JPH0819396B2 - Seal material - Google Patents

Seal material

Info

Publication number
JPH0819396B2
JPH0819396B2 JP63004702A JP470288A JPH0819396B2 JP H0819396 B2 JPH0819396 B2 JP H0819396B2 JP 63004702 A JP63004702 A JP 63004702A JP 470288 A JP470288 A JP 470288A JP H0819396 B2 JPH0819396 B2 JP H0819396B2
Authority
JP
Japan
Prior art keywords
tetrafluoroethylene resin
gas
fluororubber
particle size
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63004702A
Other languages
Japanese (ja)
Other versions
JPH01182388A (en
Inventor
実 吉田
康順 佐々木
Original Assignee
エヌオーケー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌオーケー株式会社 filed Critical エヌオーケー株式会社
Priority to JP63004702A priority Critical patent/JPH0819396B2/en
Publication of JPH01182388A publication Critical patent/JPH01182388A/en
Publication of JPH0819396B2 publication Critical patent/JPH0819396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シール材に関する。更に詳しくは、テトラ
フルオロエチレン樹脂焼結体を基材とするシール材に関
する。
TECHNICAL FIELD The present invention relates to a sealing material. More specifically, the present invention relates to a sealing material having a tetrafluoroethylene resin sintered body as a base material.

〔従来の技術〕[Conventional technology]

従来から、接合面にシール性が要求される金属、樹脂
などの製品には、ゴムや樹脂などがシール材料として使
用されている。しかしながら、強酸や腐食性ガスなどを
シールしたり、耐熱性が要求される場合には、劣化など
によりシール性が損われることがあるので、テトラフル
オロエチレン樹脂の焼結体や生テープなどが使用される
ことが多い。
BACKGROUND ART Conventionally, rubber, resin, etc. have been used as a sealing material for products such as metals and resins that require a sealing property on their joint surfaces. However, when sealing with strong acid or corrosive gas, or when heat resistance is required, the sealing performance may be impaired due to deterioration, so use a sintered body of tetrafluoroethylene resin or raw tape. It is often done.

テトラフルオロエチレン樹脂の焼結体がシール材とし
て使用される場合、それが硬く、表面に凹凸のある多孔
質体であるので、ある程度強い力で圧縮することにより
シール性を持たせているが、シールする製品に強度がな
い場合などには、逆に製品の方を圧縮したり、破壊した
りすることがしばしばみられる。
When a sintered body of tetrafluoroethylene resin is used as a sealing material, it is a porous body that is hard and has irregularities on its surface, so it has a sealing property by being compressed with a strong force to some extent. On the contrary, when the product to be sealed has no strength, the product is often compressed or broken.

このような例としては、燃料電池のシール材が挙げら
れる。このシール材として用いられるテトラフルオロエ
チレン樹脂焼結体の表面には、数μm程度の凹凸部が形
成されており、これが形成する隙間のため低圧縮では満
足なシール性が得られないので高圧縮を与えると、強度
的に弱い多孔質カーボン電極が破壊してしまうようにな
る。
An example of such a material is a sealing material for a fuel cell. On the surface of the tetrafluoroethylene resin sintered body used as this sealing material, irregularities of about several μm are formed. Due to the gaps formed by this, satisfactory compression is not obtained at low compression, so high compression is achieved. Is applied, the porous carbon electrode, which is weak in strength, will be destroyed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このような問題点を解決するために、低圧縮で表面に
形成された隙間を埋め、シール性を向上させるような材
料による被覆が当然に考えられるが、かかる要求を十分
満足させるような被覆材料は未だ開発されていない。
In order to solve such a problem, it is naturally conceivable that the material is coated with a material that fills the gap formed on the surface with low compression and improves the sealing property, but a coating material that sufficiently satisfies such requirements. Has not yet been developed.

本発明は、低圧縮でも表面に形成された隙間を埋め、
シール性も向上させるような被覆材料によって被覆され
たシール材を提供することを目的としている。
The present invention fills the gap formed on the surface even with low compression,
It is an object of the present invention to provide a sealing material coated with a coating material that also improves the sealing property.

〔課題を解決するための手段〕[Means for solving the problem]

本発明のかかる目的は、テトラフルオロエチレン樹脂
焼結体の表面に一次粒径約5μm以下のテトラフルオロ
エチレン樹脂粉末およびフッ素ゴム溶液の混合物の乾燥
被膜を形成させたシール材となすことにより達成され
る。
The above object of the present invention is achieved by providing a sealing material in which a dry coating film of a mixture of a tetrafluoroethylene resin powder having a primary particle size of about 5 μm or less and a fluororubber solution is formed on the surface of a tetrafluoroethylene resin sintered body. It

一次粒径約5μm以下、好ましくは約0.5μm以下の
テトラフルオロエチレン樹脂粉末としては、一般に現在
市販されている一次粒径約0.05〜0.5μmのものが用い
られる。これらの樹脂粉末は、乳化重合法などによって
分子量約数万以上のものとして得られ、これより粒径の
小さいものも充填効率、分散性などの点から当然に用い
得るが、これより大きい粒径のものを用いると、分散性
が悪いだけではなく、充填時に粒子間に新たな隙間を形
成させ、高温時や圧縮時にバインダーとなるゴム成分を
流出させてシール性を妨げることがあるので好ましくな
い。なお、これより大径の二次粒径を有する市販のファ
インパウダーは、かかる一次粒径範囲のものを造粒した
ものであり、分散時には元の一次粒径範囲に戻るので、
これをそのまま用いることもできる。
As the tetrafluoroethylene resin powder having a primary particle size of about 5 μm or less, preferably about 0.5 μm or less, a commercially available one having a primary particle size of about 0.05 to 0.5 μm is generally used. These resin powders are obtained as those having a molecular weight of about several tens of thousands or more by an emulsion polymerization method or the like, and those having a smaller particle size can be naturally used in terms of filling efficiency, dispersibility, etc. It is not preferable to use the above-mentioned one because not only the dispersibility is poor, but also a new gap is formed between the particles at the time of filling, and a rubber component serving as a binder may flow out at a high temperature or at the time of compression to hinder the sealing property. . Incidentally, the commercially available fine powder having a secondary particle size larger than this is a granulated product of such a primary particle size range, and since it returns to the original primary particle size range at the time of dispersion,
This can be used as it is.

フッ素ゴムとしては、市販されている各種の含フッ素
エラストマーを直接用いることができ、これはメチルエ
チルケトン、メチルイソブチルケトン、アセトン、酢酸
エチル、酢酸ブチル、メタノールなどの可溶性有機溶媒
中に溶解させた溶液として用いられる。この溶液中に
は、ゴム成分の特性を向上させるために、各種の充填
材、加硫剤、分散剤などを適宜添加することができる。
As the fluororubber, various commercially available fluorine-containing elastomers can be directly used, and this is a solution dissolved in a soluble organic solvent such as methyl ethyl ketone, methyl isobutyl ketone, acetone, ethyl acetate, butyl acetate and methanol. Used. Various fillers, vulcanizing agents, dispersants and the like can be appropriately added to this solution in order to improve the characteristics of the rubber component.

テトラフルオロエチレン樹脂粉末とフッ素ゴム溶液と
は、一般にはフッ素ゴム溶液の調製に用いられたのと同
じ有機溶媒中にテトラフルオロエチレン樹脂粉末を分散
させた上で、テトラフルオロエチレン樹脂粉末が約83〜
52体積%を、またフッ素ゴムが約17〜48体積%を占める
ような割合で混合して用いられる。このような割合は、
最密充填された樹脂粉末の隙間部分を充填するのに必要
なフッ素ゴム量として規定され、実際には樹脂粉末の粒
径によってフッ素ゴムの必要量が決められる。
The tetrafluoroethylene resin powder and the fluororubber solution are generally prepared by dispersing the tetrafluoroethylene resin powder in the same organic solvent used for the preparation of the fluororubber solution, and then the tetrafluoroethylene resin powder is about 83 ~
52% by volume is mixed and used in such a ratio that the fluororubber occupies about 17 to 48% by volume. Such a ratio is
It is defined as the amount of fluororubber required to fill the gap portion of the most closely packed resin powder, and the required amount of fluororubber is actually determined by the particle size of the resin powder.

テトラフルオロエチレン樹脂焼結体への混合物の塗布
は、吹き付け、浸漬など任意の方法で行なうことがで
き、乾燥被膜の形成はシール材の装着前および装着後の
いずれの時期においても行なうことができる。
The application of the mixture to the tetrafluoroethylene resin sintered body can be performed by any method such as spraying or dipping, and the formation of the dry film can be performed before or after mounting the sealing material. .

〔発明の効果〕 テトラフルオロエチレン樹脂焼結体よりなる基材の表
面にテトラフルオロエチレン樹脂微粉末およびフッ素ゴ
ムの混合物被膜を形成させることにより、低圧縮でもシ
ール性のよいシール材が得られる。かかるシール材とし
ては、例えばガスケット、継手パッキンなどが挙げられ
る。
[Effects of the Invention] By forming a mixture coating film of tetrafluoroethylene resin fine powder and fluororubber on the surface of a base material made of a tetrafluoroethylene resin sintered body, a sealing material having a good sealing property can be obtained even at low compression. Examples of such a sealing material include gaskets and joint packings.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be described with reference to examples.

実施例1 粒径0.1〜0.5μmの低分子量テトラフルオロエチレン
樹脂粉末(ダイキン製品ルブロンL−2)147.4gをメチ
ルエチルケトン148.5ml中に分散させた分散液中に、フ
ッ素ゴム(昭和電工デュポン製品バイトンGF)63gをメ
チルエチルケトン148.5ml中に溶解させた溶液をゆっく
り攪拌しながら添加した。
Example 1 147.4 g of low molecular weight tetrafluoroethylene resin powder (Daikin product Lubron L-2) having a particle size of 0.1 to 0.5 μm was dispersed in 148.5 ml of methyl ethyl ketone, and a fluororubber (Showa Denko DuPont Viton GF ) 63 g of a solution of methyl ethyl ketone in 148.5 ml was added with slow stirring.

このようにして形成された塗布液を、厚さ100μmの
テトラフルオロエチレン樹脂焼結体フィルムに塗膜の厚
さが30μm程度になるように塗布し、60℃の真空乾燥器
で6時間乾燥させて溶媒のメチルエチルケトンを除去し
た。
The coating liquid thus formed is applied to a tetrafluoroethylene resin sintered body film having a thickness of 100 μm so that the coating film has a thickness of about 30 μm, and dried in a vacuum dryer at 60 ° C. for 6 hours. To remove the solvent methyl ethyl ketone.

テトラフルオロエチレン樹脂67体積%(70重量%)お
よびフッ素ゴム33体積%(30重量%)よりなる被膜を形
成させた焼結体フィルムを、外径3cm、内径2cmのリング
状に切り抜き、第1図に示されるようなガス洩れ量測定
セルに装着し、第2図に示されるような測定装置により
シール性能の測定を行った。
A sintered film having a coating composed of 67% by volume (70% by weight) of tetrafluoroethylene resin and 33% by volume (30% by weight) of fluororubber was cut out into a ring shape with an outer diameter of 3 cm and an inner diameter of 2 cm. The cell was attached to a gas leak amount measuring cell as shown in the figure, and the sealing performance was measured by a measuring device as shown in FIG.

この測定では、リング状サンプルのガス透過量を測定
するというよりは、一定圧縮条件下でのセルとリングと
の隙間からのガスの洩れ量を比較している。即ち、測定
試料1の両側に位置する高圧側ガス溜め2および低圧側
(透過側)ガス溜め3を減圧にした後、ガス溜め2側に
水素ガス4を充填し、このときガス溜め3側はバルブに
より減圧下で一定体積に隔離されており、これらガス溜
め2,3間の差圧により、ガス溜め3側に水素ガスが洩
れ、透過してくるのを検出器5により検出する。具体的
な検出方法は、ガス洩れ量測定セル6からの洩れ透過ガ
スを圧力センサ7によって検出し、この検出された圧力
変化により、単位時間当りのガス洩れ量として計測す
る。なお、符号8は水素ガス導入ラインであり、9はガ
ス溜め、また10は真空ポンプである。
In this measurement, rather than measuring the gas permeation amount of the ring-shaped sample, the amount of gas leakage from the gap between the cell and the ring under a constant compression condition is compared. That is, after decompressing the high-pressure side gas reservoir 2 and the low-pressure side (permeation side) gas reservoir 3 located on both sides of the measurement sample 1, the gas reservoir 2 side is filled with hydrogen gas 4, and the gas reservoir 3 side is It is isolated by a valve into a constant volume under reduced pressure, and a detector 5 detects that hydrogen gas leaks and permeates to the gas reservoir 3 side due to the differential pressure between these gas reservoirs 2 and 3. As a specific detection method, the leak permeated gas from the gas leak amount measuring cell 6 is detected by the pressure sensor 7, and the gas leak amount per unit time is measured based on the detected pressure change. Reference numeral 8 is a hydrogen gas introduction line, 9 is a gas reservoir, and 10 is a vacuum pump.

実施例2 実施例1において、低分子量テトラフルオロエチレン
樹脂粉末の代りに、同量のテトラフルオロエチレン樹脂
ファインパウダー(三井・デュポンフロロケミカル製品
テフロン6−J、一次粒径0.1〜0.5μm)が用いられ
た。得られたリング状サンプルについて、同様の測定が
行われた。
Example 2 In Example 1, instead of the low molecular weight tetrafluoroethylene resin powder, the same amount of tetrafluoroethylene resin fine powder (Mitsui DuPont Fluorochemical product Teflon 6-J, primary particle size 0.1 to 0.5 μm) was used. Was given. The same measurement was performed on the obtained ring-shaped sample.

比較例1 実施例1と同寸法のリング状テトラフルオロエチレン
樹脂シート(厚さ100μm)について、同様の測定が行
われた。
Comparative Example 1 The same measurement was performed on the ring-shaped tetrafluoroethylene resin sheet (thickness 100 μm) having the same dimensions as in Example 1.

比較例2 実施例1と同寸法のリング状フッ素ゴムシート(厚さ
100μm)について、同様の測定が行われた。
Comparative Example 2 Ring-shaped fluororubber sheet having the same dimensions as in Example 1 (thickness
Similar measurements were performed for 100 μm).

以上の測定結果は、次の表に示される。なお、測定温
度は210℃(恒温槽温度)で、セルの圧縮力(セルとサ
ンプルとを密着させるために負荷する力)1.2,3.5また
は8.4Kg/cm2、測定時間1時間の条件下での洩れ量(単
位:×10-3cm3/hr)を、濃リン酸浸漬前(条件1)また
は30日間浸漬後(条件2)のサンプルについて、圧力セ
ンサで測定した。各セル圧縮力下での測定結果は、次の
表に示される。
The above measurement results are shown in the following table. The measurement temperature was 210 ° C (temperature chamber temperature), and the cell compression force (force applied to bring the cell and sample into close contact) of 1.2, 3.5 or 8.4 Kg / cm 2 and measurement time of 1 hour The leakage amount (unit: × 10 -3 cm 3 / hr) of the sample before immersion in concentrated phosphoric acid (condition 1) or after immersion for 30 days (condition 2) was measured with a pressure sensor. The measurement results under each cell compressive force are shown in the following table.

【図面の簡単な説明】 第1図は、ガス洩れ量測定セルの概要図である。また、
第2図は、ガス洩れ量測定装置の概要図である。 (符号の説明) 6……ガス洩れ量測定セル 7……圧力センサ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a gas leak amount measuring cell. Also,
FIG. 2 is a schematic diagram of a gas leakage amount measuring device. (Explanation of symbols) 6 ... Gas leak amount measuring cell 7 ... Pressure sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】テトラフルオロエチレン樹脂焼結体の表面
に、一次粒径約5μm以下のテトラフルオロエチレン樹
脂粉末およびフッ素ゴム溶液の混合物の乾燥被膜を形成
させてなるシール材。
1. A sealing material comprising a dry coating of a mixture of a tetrafluoroethylene resin powder having a primary particle size of about 5 μm or less and a fluororubber solution on the surface of a tetrafluoroethylene resin sintered body.
JP63004702A 1988-01-14 1988-01-14 Seal material Expired - Lifetime JPH0819396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004702A JPH0819396B2 (en) 1988-01-14 1988-01-14 Seal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004702A JPH0819396B2 (en) 1988-01-14 1988-01-14 Seal material

Publications (2)

Publication Number Publication Date
JPH01182388A JPH01182388A (en) 1989-07-20
JPH0819396B2 true JPH0819396B2 (en) 1996-02-28

Family

ID=11591213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004702A Expired - Lifetime JPH0819396B2 (en) 1988-01-14 1988-01-14 Seal material

Country Status (1)

Country Link
JP (1) JPH0819396B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638581B2 (en) 2004-12-30 2009-12-29 3M Innovative Properties Company Fluoropolymer nanoparticle coating composition
CN113150624B (en) * 2021-04-21 2022-07-29 东莞新能德科技有限公司 Protective agent and preparation method and application thereof

Also Published As

Publication number Publication date
JPH01182388A (en) 1989-07-20

Similar Documents

Publication Publication Date Title
US10845291B2 (en) Radial core flooding apparatus and method for analysis of static and/or dynamic properties of reservoir rock
Liabastre et al. An evaluation of pore structure by mercury penetration
EP0578755A1 (en) Electrically conductive gasket materials.
US4002547A (en) Electrochemical reference electrode
Taylor et al. Diffusion of water through insulating materials rubber, synthetic resins, and other organics
EP1203176B1 (en) Low stress to seal gasket
JP2002528862A (en) Fuel cell with seal between individual membrane assembly and plate assembly
CA1215197A (en) High temperature, high pressure chemical resistant seal material
US5110691A (en) Fuel cell component sealant
Harkins et al. An absolute method for the determination of the area of a fine crystalline powder
US3077638A (en) Method for producing a sealing gasket
CN109243845A (en) A kind of cubic crystal Co3O4The preparation and application of doped graphene porous carbon composite
US5141825A (en) Method of making a cermet fuel electrode containing an inert additive
JPH0819396B2 (en) Seal material
US6268020B1 (en) Method of fabricating high sealing gaskets
Franjo et al. Viscosities and densities of octane+ butan-1-ol, hexan-1-ol, and octan-1-ol at 298.15 K
Mukaida Density measurement of small porous particles by mercury porosimetry
JP3620294B2 (en) Sealing material for stacked fuel cell
WO2001027501A1 (en) Low stress to seal form-in-place gasket
Bartell et al. Adhesion Tension. Pressure of Displacement Method.
JPH0293171A (en) Gland packing and manufacture thereof
Bozdag et al. Dependence of the mutual solubilities of (2-butanol+ water) upon pressure and temperature
JP2526628B2 (en) Process for producing gas permeable resistant composition
JPS59142447A (en) Humidity sensor
JP2582630B2 (en) Manufacturing method of sealing material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term