humidity, and has extremely high performance. However, because it is porous, once water is adsorbed, it must be heated or depressurized to remove the adsorbed water. I can't let go.

本発明者Fi、高湿度の敏速な変化に対して何度も繰り
返し使用可能な、耐久性の高い、湿度センサーを開発す
ることを目的として鋭意研究の結果、本発明を完成する
に至った。
The present inventor, Fi, completed the present invention as a result of intensive research aimed at developing a highly durable humidity sensor that can be used over and over again in response to rapid changes in high humidity.

すなわち本発明は、有機ケイ素化合物とアンモニアの混
合モル比(有機ケイ素化合物/アンモニア)が0.1〜
1.5である混合ガスを用いて、形成したプラズマ重合
膜を備えたことを特徴とする湿度センサーを提供するも
のである。
That is, in the present invention, the mixing molar ratio of organosilicon compound and ammonia (organosilicon compound/ammonia) is from 0.1 to
The present invention provides a humidity sensor comprising a plasma polymerized film formed using a mixed gas having a humidity of 1.5.

本発明で使用するプラズマ重合装置は、%に制限はない
。プラズマ重合容器は、ベルジーy −型でもチューブ
ラ−フロー型でもよく、また、プラズマ放電形式は、た
とえば、直流放電、低周波放電、高周波数t%マイクロ
波放電のどの形式でもよく、電極やコイルの形状も任意
であってよい。
The plasma polymerization apparatus used in the present invention is not limited to %. The plasma polymerization vessel may be of a Belgy Y-type or a tubular flow type, and the plasma discharge type may be of any type, for example, direct current discharge, low frequency discharge, or high frequency t% microwave discharge. The shape may also be arbitrary.

本発明におけるプラズマ重合条件として、重合容器内の
圧力は、通常1ミリトール〜3トールの範囲内であり、
電力は電極形式やサイズによってきまるが、プラズマ重
合がおこっている附近の電子温度(Te)が1万0に≦
’fe≦8万0にの範囲内になるように設定することが
好ましい。
As the plasma polymerization conditions in the present invention, the pressure inside the polymerization container is usually in the range of 1 mTorr to 3 Torr,
The electric power depends on the electrode type and size, but the electron temperature (Te) in the vicinity where plasma polymerization is occurring is 10,000 ≦
It is preferable to set it within the range of 'fe≦80,000.

1万0に未満であると、プラズマ重合速度が遅く実用的
でなく、また8万0K をこえると、重合膜の湿度に対
する感度がおちる場合がある。
If it is less than 10,000 K, the plasma polymerization rate is too slow to be practical, and if it exceeds 80,000 K, the sensitivity of the polymerized film to humidity may decrease.

なお電子温度Teは探針により測定が可能である。Note that the electron temperature Te can be measured with a probe.

例えば単探針法、2探針法、3探針法等((よる。For example, the single-probe method, the two-probe method, the three-probe method, etc.

(特開昭54−135574) 本発明に使用するモノマーガスは、有機ケイ素化合物と
NHsの混合ガスである。重合膜の湿度によるii、気
抵抗の変化の太き寧は、有機ケイ素化合物とNHsとの
混合モル比によって異ってくるので、有機ケイ寧化合物
とNHsとの混合モル比(有機ケイ素化合物/ NH3
)は0.1〜1.5 。
(JP-A-54-135574) The monomer gas used in the present invention is a mixed gas of an organosilicon compound and NHs. The degree of change in air resistance due to humidity of the polymerized film varies depending on the molar ratio of the organic silicon compound and NHs. NH3
) is 0.1 to 1.5.

さらに好ましく#″t 0.3〜1である。1.5をこ
えると、高湿度の検知感度が低く、o、i未満ではプラ
ズマ重合反応が遅いという欠点がある。
More preferably #''t is 0.3 to 1. If it exceeds 1.5, the detection sensitivity for high humidity is low, and if it is less than o or i, there is a drawback that the plasma polymerization reaction is slow.

本発明における有機ケイ素化合物としては、代表的なも
のとして、一般式5iRIR2RsR+(但し、)!l
 s R2h R8およびR,Fi異種又は同種であっ
て、 CHa −CzHs −C5Hy等がら選バレル
。)テ表わされるものであり、好ましくは、テトラメチ
ルシラン(以下TMSと略す)である。
As the organosilicon compound in the present invention, a typical example is the general formula 5iRIR2RsR+ (however, )! l
s R2h R8 and R, Fi different or similar, selected from CHa -CzHs -C5Hy, etc. ) Te, preferably tetramethylsilane (hereinafter abbreviated as TMS).

前記混合ガスの重合容器へのフィード量は、該容器のサ
イズや真空ポンプの排気速度によって異なるが、例えば
1〜200 Qの容器の場合0、1 cc (STP)
/Wu!L〜100 cc (STP)/−の範囲内が
好ましい。0.1 cc (5TP)/11011未満
の場合、プラズマ重合速度が遅く実用的でなく% 10
0 cc(STPt、4をこえると、均一な重合膜をつ
くることが困難である。
The amount of the mixed gas fed to the polymerization container varies depending on the size of the container and the pumping speed of the vacuum pump, but for example, in the case of a 1 to 200 Q container, it is 0.1 cc (STP).
/Wu! It is preferably within the range of L to 100 cc (STP)/-. If it is less than 0.1 cc (5TP)/11011, the plasma polymerization rate is too slow and it is not practical.
When it exceeds 0 cc (STPt, 4), it is difficult to form a uniform polymer film.

本発明における重合膜の厚みは100X〜1μmの範囲
内が好ましく、特に好ましくは500 X〜6000X
の範囲内である。100A未満の場合、膜にピンホール
ができる場合があり、1μmをこえると、膜にきれつが
入り易く、そのため耐久性が悪くなると同時に、湿度変
化に対する電気抵抗の追従が遅くなる。500X〜60
00 Xの範囲では、湿度変化に対する電気抵抗の追従
はきわめて速く、1秒以内である。
The thickness of the polymer film in the present invention is preferably within the range of 100X to 1 μm, particularly preferably 500X to 6000X
is within the range of If it is less than 100 A, pinholes may be formed in the film, and if it exceeds 1 μm, cracks are likely to occur in the film, resulting in poor durability and slow follow-up of electrical resistance to changes in humidity. 500X~60
In the range of 00X, the electrical resistance follows the humidity change very quickly, within 1 second.

本発明で用いるセンサーの基体としては、真空中でガス
を発生しない固体材料であれば、任意の材料を用いるこ
とができ、センサー電極の形式によって、絶縁体のみで
なく導電体をも用いることができ、その形状も問わない
。通常、ガラス、セラミック等を用いる。
As the substrate of the sensor used in the present invention, any solid material that does not generate gas in vacuum can be used, and depending on the type of sensor electrode, not only an insulator but also a conductor can be used. Yes, and the shape doesn't matter. Usually, glass, ceramic, etc. are used.

本発明の湿度センサーの製造法の1例を第1図に従って
説明する。
An example of the method for manufacturing the humidity sensor of the present invention will be explained with reference to FIG.

第1図は、本実施例に使用したプラズマ重合装置の1例
を示し、1は重合容器、2はプラズマ発生用コイル、3
Fiプラズマ励起励起用波電源、4#−i圧力計、5,
6はボンベ、7はガス流量調節パルプ、8は真空排気口
%9はセンサーの基体、lOは探釧、11は電圧計、1
2Fi電流計、13は可変電圧電源、14は排気量調節
ノくルプ、15は真空ポンプを示す。
Figure 1 shows an example of the plasma polymerization apparatus used in this example, where 1 is a polymerization vessel, 2 is a plasma generation coil, and 3 is a plasma polymerization apparatus.
Fi plasma excitation wave power source, 4#-i pressure gauge, 5,
6 is a cylinder, 7 is a gas flow rate regulating pulp, 8 is a vacuum exhaust port, 9 is a sensor base, IO is a probe, 11 is a voltmeter, 1
2Fi ammeter, 13 a variable voltage power supply, 14 a displacement adjustment knob, and 15 a vacuum pump.

ボンベ5,6からモノマーガスをガス流量調節バルブ7
によって重合容器1内に適当な流量で導入し、プラズマ
発生用コイル2によってプラズマを発生し、重合反応を
行なわせ、基体9の表面上に重合膜を形成させた。圧力
計4は、重合容器内の真空度が、所定の値であることを
確認するためのものである。なお、電子温度Teは2つ
の探針10の電流−電圧特性を測定することによりもと
めることができる。
The monomer gas is supplied from the cylinders 5 and 6 to the gas flow rate control valve 7.
was introduced into the polymerization vessel 1 at an appropriate flow rate, plasma was generated by the plasma generation coil 2, a polymerization reaction was carried out, and a polymer film was formed on the surface of the substrate 9. The pressure gauge 4 is used to confirm that the degree of vacuum within the polymerization container is at a predetermined value. Note that the electron temperature Te can be determined by measuring the current-voltage characteristics of the two probes 10.

こうして、基体表面に重合膜を形成したのち、重合膜表
面に一定のパターンをもつ一対の電極を蒸着し、製品と
する。
After a polymer film is formed on the surface of the substrate in this way, a pair of electrodes having a certain pattern is deposited on the surface of the polymer film to produce a product.

本発明における重合膜を抵抗体として用いた湿度センサ
ーは従来品に比較して次のごとき特長がある。
The humidity sensor using a polymer film as a resistor according to the present invention has the following features compared to conventional products.

■ 湿度に対する応答性がきわめて速い。■ Extremely fast response to humidity.

■ ヒステリシスがなく、湿度の変化に対して追従性が
よい。
■ No hysteresis and good followability to changes in humidity.

■ 機械的強度にすぐれている。■Excellent mechanical strength.

■ 高湿度条件においても使用が可能である。■ Can be used even under high humidity conditions.

■ 軽量小型化が可能である。■ It is possible to make it lighter and smaller.

以下に、本発明の実施例を示すが、本発明の要旨を越え
ない限り本発明は実施例のみに限定されるものではない
Examples of the present invention are shown below, but the present invention is not limited to the examples unless the gist of the invention is exceeded.

実施例1 第1図に示す装置を用い、TMSとNH3をモル比で(
TMS/NHs ) ”/2となるように調節し、混合
ガスの流量は0.44cc(STP)/−とし。
Example 1 Using the apparatus shown in Figure 1, TMS and NH3 were mixed in molar ratios (
TMS/NHs)''/2, and the mixed gas flow rate was 0.44cc (STP)/-.

真空度は排気口よりの排気量を調節して10ミリTor
rに保った。13.56MHzの高層電力をプラズマ発
生用コイル2に加え、25wの電力を与え、電子温度を
基体9附近で3万0K とした。基板9として、ガラス
板を用い、その表面に重合膜を形成させた。重合ti6
0分間行なった。重合終了後、該基体をとりだして、電
極を作製するためのマスクを重合膜上に固定して、真空
蒸着法にて、重合膜上に第2図に示すパターンの電極を
設けた。該電極の両末端T、 、 T、間の抵抗値と湿
度との関係をもとめた。その結果を第3図に示す。骸セ
ンサーの湿度の応答性に関するテストを後記する方法で
おこない、その結果を第4図に示す。
The degree of vacuum is 10 mm Torr by adjusting the exhaust volume from the exhaust port.
I kept it at r. A high power of 13.56 MHz was applied to the plasma generation coil 2, giving a power of 25 W, and the electron temperature was set at 30,000 K near the substrate 9. A glass plate was used as the substrate 9, and a polymer film was formed on the surface thereof. polymerization ti6
This was done for 0 minutes. After the polymerization was completed, the substrate was taken out, a mask for producing electrodes was fixed on the polymer film, and electrodes in the pattern shown in FIG. 2 were provided on the polymer film by vacuum evaporation. The relationship between the resistance value between both ends T, T, and T of the electrode and humidity was determined. The results are shown in FIG. A test regarding the humidity responsiveness of the Mukuro sensor was conducted using the method described later, and the results are shown in FIG.

同図から、応答時間は1秒以内であることが  □わか
り、市販されているセラミック製のセンサーの応答時間
(約5分)K対して、著るし  :〈短縮されているこ
とが明らかである。また、  。
From the same figure, it can be seen that the response time is within 1 second, which is significantly shorter than the response time of commercially available ceramic sensors (about 5 minutes). be. Also, .

戻1 値の誤差は、測定した相対湿度の値の1チ以内であった
The error in the return 1 value was within 1 inch of the measured relative humidity value.

ii[[−に7″*−IDZHRfuJ“@5uKyr
<   。
ii [[-7″*-IDZHRfuJ”@5uKyr
<.

す装置を用いて測定した。Measured using a device.

図中、 16と17は容積4Qのガラス容器、18〜2
0は電磁バルブ、21は本発明の湿度センサ−1nは容
積lQ ccの測定室である。るは電気抵抗計であり、
センサーからのリード線は測定室からシールされた状態
で導びかれている。
In the figure, 16 and 17 are glass containers with a volume of 4Q, and 18 to 2
0 is an electromagnetic valve, 21 is a humidity sensor of the present invention, and 1n is a measurement chamber having a volume of 1Q cc. is an electrical resistance meter,
Lead wires from the sensor are led out of the measurement chamber in a sealed manner.

まず、容積4Qの容器16を湿度82チに保ち、同容積
の容器17を湿度61チに保って、バルブ18.19.
20Fiすべて閉じておく。センサーが設置されている
室nの容積は10 ccであり、最初、湿度は63%に
保った。
First, the container 16 with a volume of 4Q is maintained at a humidity of 82 degrees, the container 17 with the same volume is maintained at a humidity of 61 degrees, and the valves 18, 19...
Close all 20Fi. The volume of room n in which the sensor was installed was 10 cc, and the humidity was initially maintained at 63%.

時刻t、にバルブ18を開き、2秒後に閉じる。The valve 18 is opened at time t and closed 2 seconds later.

時刻t、にバルブ19を開き、2秒後に閉じる。Valve 19 is opened at time t and closed 2 seconds later.

この間に測定した本発明のセンサーの電気折流の変化を
第4図に示す。この例においては応答時間は0.4〜0
.7秒であった。
FIG. 4 shows changes in the electrical current of the sensor of the present invention measured during this period. In this example the response time is 0.4~0
.. It was 7 seconds.

怖例2 実施例IKおけるT M SとNH,の混合モル比(T
MS/Nus)を1/1 とした以外は実施例1と同一
条件で湿度センサーを作成した。該センサーの重合膜の
抵抗値と湿度の関係は、第3図に示す通りであり、実施
例1のものとはソ司様の特性を示した。
Example 2 Mixing molar ratio of TMS and NH in Example IK (T
A humidity sensor was produced under the same conditions as in Example 1 except that the ratio (MS/Nus) was changed to 1/1. The relationship between the resistance value of the polymer film of the sensor and the humidity is as shown in FIG. 3, and it exhibited characteristics similar to those of Example 1.

なお、上記実施例1.2においては、基体長面に重合膜
を形成し、該膜の表面に電極を形成したが、基体表面に
電極を形成し、その上に重合膜を形成してもよい。また
、基体粒子の表面に重合膜を形成し、これら重合膜をも
つ基体粒子を多数、加圧状態で通気性容器に充填し、そ
の両端に電極を設けてセンサーを構成してもよい。その
他、従来用いられていたと同様な構造の湿度センサーに
2本発明を適用することができる。
In Example 1.2 above, a polymer film was formed on the long surface of the substrate and an electrode was formed on the surface of the film, but it is also possible to form an electrode on the surface of the substrate and form a polymer film thereon. good. Alternatively, a sensor may be constructed by forming a polymer film on the surface of the base particles, filling a large number of base particles having these polymer films under pressure into an air-permeable container, and providing electrodes at both ends of the container. In addition, the present invention can be applied to two humidity sensors having the same structure as those conventionally used.

比較例1 実施例1におけるTMSとNH,の混合モル比(TMS
/NHJ ’)を2/1とした以外は実施例1と同一条
件で湿度センサーを作成した。該センサーの重合膜の抵
抗値と湿度の関係は第3図に示す通りであり、湿度検知
感度の低いことがわかる。
Comparative Example 1 Mixed molar ratio of TMS and NH in Example 1 (TMS
A humidity sensor was produced under the same conditions as in Example 1, except that the humidity ratio (/NHJ') was changed to 2/1. The relationship between the resistance value of the polymer film of the sensor and the humidity is as shown in FIG. 3, and it can be seen that the humidity detection sensitivity is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の湿度センサーを製造するために用いる
プラズマ重合膜形成装置を示す概略図、第2図は電極の
パターンの一例を示す図、第3図は実施例1.2によっ
て製造した湿度センサーの湿度に対する電気抵抗値の変
化を示す図表、第4図は実施例1による湿度センサーの
応答特性を示す図表、第5図は湿度センサーの応答時間
を測定する装置の概略図である。 1・・・・・・重合容器、   2・・・・・・プラズ
マ発生用コイル、3・・・・・・プラズマ励起用高周波
電源、4・・・・・・圧力titL     516・
・・・・・ボンベ。 7・・・・・・ガス流量調節バルブ。 8・・・・・・真空排気口、  9・・・・・・センサ
ー基体、10・・・・・・探針、    11・・・・
・・電圧計、12・・・・・・電流計、13・・・・・
・可変電圧電源、14・・・・・・排気量調節バルブ。 15・・・・・・真空ポンプ。
FIG. 1 is a schematic diagram showing a plasma polymerized film forming apparatus used for manufacturing the humidity sensor of the present invention, FIG. 2 is a diagram showing an example of an electrode pattern, and FIG. FIG. 4 is a graph showing the response characteristics of the humidity sensor according to Example 1, and FIG. 5 is a schematic diagram of an apparatus for measuring the response time of the humidity sensor. 1... Polymerization container, 2... Coil for plasma generation, 3... High frequency power source for plasma excitation, 4... Pressure titL 516.
...Cylinder. 7...Gas flow rate adjustment valve. 8... Vacuum exhaust port, 9... Sensor base, 10... Probe, 11...
...Voltmeter, 12... Ammeter, 13...
・Variable voltage power supply, 14... Displacement adjustment valve. 15... Vacuum pump.

Claims (1)

【特許請求の範囲】[Claims] 1)有機ケイ素化合物とアンモニアの混合モル比(有機
ケイ素化合物/アンモニア)が0.1〜1.5である混
合ガスを用いて形成したプラズマ重合膜を備えたことを
特徴とする湿度センサー。
1) A humidity sensor comprising a plasma polymerized film formed using a mixed gas of an organosilicon compound and ammonia in a molar ratio (organosilicon compound/ammonia) of 0.1 to 1.5.
JP58017106A 1983-02-04 1983-02-04 Humidity sensor Granted JPS59142447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017106A JPS59142447A (en) 1983-02-04 1983-02-04 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017106A JPS59142447A (en) 1983-02-04 1983-02-04 Humidity sensor

Publications (2)

Publication Number Publication Date
JPS59142447A true JPS59142447A (en) 1984-08-15
JPH0415413B2 JPH0415413B2 (en) 1992-03-17

Family

ID=11934773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017106A Granted JPS59142447A (en) 1983-02-04 1983-02-04 Humidity sensor

Country Status (1)

Country Link
JP (1) JPS59142447A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200454A (en) * 1985-03-01 1986-09-05 Nok Corp Membrane humidity-sensitive element
JPS61237044A (en) * 1985-04-12 1986-10-22 Hamamatsu Photonics Kk Moisture detection element and manufacture thereof
JPS6347646A (en) * 1986-08-13 1988-02-29 Nok Corp Humidity-sensitive element
JPS6395347A (en) * 1986-10-09 1988-04-26 Nok Corp Moisture sensor
JPS63177050A (en) * 1986-09-05 1988-07-21 Nok Corp Humidity-sensitive element
JPH06307339A (en) * 1993-04-24 1994-11-01 Samsung Electronics Co Ltd Noise attenuator of compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192846A (en) * 1981-05-15 1982-11-27 Yamatake Honeywell Co Ltd Humidity sensor and manufacture thereof
JPS58176538A (en) * 1982-04-09 1983-10-17 Sharp Corp Humidity-sensitive resistor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192846A (en) * 1981-05-15 1982-11-27 Yamatake Honeywell Co Ltd Humidity sensor and manufacture thereof
JPS58176538A (en) * 1982-04-09 1983-10-17 Sharp Corp Humidity-sensitive resistor element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200454A (en) * 1985-03-01 1986-09-05 Nok Corp Membrane humidity-sensitive element
JPH0479541B2 (en) * 1985-03-01 1992-12-16 Nok Corp
JPS61237044A (en) * 1985-04-12 1986-10-22 Hamamatsu Photonics Kk Moisture detection element and manufacture thereof
JPH0514863B2 (en) * 1985-04-12 1993-02-26 Hamamatsu Photonics Kk
JPS6347646A (en) * 1986-08-13 1988-02-29 Nok Corp Humidity-sensitive element
JPS63177050A (en) * 1986-09-05 1988-07-21 Nok Corp Humidity-sensitive element
JPS6395347A (en) * 1986-10-09 1988-04-26 Nok Corp Moisture sensor
JPH06307339A (en) * 1993-04-24 1994-11-01 Samsung Electronics Co Ltd Noise attenuator of compressor

Also Published As

Publication number Publication date
JPH0415413B2 (en) 1992-03-17

Similar Documents

Publication Publication Date Title
TW278187B (en)
US4793182A (en) Constant temperature hygrometer
US7270002B2 (en) Humidity sensor element, device and method for manufacturing thereof
US5001453A (en) Humidity sensor
Golonka et al. Thick-film humidity sensors
Pelino et al. Principles and applications of ceramic humidity sensors
US6806722B2 (en) Polymer-type humidity sensor
JPS59142447A (en) Humidity sensor
CN110849941B (en) Preparation method of resistance-type humidity sensing device based on loose carbon structure and hydrophilic polymer material composition
Biju et al. Effect of polyethylene glycol additive in sol on the humidity sensing properties of a TiO2 thin film
JPS6064243A (en) Method and apparatus for measuring humidity
Glaves et al. Pore structure characterization of porous films
Zor et al. QCM humidity sensors based on organic/inorganic nanocomposites of water soluble-conductive poly (diphenylamine sulfonic acid)
JPH01502362A (en) Method for producing inert, catalytically or gas-sensitive ceramic layers for gas sensors
Bamsaoud et al. Nanosize SnO2 Based Tubular Resistive Gas Sensor for Hydrogen and Acetone Vapour
CN111044582A (en) Fluorocarbon film/metal oxide gas-sensitive film composite laminated device and preparation method thereof
Zaitsev et al. Effect of Ammonia on the Resonance Properties of a Piezoelectric Resonator with a Lateral Electric Field–Chitosan Film Structure
JP3170909B2 (en) Manufacturing method of gas detection element
JPS6011160A (en) Moisture analysis meter
KR20130133517A (en) Quartz crystal microbalance sensors for simultaneously measurement of electrical properties and mass changes
Štulík et al. Highly sensitive ammonia sensor based on modified nanostructured polypyrrole decorated with MAF-6 to reduce the effect of humidity
JPS6259855A (en) Pump type oxygen concentration detector
Takeda Time dependence of current of plasma polymerized polystyrene thin film upon exposure to NO2 gas
KR100475743B1 (en) In2O3 Thin-film O3 Gas Sensors Using R.F. Magnetron Sputtering and Their Fabrication Method
CN115684288A (en) Palladium metal base material, preparation method thereof and hydrogen sensor