JPH01180964A - Metallic ir for vacuum deposition - Google Patents

Metallic ir for vacuum deposition

Info

Publication number
JPH01180964A
JPH01180964A JP217388A JP217388A JPH01180964A JP H01180964 A JPH01180964 A JP H01180964A JP 217388 A JP217388 A JP 217388A JP 217388 A JP217388 A JP 217388A JP H01180964 A JPH01180964 A JP H01180964A
Authority
JP
Japan
Prior art keywords
1ppm
less
ppm
elements
vacuum deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP217388A
Other languages
Japanese (ja)
Inventor
Toshiya Yamamoto
俊哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP217388A priority Critical patent/JPH01180964A/en
Publication of JPH01180964A publication Critical patent/JPH01180964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain metallic Ir suppressing bumping and scattering at the time of melting in vacuum deposition by regulating the contents of impurity elements each having a lower b.p. than Ir, e.g., Cd, Mg and Al in Ir and by specifying the purity of the Ir. CONSTITUTION:This metallic Ir for vacuum deposition has >=99.98wt.% purity and contains, by weight, <=30ppm, in total, of <=1ppm Cd, <=1ppm As, <=1ppm Na, <=1ppm K, <=1ppm Zn, <=3ppm Mg, <=1ppm Sr, <=3ppm Ca, <=1ppm Bi, <=1ppm Sb, <=1ppm Ba, <=1ppm Pb, <=20ppm Al, <=1ppm In, <=1ppm Mn, <=1ppm Ag, <=10ppm Si and <=1ppm Sn. When the metallic Ir is vacuum- deposited, the evaporation of impurity elements is suppressed and the bumping and scattering of molten Ir are prevented. The total amt. of elements having <=1,000 deg.C b.p. such as Cd is preferably regulated to <=3ppm, that of elements having 1,000-2,000 deg.C b.p. such as Mg to <=7ppm and that of elements having >2,000 deg.C b.p. such as Al to <=20ppm.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リードスイッチ用接点材料などに使用される
真空蒸着用Ir金属に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an Ir metal for vacuum deposition used as a contact material for reed switches and the like.

(従来の技術とその問題点) 従来よりIrは、通常99.95%のものが純Irとし
て、真空蒸着材料に使用されている。
(Prior art and its problems) Conventionally, Ir has been used in vacuum evaporation materials, usually with 99.95% pure Ir.

ところで、このIrの真空蒸着材料の中には不純物とし
て多数の元素が微量存在しているので、真空蒸着時に溶
融状態のIrか突沸したり、飛散したりして、溶融Ir
が基板に付着し、平滑な膜が得られないものである。
By the way, this Ir vacuum evaporation material contains a small amount of many elements as impurities, so during vacuum evaporation, the molten Ir may bump or scatter.
adheres to the substrate, making it impossible to obtain a smooth film.

これはIrの融点が2280℃であるが、不純物として
微量存在する多数の元素の沸点は殆んどそれ以下である
為、溶融Ir中ではそれらの元素が選択的にしかも突沸
的に蒸発するからである。
This is because the melting point of Ir is 2280°C, but the boiling points of many elements that exist in trace amounts as impurities are almost all lower than that, so these elements evaporate selectively and bumpingly in molten Ir. It is.

(発明の目的) 本発明は、上記問題点を解決すべくなされたもので、不
純物として存在する多数の元素の含有量を少なくして、
真空蒸着時それらの元素の蒸発を少なくし、溶融Irが
突沸したり、飛散したりするのを減少するようにした真
空蒸着用Ir金属を提供することを目的とするものであ
る。
(Object of the Invention) The present invention has been made to solve the above problems, and by reducing the content of many elements that exist as impurities,
The object of the present invention is to provide an Ir metal for vacuum deposition, which reduces evaporation of these elements during vacuum deposition and reduces bumping and scattering of molten Ir.

(問題点を解決するための手段) 上記問題点を解決するための本発明の真空蒸着用Ir金
属は、重量比で、Cdが1PPM以下、Asが1PPM
以下、Naが1PPM以下、Kが1PPM以下、Znが
1PPM以下、Mgが3PPM以下、Srが1PPM以
下、Caが3PPM以下、Biが1PPM以下、Sbが
1PPM以下、Baが1PPM以下、Pbが1PPM以
下、Affiが20PPM以下、Inが1PPM以下、
Mnが1PPM以下、Agが1PPM以下、Slが10
PPM以下、Snが1PPM以下で、これら元素の総量
が30PPM以下であり、且つIrの純度が重量比で9
9.98%以上であることを特徴どするものである。
(Means for Solving the Problems) In order to solve the above problems, the Ir metal for vacuum deposition of the present invention has a weight ratio of Cd of 1 PPM or less and As of 1 PPM.
Below, Na is 1PPM or less, K is 1PPM or less, Zn is 1PPM or less, Mg is 3PPM or less, Sr is 1PPM or less, Ca is 3PPM or less, Bi is 1PPM or less, Sb is 1PPM or less, Ba is 1PPM or less, Pb is 1PPM or less. Below, Affi is 20PPM or less, In is 1PPM or less,
Mn is 1 PPM or less, Ag is 1 PPM or less, Sl is 10
PPM or less, Sn is 1 PPM or less, the total amount of these elements is 30 PPM or less, and the purity of Ir is 9 by weight ratio.
It is characterized by being 9.98% or more.

また、本発明の真空蒸着用Ir金属は、沸点が1000
℃以下のCd、As、Na、K、Znの元素が総量で重
量比3PPM以下であることも特徴である。
Further, the Ir metal for vacuum deposition of the present invention has a boiling point of 1000
Another feature is that the total amount of the elements Cd, As, Na, K, and Zn below 3 PPM by weight is 3 PPM or below.

さらに本発明の真空蒸着用Ir金属は、沸点が1000
℃〜2000℃のMg、、Sr、Ca、、B 1XSb
Furthermore, the Ir metal for vacuum deposition of the present invention has a boiling point of 1000
℃~2000℃ Mg,,Sr,Ca,,B 1XSb
.

Ba、Pbの元素が総量で重量比7PPM以下であるこ
とも特徴である。
Another feature is that the total amount of elements Ba and Pb is 7 PPM or less by weight.

さらにまた本発明の真空蒸着用Ir金属は、沸点が20
00℃を超えるAl、In、Mn、Ag、Si、Snの
元素が総量で重量比20PPM以下であることも特徴で
ある。
Furthermore, the Ir metal for vacuum deposition of the present invention has a boiling point of 20
Another feature is that the total amount of the elements Al, In, Mn, Ag, Si, and Sn, which exceed 00° C., is 20 PPM or less by weight.

本発明の真空蒸着用Ir金属に於いて、各元素の重量比
の上限を前述の如く限定した理由は、各元素の重量比が
上限を超えると、真空蒸着時各元素が突沸的に蒸発する
為である。また各元素の総量を30PPM以下に限定し
た理由は、30PPMを超えると真空蒸着時含有する元
素の蒸発が極端に増加するからである。
The reason for limiting the upper limit of the weight ratio of each element in the Ir metal for vacuum deposition of the present invention as described above is that if the weight ratio of each element exceeds the upper limit, each element evaporates in a bumping manner during vacuum deposition. It is for this purpose. Further, the reason why the total amount of each element is limited to 30 PPM or less is that if it exceeds 30 PPM, the evaporation of the elements contained during vacuum deposition will increase dramatically.

沸点が1000℃以下の蒸気圧の高いCd、As、Na
、K、Znの元素の総量を重量比で3PPM以下にした
理由は、真空蒸着時それらの元素の蒸発をなくし、溶融
Irの突沸を減少するためである。
Cd, As, Na with boiling point below 1000℃ and high vapor pressure
, K, and Zn to a weight ratio of 3 PPM or less is to eliminate evaporation of these elements during vacuum deposition and reduce bumping of molten Ir.

沸点が1000℃〜2000℃の蒸気圧の低いMg、S
r、Ca、Bi、Sb、Ba、Pbの元素の総量を重量
比で7PPM以下にした理由は、真空蒸着時それらの元
素の蒸発を少なくし、溶融Irの突沸を減少する為であ
る。
Mg, S with a boiling point of 1000°C to 2000°C and low vapor pressure
The reason why the total amount of the elements r, Ca, Bi, Sb, Ba, and Pb is set to 7 PPM or less by weight is to reduce evaporation of these elements during vacuum deposition and reduce bumping of molten Ir.

沸点が2000″Cを超える蒸気圧の極めて低いAl、
I n、Mn、Ag、S i、Snの元素の総量を重量
比で20PPM以下にした理由は、真空蒸着時それらの
元素の蒸発を少なくし、溶融Irの突沸を減少する為で
ある。
Al with extremely low vapor pressure and a boiling point exceeding 2000″C;
The reason why the total amount of the elements In, Mn, Ag, Si, and Sn is set to 20 PPM or less by weight is to reduce evaporation of these elements during vacuum deposition and reduce bumping of molten Ir.

Irを重量比で99.98%としたのは、Irの純度を
より高める為である。
The reason why Ir was set at 99.98% by weight was to further increase the purity of Ir.

(実施例) 本発明による真空蒸着用Ir金属の実施例及び比較例に
ついて説明する。不純物として多数の元素を含有するI
rを予めアーク溶解炉や電子ビーム溶解炉で5分以上溶
解して、Irより蒸気圧の高い各元素を選択的に蒸発さ
せて、下記の表に示す成分組成の実施例1〜8及び比較
例1〜4の真空蒸着用Ir金属を得た。
(Example) Examples and comparative examples of Ir metal for vacuum deposition according to the present invention will be described. I containing many elements as impurities
By melting r in advance for 5 minutes or more in an arc melting furnace or an electron beam melting furnace and selectively evaporating each element with a higher vapor pressure than Ir, Examples 1 to 8 and comparisons of the component compositions shown in the table below were prepared. Ir metals for vacuum deposition of Examples 1 to 4 were obtained.

これら実施例及び比較例の真空蒸着用Ir金属を基板に
真空蒸着した処、当初の1分間で下記の表の右端欄に示
すような回数の突沸かあった。
When the Ir metal for vacuum deposition of these Examples and Comparative Examples was vacuum deposited on a substrate, bumping occurred as many times as shown in the right column of the table below in the first minute.

(以下余白) 上記の表で明らかなように比較例1〜4の真空蒸着用I
r金属は、真空蒸着時の微量に含有する元素の蒸発によ
る溶融Irの突沸回数が3〜5回と多いのに対し、実施
例1〜8の真空蒸着用Ir金属は、真空蒸着時の微量に
含有する元素の蒸発による溶融Irの突沸回数が0〜1
回と極めて少ないことが判る。これはひとえにIr中に
含有するCd、As、Na、K、Znの各々が1PPM
以下で、Mg、Caが3PPM以下、Sr、Bi、Sb
、Ba、Pbの各々が1PPM以下で、A!20PPM
以下、SSi10PP、I n、Mn、Ag、Snの各
々が1PPMであり、これら元素の総量が30PPM以
下であるからである。
(Left below) As is clear from the table above, I
With r metal, the number of bumping times of molten Ir due to evaporation of trace amounts of elements during vacuum evaporation is as many as 3 to 5 times. The number of bumping times of molten Ir due to evaporation of elements contained in is 0 to 1
It turns out that there are very few times. This simply means that each of Cd, As, Na, K, and Zn contained in Ir is 1 PPM.
Below, Mg, Ca is 3 PPM or less, Sr, Bi, Sb
, Ba, and Pb are each 1 PPM or less, and A! 20PPM
Hereinafter, each of SSi10PP, In, Mn, Ag, and Sn is 1 PPM, and the total amount of these elements is 30 PPM or less.

そして沸点1000’C以下の元素の総量が3PPM以
下、沸点1000〜2000℃の元素の総量が7PPM
以下、沸点2000℃以上の元素の総量が20PPM以
下であるからである。
The total amount of elements with a boiling point of 1000'C or less is 3 PPM or less, and the total amount of elements with a boiling point of 1000-2000°C is 7 PPM.
This is because the total amount of elements having a boiling point of 2000° C. or higher is 20 PPM or less.

(発明の効果) 以上の説明で判るように本発明の真空蒸着用Ir金属は
、不純物として存在する多数の元素の含有量を少なくし
であるので、真空蒸着時それら元素の蒸発が少なく、溶
融Irの突沸や飛散が著しく減少し、平滑な膜を形成で
きるという効果がある。
(Effects of the Invention) As can be seen from the above explanation, the Ir metal for vacuum deposition of the present invention has a reduced content of many elements that exist as impurities. Bumping and scattering of Ir are significantly reduced, and a smooth film can be formed.

出願人  田中貴金属工業株式会社Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)重量比で、Cdが1PPM以下、Asが1PPM
以下、Naが1PPM以下、Kが1PPM以下、Znが
1PPM以下、Mgが3PPM以下、Srが1PPM以
下、Caが3PPM以下、Biが1PPM以下、Sbが
1PPM以下、Baが1PPM以下、Pbが1PPM以
下、Alが20PPM以下、Inが1PPM以下、Mn
が1PPM以下、Agが1PPM以下、Siが10PP
M以下、Snが1PPM以下で、これら元素の総量が3
0PPM以下であり、且つIrの純度が重量比で99.
98%以上であることを特徴とする真空蒸着用Ir金属
(1) In terms of weight ratio, Cd is 1 PPM or less, As is 1 PPM
Below, Na is 1PPM or less, K is 1PPM or less, Zn is 1PPM or less, Mg is 3PPM or less, Sr is 1PPM or less, Ca is 3PPM or less, Bi is 1PPM or less, Sb is 1PPM or less, Ba is 1PPM or less, Pb is 1PPM or less. Below, Al is 20PPM or less, In is 1PPM or less, Mn
is 1PPM or less, Ag is 1PPM or less, Si is 10PP
M or less, Sn is 1 PPM or less, and the total amount of these elements is 3
0 PPM or less, and the purity of Ir is 99.
98% or more of Ir metal for vacuum deposition.
(2)重量比で、沸点が1000℃以下のCd、As、
Na、K、Znの元素が総量で3PPM以下であること
を特徴とする特許請求の範囲第1項記載の真空蒸着用I
r金属。
(2) Cd, As, with a boiling point of 1000°C or less in terms of weight ratio,
I for vacuum deposition according to claim 1, characterized in that the total amount of the elements Na, K, and Zn is 3 PPM or less
r metal.
(3)重量比で、沸点が1000℃〜2000℃のMg
、Sr、Ca、Bi、Sb、Ba、Pbの元素が総量で
7PPM以下であることを特徴とする特許請求の範囲第
1項記載の真空蒸着用Ir金属。
(3) Mg with a boiling point of 1000°C to 2000°C by weight
, Sr, Ca, Bi, Sb, Ba, and Pb in a total amount of 7 PPM or less.
(4)重量比で、沸点が2000℃を超えるAl、In
、Mn、Ag、Si、Snの元素が総量で20PPM以
下であることを特徴とする特許請求の範囲第1項記載の
真空蒸着用Ir金属。
(4) Al, In with a boiling point exceeding 2000°C in terms of weight ratio
, Mn, Ag, Si, and Sn in a total amount of 20 PPM or less.
JP217388A 1988-01-08 1988-01-08 Metallic ir for vacuum deposition Pending JPH01180964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP217388A JPH01180964A (en) 1988-01-08 1988-01-08 Metallic ir for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP217388A JPH01180964A (en) 1988-01-08 1988-01-08 Metallic ir for vacuum deposition

Publications (1)

Publication Number Publication Date
JPH01180964A true JPH01180964A (en) 1989-07-18

Family

ID=11521974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP217388A Pending JPH01180964A (en) 1988-01-08 1988-01-08 Metallic ir for vacuum deposition

Country Status (1)

Country Link
JP (1) JPH01180964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107289A1 (en) * 2008-02-27 2009-09-03 田中貴金属工業株式会社 Iridium alloy excellent in hardness, processability and stain proofness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107289A1 (en) * 2008-02-27 2009-09-03 田中貴金属工業株式会社 Iridium alloy excellent in hardness, processability and stain proofness
US9063173B2 (en) 2008-02-27 2015-06-23 Tanaka Kikinzoku Kogyo K.K. Iridium alloy excellent in hardness, workability and anti-contamination properties

Similar Documents

Publication Publication Date Title
EP0704272B1 (en) Lead-free alloys for use in solder bonding
EP0711629B1 (en) Lead-free low melting solder with improved mechanical properties and articles bonded therewith
US6284013B1 (en) Method for preparing high-purity ruthenium sputtering target and high-purity ruthenium sputtering target
US5851482A (en) Tin-bismuth based lead-free solder for copper and copper alloys
KR19990014261A (en) Method for producing high purity ruthenium and high purity ruthenium material for thin film type
CN110524137B (en) Solder ball, solder joint and joining method
US4281041A (en) Hard solderable metal layers on ceramic
US6837947B2 (en) Lead-free solder
US4622205A (en) Electromigration lifetime increase of lead base alloys
JPH01180964A (en) Metallic ir for vacuum deposition
JPH01180962A (en) Metallic pd for vacuum deposition
JPH01180961A (en) Metallic pt for vacuum deposition
JPH01180960A (en) Metallic rh for vacuum deposition
JPH06182580A (en) Low alpha-ray pb alloy solder material and solder film
JPH01180963A (en) Metallic os for vacuum deposition
JP2533588B2 (en) Ru metal for vacuum deposition
US3637421A (en) Vacuum vapor coating with metals of high vapor pressure
JP2614885B2 (en) Copper substrate for vacuum deposition
JPH06279992A (en) High purity ag for vapor deposition
JP2614895B2 (en) Copper substrate for vacuum deposition
JPS63140794A (en) Ge alloy brazing filler metal exhibiting joint strength at high temperature
JPS61269998A (en) Sn alloy solder having excellent thermal fatigue characteristic
JPH03207852A (en) Formation of thin silicon film
FI114809B (en) Surface Materials
Häussler et al. Electronic structure of MgxZn100− x, ZnxCa100− x, and Ca13Mg87 metallic glasses (x≈ 30, 50, 70)