JPH01181987A - Method and device for controlling irradiation of laser beam - Google Patents

Method and device for controlling irradiation of laser beam

Info

Publication number
JPH01181987A
JPH01181987A JP63003094A JP309488A JPH01181987A JP H01181987 A JPH01181987 A JP H01181987A JP 63003094 A JP63003094 A JP 63003094A JP 309488 A JP309488 A JP 309488A JP H01181987 A JPH01181987 A JP H01181987A
Authority
JP
Japan
Prior art keywords
mirror
laser beam
cylindrical mirror
concave cylindrical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63003094A
Other languages
Japanese (ja)
Inventor
Shinsuke Nakanishi
伸介 中西
Osami Ichiko
市古 修身
Katsuhiro Minamida
勝宏 南田
Hirotsugu Haga
芳賀 博世
Nobuo Mizuhashi
伸雄 水橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63003094A priority Critical patent/JPH01181987A/en
Publication of JPH01181987A publication Critical patent/JPH01181987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To control the shape of an irradiation light by spreading a laser beam by a convex mirror and adequately changing the distance between each mirror by stopping it in the vertical and horizontal directions by a pair of concave circular columnar mirrors. CONSTITUTION:The laser beam 20 inputted from an oscillator is transmitted to a convex mirror 3 via plane mirrors 11, 12 to relatively enlarge the longitudinal and horizontal diameters thereof. The beam is then input to the 1st recessed circular columnar mirror 4 to stop the component in the horizontal direction only and the component in the direction(the longitudinal direction component) displaced 90 deg. is stopped by inputting it to the 2nd recessed circular columnar mirror 5 having a curve in the longitudinal direction further. The beam is formed in the specified shape by adequately deforming one or both parts of the distance D1 between a convex mirror 3 and the 1st recessed circular columnar mirror 4 and the distance D2 between the 1st mirror 4 and 2nd mirror 5. The beam shape at the radiation part is thus controlled to the optimum one corresponding to the working and welding can well be performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザビーム照射法、特にレーザビーム照射に
おける照射光の形状を制御する方法及びその装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laser beam irradiation method, and particularly to a method and apparatus for controlling the shape of irradiated light in laser beam irradiation.

従来の技術 一般に、レーザ加工において、照射部におけるビーム形
状を、その加工に応じた最適なものに制御することは重
要である。1例として、電縫管の溶接において入熱の不
足しがちな板厚中心部に、レーザを投入することによっ
て板厚方向を均一に溶融し、これにより溶接部品質の飛
躍的向上をはかるrERW:レーザ複合溶接法」をあげ
ると、投入されるビーム形状について最適な溶接を行な
うためには次のような制限がつく。即ち照射部における
ビームの縦径は管の肉厚に応じて変えなければならず、
一方ビームの横枠はある一定値以下に保ちたい。
2. Description of the Related Art In general, in laser processing, it is important to control the beam shape at the irradiation part to the optimum shape according to the processing. One example is rERW, which uses a laser to uniformly melt the thickness of the plate at the center of the plate thickness, where heat input tends to be insufficient when welding ERW pipes, thereby dramatically improving the quality of the weld. :Laser composite welding method'' has the following limitations in order to perform optimal welding with respect to the shape of the input beam. In other words, the vertical diameter of the beam at the irradiation part must be changed according to the wall thickness of the tube.
On the other hand, I want to keep the horizontal frame of the beam below a certain value.

そこで考えられる光学系としては、これまで第1図に示
すようなものが提案されている(LaserFocus
 、 Nov、 1979 、88頁、A Conve
x Beam Integrator)。これは凹面鏡
と凸面鏡を組合わせたものであり、両鏡間距離りを変え
ることにより、照射部におけるビーム形状を制御するシ
ステムであるが、このシステムではビームの縦(横)径
を所望の値に設定すると同時に、ビームの横(縦)径も
一義的に決まるため、縦径横枠とも同時に所望の値に設
定することはできない。以下その理由を説明する。
As a possible optical system for this purpose, the one shown in Figure 1 has been proposed so far (LaserFocus
, Nov, 1979, p. 88, A Conve.
x Beam Integrator). This system is a combination of a concave mirror and a convex mirror, and the beam shape at the irradiation section is controlled by changing the distance between both mirrors. Since the horizontal (vertical) diameter of the beam is also uniquely determined at the same time as the horizontal (vertical) diameter of the beam is set, it is not possible to set the vertical diameter and the horizontal frame to desired values at the same time. The reason will be explained below.

第2図は凹面鏡からの距離に応じて、ビームの縦径、■
及び横枠Hがどのように変化するかを示したものである
。図示の如く、V、H両カーブにずれが生ずるのはビー
ムが凸面鏡、凹面鏡にある角度をなして入射することに
よる非点収差の影響で、横方向の焦点距離がみかけ1縦
方向の焦点距離より長くなるためであり、それ故ウェス
ト近傍でのビーム形状はA:横長→B:円→C:縦長と
なる。
Figure 2 shows the vertical diameter of the beam depending on the distance from the concave mirror, ■
It shows how the horizontal frame H changes. As shown in the figure, the reason why there is a shift in both the V and H curves is due to the effect of astigmatism caused by the beam entering the convex mirror and the concave mirror at a certain angle, so that the horizontal focal length appears to be 1 vertical focal length. Therefore, the beam shape near the waist becomes A: horizontally long → B: circle → C: vertically long.

実験により、横枠Hが小さいほうが溶接性がよいことが
確かめられているので、第2図のdhが最小になるよう
な距離りを決めると、第2図の両グラフが、一義的に決
まる。即ちこのときのビームの縦径Vも一義的に決まる
ので、縦径■を所望の−値にすることはできない。
Experiments have confirmed that weldability is better when the horizontal frame H is smaller, so by determining the distance that minimizes dh in Figure 2, both graphs in Figure 2 are uniquely determined. . That is, since the vertical diameter V of the beam at this time is also uniquely determined, it is not possible to set the vertical diameter ■ to a desired negative value.

発明が解決しようとする課題 以上のように従来の技術においては、ビーム形状を自由
に制御することができないという問題点があった。本発
明は上記問題点を解決し、照射光の形状を制御しうる照
射制御方法および装置を提供する。
Problems to be Solved by the Invention As described above, the conventional technology has a problem in that the beam shape cannot be freely controlled. The present invention solves the above problems and provides an irradiation control method and apparatus that can control the shape of irradiated light.

課題を解決するための手段 上記問題点を解決するための第1の本発明は、レーザ発
振器から出たレーザビームを凸面鏡により拡大し、次に
該レーザビームを第1の凹円柱鏡により1方向に集光し
、次に該レーザビームのうち、上記方向に対し90’変
位した方向成分を第2の凹円柱鏡により集光すると共に
、凸面鏡と第1の凹円柱鏡の距離及び第1の凹円柱鏡と
第2の凹円柱鏡の距離の1方または両方を変更して所望
の形状のレーザビームを得ることを特徴とするレーザビ
ーム照射制御方法である。
Means for Solving the Problems A first invention for solving the above problems expands a laser beam emitted from a laser oscillator using a convex mirror, and then expands the laser beam in one direction using a first concave cylindrical mirror. Then, out of the laser beam, a directional component displaced by 90' with respect to the above direction is focused by a second concave cylindrical mirror, and the distance between the convex mirror and the first concave cylindrical mirror and the first This is a laser beam irradiation control method characterized by changing one or both of the distances between a concave cylindrical mirror and a second concave cylindrical mirror to obtain a laser beam having a desired shape.

また第1の凹円柱鏡及び第2の凹円柱鏡が集光したそれ
ぞれの方向のレーザビームの径をレーザ照射部において
所望の大きさにし、また第1の凹円柱鏡と第2の凹円柱
鏡のいずれか一方を積分鏡とし、該積分鏡によりレーザ
照射部におけるレーザビームのエネルギー分布をも制御
することを特徴とするものである。
Further, the diameters of the laser beams in the respective directions condensed by the first concave cylindrical mirror and the second concave cylindrical mirror are set to desired sizes in the laser irradiation section, and One of the mirrors is an integrating mirror, and the integrating mirror also controls the energy distribution of the laser beam in the laser irradiation section.

第2の本発明は、レーザ発振器から出たレーザビームを
拡大する凸面鏡と、拡大されたレーザビームを1方向に
集光する第1の凹柱鏡と、拡大されたレーザビームのう
ち上記方向に対して80゜変位した方向成分を集光する
第2の凹円柱鏡とを箱体内に設置し、前記凸面鏡、第1
の凹円柱鏡及び第2の凹円柱鏡のそれぞれに位置調整装
置を設けたことを特徴とするレーザビーム照射制御装置
であり、また第1の凹円柱鏡と第2の凹円柱鏡のいずれ
か一方がわん曲方向に対して直角方向に分割された積分
鏡で構成されたものである。
A second aspect of the present invention includes a convex mirror that magnifies a laser beam emitted from a laser oscillator, a first concave mirror that focuses the expanded laser beam in one direction, and a concave mirror that focuses the expanded laser beam in one direction. A second concave cylindrical mirror that condenses a directional component displaced by 80 degrees with respect to the convex mirror is installed inside the box, and the convex mirror and the first
A laser beam irradiation control device characterized in that a position adjustment device is provided for each of the concave cylindrical mirror and the second concave cylindrical mirror, and the first concave cylindrical mirror and the second concave cylindrical mirror It consists of an integrating mirror, one of which is divided in a direction perpendicular to the direction of curvature.

作用 第1図は本発明の光学系を示すもので、凸面鏡3、横方
向にカーブをもつ凹円柱鏡4、縦方向にカーブをもつ凹
円柱鏡5の3者から成り、各鏡開距離り、、D2を変え
ることができる。ここで、ビームの横枠に注目すると縦
方向にカーブをもつ凹円柱鏡5は、横方向に対して平面
鏡の役割しか果たさないので、ビーム横枠の感じる光学
系は第2図に示す2枚鏡光学系と等価である。
Operation Figure 1 shows the optical system of the present invention, which consists of three parts: a convex mirror 3, a concave cylindrical mirror 4 with a curve in the horizontal direction, and a concave cylindrical mirror 5 with a curve in the vertical direction. , , D2 can be changed. Here, if we pay attention to the horizontal frame of the beam, the concave cylindrical mirror 5, which has a curve in the vertical direction, only plays the role of a plane mirror in the horizontal direction, so the optical system that the horizontal frame of the beam feels is a two-piece optical system as shown in Figure 2. It is equivalent to a mirror optical system.

一方ビーム縦径に注目すると、横方向にカーブをもつ凹
円柱鏡4は、縦方向に対して平面鏡の役割しか果たさな
いので、ビーム縦径の感じる光学系は第3図に示す2枚
ミラー光学もと等価である。
On the other hand, if we focus on the vertical beam diameter, the concave cylindrical mirror 4 with a curve in the horizontal direction only plays the role of a plane mirror in the vertical direction, so the optical system that senses the vertical beam diameter is a two-mirror optical system shown in Figure 3. They are originally equivalent.

ここで第3図における3、4.5の鏡のいずれか2枚を
移動可能にすれば、D□、D2を独立に変えることがで
き、これから当然のことながら、第2図における両鏡間
距離Dlと、第5図における両鏡間距離D1+D2を独
立に変えられる。そしてこのことは第9図のビーム径■
、Hlおのおののカーブを独立して動かすことが可能に
なったことを意味する。
If any two of mirrors 3 and 4.5 in Figure 3 are made movable, D□ and D2 can be changed independently. The distance Dl and the distance between both mirrors D1+D2 in FIG. 5 can be changed independently. And this means that the beam diameter in Figure 9 is
, Hl means that it is now possible to move each curve independently.

例えば第1図におけるDiを一定に保ちつつD1+D2
を小さくすると第4図に示すように横方向のビーム径の
変化、即ち曲線Hを固定したまま縦方向のビーム径の変
化、即ち曲線VをV A +vB+v、  と動かすこ
とができる。これは即ち溶接点における横枠を一定に保
ったまま縦径を変えられることを意味し、このときビー
ム形状はA→B−Cとなる。以上のように本発明を用い
るとレーザ照射部におけるビーム形状を自由に制御でき
る。
For example, while keeping Di constant in Fig. 1, D1+D2
As shown in FIG. 4, by decreasing , it is possible to change the beam diameter in the vertical direction, ie, the curve V, while keeping the beam diameter in the lateral direction, ie, the curve H, fixed as V A +vB+v. This means that the vertical diameter can be changed while keeping the horizontal frame constant at the welding point, and in this case the beam shape changes from A to B-C. As described above, by using the present invention, the beam shape at the laser irradiation section can be freely controlled.

実施例 ここで本発明の装置について第5図及び第6図に基づい
て更に具体的に説明する。
EXAMPLE The apparatus of the present invention will now be described in more detail with reference to FIGS. 5 and 6.

第5図は本発明を示す一実施例で、レーザビーム照射制
御装置のミラー系を示す断面図である。
FIG. 5 is a cross-sectional view showing a mirror system of a laser beam irradiation control device according to an embodiment of the present invention.

凸円柱鏡3はミラーホルダー6内にはめこまれ、該ミラ
ーホルダー6は、支持棒7に回転自在に取付けられてい
る。
The convex cylindrical mirror 3 is fitted into a mirror holder 6, and the mirror holder 6 is rotatably attached to a support rod 7.

第1の凹円柱鏡4はミラーホルダー6〜1にはめこまれ
、該ミラーホルダー6−1はスライダー8に回転自在に
取付けられ、かつ該スライダー8は、支持棒9上を自在
に移動する。該円柱鏡4は、前記円柱鏡3と対峙して配
置される。
The first concave cylindrical mirror 4 is fitted into a mirror holder 6-1, and the mirror holder 6-1 is rotatably attached to a slider 8, and the slider 8 freely moves on a support rod 9. The cylindrical mirror 4 is placed facing the cylindrical mirror 3.

次に第2の凹円柱鏡5は、第1の凹円柱鏡4と対峙して
配置され、かつ上記同様ホルダー6−2を介して支持棒
9−1上に自在に移動するスライダー8−1に回転自在
に取付けられる。11.12は平板鏡である。以上のミ
ラー系が箱体13内に収納されている。
Next, the second concave cylindrical mirror 5 is arranged to face the first concave cylindrical mirror 4, and the slider 8-1 is moved freely onto the support rod 9-1 via the holder 6-2 as described above. It is rotatably mounted on the 11.12 is a flat mirror. The above mirror system is housed in the box 13.

第6図は例えば第1の凹円柱鏡4のミラーホルダー6−
1の駆動機構を更に詳細に示したもので、支持棒9に移
動自在に嵌挿されたスライダー8より突出構成されたシ
ャフト10の先端に該シャフト10の中心線を中心にし
て回転できるようにミラーホルダー6−1が取付けられ
ている。
FIG. 6 shows, for example, a mirror holder 6- of the first concave cylindrical mirror 4.
This is a more detailed view of the drive mechanism of No. 1, in which a shaft 10 is provided at the tip end of a shaft 10 protruding from a slider 8 which is movably inserted into a support rod 9 so as to be able to rotate about the center line of the shaft 10. A mirror holder 6-1 is attached.

このような装置において発振器より投入されたビームは
、平板鏡11.12により伝送されて凸面鏡に投入され
る。該凸面鏡3で投射されたビームは、その縦径、横枠
とも広げられた、即ち相似的に広げられた形状となる。
In such a device, a beam emitted from an oscillator is transmitted by flat mirrors 11 and 12 and is emitted to a convex mirror. The beam projected by the convex mirror 3 has a shape in which both its vertical diameter and horizontal frame are expanded, that is, they are expanded in a similar manner.

かかる投射ビームが第1の凹円柱鏡4、例えば横方向に
カーブを有する円杵鏡に投入されると該円柱鏡4では投
入ビームの縦方向の広がり方はそのままで、ビームの横
方向の成分だけが絞られた投射ビームとなる。かかる投
射ビームがさらに第2の凹円柱鏡5、例えば縦方向にカ
ーブを有する円柱鏡に投入されると該円柱鏡5では投入
ビームの横方向の絞られ方はそのままで、90゜変位し
た方向成分、即ちビームの縦方向成分だけが絞られる投
射ビームとなる。
When such a projection beam is input to the first concave cylindrical mirror 4, for example, a circular mirror having a curve in the horizontal direction, the cylindrical mirror 4 maintains the vertical spread of the input beam, and the horizontal component of the beam is The projection beam becomes focused. When this projection beam is further input into a second concave cylindrical mirror 5, for example, a cylindrical mirror having a curve in the vertical direction, in the cylindrical mirror 5, the lateral convergence of the input beam remains unchanged, but the direction is shifted by 90°. Only the longitudinal component of the beam becomes a focussed projection beam.

いま投射ビームの照射部における縦径を大きくするため
に、鏡開距離り、を一定にして、即ち凸面鏡3と横方向
にカーブをもつ凹面鏡4との距離を一定にして鏡開距離
D1+D2を小さくする。
Now, in order to increase the vertical diameter of the irradiation part of the projection beam, the mirror opening distance is kept constant, that is, the distance between the convex mirror 3 and the concave mirror 4 having a curve in the horizontal direction is kept constant, and the mirror opening distance D1 + D2 is made small. do.

即ちD2を小さくするために円柱鏡5を移動する。以上
の操作により、円柱鏡5からの投射ビームは、D1+D
2の値に応じた形状に制御され、溶接点へ投射される。
That is, the cylindrical mirror 5 is moved to reduce D2. By the above operation, the projection beam from the cylindrical mirror 5 is D1+D
The shape is controlled according to the value of 2 and projected to the welding point.

この場合は円柱鏡5を移動させたが、この他、凸面鏡3
と円柱鏡4を移動させても同様の効果が得られる。
In this case, the cylindrical mirror 5 was moved, but in addition, the convex mirror 3
A similar effect can be obtained by moving the cylindrical mirror 4.

なお、縦径を一定に保ったまま横枠を変える場合はD1
+D2を一定に保ったままD2を変えればよい。この場
合は凸面鏡3、円柱鏡4、円柱鏡5のうちのいずれか2
枚の位置を変えることにより実現できる。また円柱鏡4
を縦方向にカーブをもつ凹円柱鏡に、円柱鏡5を横方向
にカーブをもつ凹円柱鏡にしても同様の効果が得られる
。この場合、横枠を一定に保ちたければD1+D2を一
定にすればよく、縦径を一定に保ちたければD□を一定
にすればよい。
In addition, if you want to change the horizontal frame while keeping the vertical diameter constant, use D1.
It is sufficient to change D2 while keeping +D2 constant. In this case, any two of convex mirror 3, cylindrical mirror 4, and cylindrical mirror 5
This can be achieved by changing the position of the sheets. Also cylindrical mirror 4
A similar effect can be obtained by using a concave cylindrical mirror with a curve in the vertical direction and using a concave cylindrical mirror with a curve in the horizontal direction as the cylindrical mirror 5. In this case, if you want to keep the horizontal frame constant, you can keep D1+D2 constant, and if you want to keep the vertical diameter constant, you can keep D□ constant.

まお本発明をrERW・レーザ複合溶接法」に適用する
場合には、縦方向のエネルギー分布を最適なものにする
必要があるが、これは円柱鏡5をわん曲方向に対して直
角方向に分割した積分値にして、この積分値を構成する
各セグメントの縦方向の集光方向を調整することにより
実現できる。
However, when applying the present invention to the rERW/laser combined welding method, it is necessary to optimize the energy distribution in the longitudinal direction. This can be achieved by adjusting the vertical light focusing direction of each segment that makes up this integral value.

第7図はこのような積分値の一例であるが、積分値4−
1のおのおののセグメン)4−1−A、4−1−Bの裏
に調整ネジを設けて各ネジを操作することにより集光方
向の調整を行なう。
Figure 7 shows an example of such an integral value, and the integral value 4-
Adjustment screws are provided on the back of each segment) 4-1-A and 4-1-B, and the direction of light collection is adjusted by operating each screw.

一般に投入ビームの形状及びエネルギー分布は、発振器
の種類によって代わるが、このように積分値を用いるこ
とにより発振器の種類に関係なく所望のエネルギー分布
を実現で゛きる。例えばERWとの併合の場合、縦方向
のエネルギー分布を均一にすることが回部である。
Generally, the shape and energy distribution of the input beam vary depending on the type of oscillator, but by using the integral value in this way, a desired energy distribution can be achieved regardless of the type of oscillator. For example, in the case of merging with ERW, the turning part is to make the longitudinal energy distribution uniform.

以上の説明は、本発明を電縫管等の溶接を主体にして述
べたが、これにとどまらず、レーザ加ニ一般において照
射部におけるビーム形状、エネルギー分布をその加工に
応じた最適なものに制御することは極めて重要であるが
故に、本発明は極めて有効であるといえる。
In the above explanation, the present invention was mainly applied to welding of electric resistance welded pipes, etc., but it is not limited to this, but is applicable to laser welding in general by optimizing the beam shape and energy distribution at the irradiation part according to the processing. Since control is extremely important, the present invention can be said to be extremely effective.

次に第5図に示す光学系によりレーザビームを集光する
ことによって以下の結果が得られた。
Next, the following results were obtained by focusing the laser beam using the optical system shown in FIG.

(以下余白) ここで、凸面鏡3の焦点距離           f
、 =−730横方向にカーブをもつ円柱鏡4の焦点距
離 f4=1300縦方向にカーブをもつ円柱鏡5の焦
点距離 fs =1000また表中り、−dvば以下に
定義するとおりである。
(Left below) Here, the focal length of the convex mirror 3 is f
, = -730 Focal length of the cylindrical mirror 4 having a curve in the horizontal direction f4 = 1300 Focal length of the cylindrical mirror 5 having a curve in the vertical direction fs = 1000 In the table, -dv is as defined below.

Dv=凸面鏡3ど縦方向にカーブをもつ円柱鏡5の間の
距離DII:凸面鏡3ど横方向にカーブをもつ円柱鏡4
の間の距離Lv:円柱鏡5から縦方向のウェストまでの
距峻LH二円柱鏡5から横方向のウェストまでのMLv
−L、:縦方向のウェストと横方向ウェスト間の距離d
h+sin’横方向のウェスト径 dv:横方向ウェスト位置での縦方向の径以上の結果か
らDHを一定にしてDvを変更することにより、横枠を
24mmに保ったまま、縦径を10i+nから22mm
まで連続的に変えることができたことがわかる。なお、
エネルギー分布についても実用上間迦のない均一な分布
を得ることができたため、ERW・レーザ複合溶接実験
を行ったところ、溶接部の品質が飛躍的に向上した。
Dv = Distance between convex mirror 3 and cylindrical mirror 5 with a curve in the vertical direction DII: Convex mirror 3 and cylindrical mirror 4 with a curve in the horizontal direction
Distance Lv: Distance LH from the cylindrical mirror 5 to the waist in the vertical direction MLv from the cylindrical mirror 5 to the waist in the horizontal direction
-L,: distance d between the vertical waist and the horizontal waist
h+sin' Horizontal waist diameter dv: From the results of the vertical diameter at the horizontal waist position or more, by keeping DH constant and changing Dv, the vertical diameter was changed from 10i+n to 22mm while keeping the horizontal frame at 24mm.
It can be seen that it was possible to change the value continuously. In addition,
Since we were able to obtain a uniform energy distribution with no gaps in practical use, we conducted a combined ERW/laser welding experiment and found that the quality of the weld was dramatically improved.

発明の効果 以上詳述した如く、本発明は■レーザ照射部におけるビ
ームの縦径、横枠を完全に独立して制御できる。■その
制御がビーム伝送ミラーの位置を変えるだけという非常
に速やかな操作で可能である。また■必要であれば積分
値を構成する各ミラーを調整することによりエネルギー
分布制御も可能であるという特徴をもっており、その効
果は電縫管の溶接のみならずレーザ加ニ一般に対して極
めて大きいものである。
Effects of the Invention As detailed above, the present invention (1) allows the vertical diameter and horizontal frame of the beam in the laser irradiation section to be controlled completely independently. ■It can be controlled very quickly by simply changing the position of the beam transmission mirror. In addition, if necessary, it is possible to control the energy distribution by adjusting each mirror that makes up the integral value, and this effect is extremely effective not only for welding electric resistance welded pipes but also for laser welding in general. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学系を示した図、第2図、第3図は
第1図の光学系の機能を示した図、第4図は本発明の光
学系により制御されたレーザビーム形状の変化を表わし
た図、第5図は本発明の装置の概略断面図、第6図はミ
ラーの駆動機構を示す概略斜視図、第7図は本発明の積
分鏡の概略斜視図、第8図は凹凸面鏡を組合わせた従来
の光学系を示した図、第9図は第1図の光学系によって
制御されたビーム形状の変化を縦方向にカーブをもつ凹
円柱鏡からの距離の関数として表わした図である。 1・・・凸面鏡、2・・争凹面鏡、3・・・凸面鏡、4
−・Φ第1の凹円柱鏡、5や参φ第2の凹円柱鏡、4−
1φ争争積分鏡、13争・・箱体、20Φ争Φ投人ビー
ム、21Φ・・投射ビーム。
Fig. 1 is a diagram showing the optical system of the present invention, Figs. 2 and 3 are diagrams showing the functions of the optical system of Fig. 1, and Fig. 4 is a diagram showing the laser beam controlled by the optical system of the present invention. 5 is a schematic sectional view of the device of the present invention, FIG. 6 is a schematic perspective view showing the mirror drive mechanism, and FIG. 7 is a schematic perspective view of the integrating mirror of the present invention. Figure 8 shows a conventional optical system that combines concave and convex mirrors, and Figure 9 shows changes in the beam shape controlled by the optical system in Figure 1 as a function of the distance from a concave cylindrical mirror with a vertical curve. It is a diagram expressed as a function. 1...Convex mirror, 2...Concave mirror, 3...Convex mirror, 4
-・φ1st concave cylindrical mirror, 5 and φ2nd concave cylindrical mirror, 4-
1φ conflict integral mirror, 13φ box body, 20φ conflict φ thrower beam, 21φ... projection beam.

Claims (5)

【特許請求の範囲】[Claims] 1.レーザ発振器から出たレーザビームを凸面鏡により
広げ、次に該レーザビームを第1の凹円柱鏡により1方
向に絞り、さらに該レーザビームのうち上記方向に対し
90゜変位した方向成分を第2の凹円柱鏡により絞ると
ともに、上記凸面鏡と第1の凹円柱鏡の距離、及び第1
の凹円柱鏡と第2の凹円柱鏡の距離の一方または両方を
変更して所望の形状のレーザビームを得ることを特徴と
するレーザビーム照射制御方法。
1. A laser beam emitted from a laser oscillator is spread by a convex mirror, then the laser beam is focused in one direction by a first concave cylindrical mirror, and a directional component of the laser beam displaced by 90° with respect to the above direction is focused into a second direction. In addition to narrowing down the concave cylindrical mirror, the distance between the convex mirror and the first concave cylindrical mirror, and the first
A laser beam irradiation control method comprising changing one or both of the distances between the concave cylindrical mirror and the second concave cylindrical mirror to obtain a laser beam having a desired shape.
2.レーザ照射部における第1の凹円柱鏡及び第2の凹
円柱鏡が絞ったそれぞれのレーザビームの径を所望の大
きさにする特許請求の範囲第1項記載のレーザビーム照
射制御方法。
2. 2. The laser beam irradiation control method according to claim 1, wherein the diameters of the respective laser beams focused by the first concave cylindrical mirror and the second concave cylindrical mirror in the laser irradiation section are adjusted to a desired size.
3.第1の凹円柱鏡と第2の凹円柱鏡のいずれか一方を
積分鏡とし、該積分鏡によりレーザ照射部におけるレー
ザビームのエネルギー分布をも制御することを特徴とす
る特許請求の範囲第1項又は第2項記載のレーザビーム
照射制御方法。
3. Claim 1 characterized in that either the first concave cylindrical mirror or the second concave cylindrical mirror is an integrating mirror, and the integrating mirror also controls the energy distribution of the laser beam in the laser irradiation section. The laser beam irradiation control method according to item 1 or 2.
4.レーザ発振器から出たレーザビームを広げる凸面鏡
と、広げられた該レーザビームを1方向に絞る第1の凹
円柱鏡と、絞られた該レーザビームのうち、上記方向に
対し90゜変位した方向成分を絞る第2の凹円柱鏡と、
前記凸面鏡、第1の凹円柱鏡及び第2の凹円柱鏡のそれ
ぞれに設けた位置調整装置とを箱体内に設置したことを
特徴とするレーザビーム照射制御装置。
4. A convex mirror that spreads the laser beam emitted from the laser oscillator, a first concave cylindrical mirror that focuses the spread laser beam in one direction, and a directional component of the focused laser beam that is displaced by 90 degrees with respect to the above direction. a second concave cylindrical mirror that narrows down the
A laser beam irradiation control device characterized in that a position adjustment device provided for each of the convex mirror, the first concave cylindrical mirror, and the second concave cylindrical mirror is installed in a box body.
5.第1の凹円柱鏡と第2の凹円柱鏡のいずれか一方が
わん曲方向に対して直角方向に分割された積分鏡で構成
された特許請求の範囲第4項記載のレーザビーム照射制
御装置。
5. The laser beam irradiation control device according to claim 4, wherein either the first concave cylindrical mirror or the second concave cylindrical mirror is constituted by an integrating mirror divided in a direction perpendicular to the curved direction. .
JP63003094A 1988-01-12 1988-01-12 Method and device for controlling irradiation of laser beam Pending JPH01181987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003094A JPH01181987A (en) 1988-01-12 1988-01-12 Method and device for controlling irradiation of laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003094A JPH01181987A (en) 1988-01-12 1988-01-12 Method and device for controlling irradiation of laser beam

Publications (1)

Publication Number Publication Date
JPH01181987A true JPH01181987A (en) 1989-07-19

Family

ID=11547757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003094A Pending JPH01181987A (en) 1988-01-12 1988-01-12 Method and device for controlling irradiation of laser beam

Country Status (1)

Country Link
JP (1) JPH01181987A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794482A (en) * 1980-12-05 1982-06-11 Hitachi Ltd Pattern forming device by laser
JPS6284889A (en) * 1985-10-11 1987-04-18 Nippon Steel Corp Method and device for laser welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794482A (en) * 1980-12-05 1982-06-11 Hitachi Ltd Pattern forming device by laser
JPS6284889A (en) * 1985-10-11 1987-04-18 Nippon Steel Corp Method and device for laser welding

Similar Documents

Publication Publication Date Title
US20220126396A1 (en) Optical apparatus for the laser welding of a workpiece, with a plurality of partial beams having a core zone and a ring zone in the beam profile
JP3205898B2 (en) Method for machining a workpiece made of hard material and apparatus for implementing this method
JPH02290685A (en) Laser beam machine
EP3248726B1 (en) Beam processing device and shaping device
JPS6293095A (en) Laser beam machine
JP2002519715A (en) Hole scanning laser scanner
WO1994003302A1 (en) Photo-scanning type laser machine
JPH01181987A (en) Method and device for controlling irradiation of laser beam
JPH0436794B2 (en)
JPH0767633B2 (en) Coaxial multi-focus laser beam concentrator
RU2120365C1 (en) Method of and device for making of pipes by laser welding of longitudinal seams
JPH0327316B2 (en)
EP0062517A1 (en) Heat treatment of workpiece by laser
JP2000271775A (en) Laser beam emission optical system
KR20010021906A (en) Device for the laser processing of materials
JP5408831B2 (en) Optical drilling device
JPH02161411A (en) Laser beam machining head
JPH0214155B2 (en)
CN219786949U (en) Composite laser
JPH04143092A (en) Laser beam machine
JP3179188B2 (en) Laser processing machine
CN220196596U (en) Laser processing system
JPS6253566B2 (en)
JPH04253584A (en) Laser beam cutting method and laser beam machining apparatus
JPH03184687A (en) Laser beam machining apparatus