JPH01180420A - Hot wire type air flowmeter - Google Patents

Hot wire type air flowmeter

Info

Publication number
JPH01180420A
JPH01180420A JP63003736A JP373688A JPH01180420A JP H01180420 A JPH01180420 A JP H01180420A JP 63003736 A JP63003736 A JP 63003736A JP 373688 A JP373688 A JP 373688A JP H01180420 A JPH01180420 A JP H01180420A
Authority
JP
Japan
Prior art keywords
glass
coating
glass coating
type air
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63003736A
Other languages
Japanese (ja)
Inventor
Izumi Watanabe
泉 渡辺
Tatsunori Sakaguchi
坂口 龍範
Hiroatsu Tokuda
博厚 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP63003736A priority Critical patent/JPH01180420A/en
Publication of JPH01180420A publication Critical patent/JPH01180420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To automate coating operation and improve the productivity, and to obtain the accurate, reliable hot wire type air flowmeter, by forming the glass coating of a heat generating resistance body by a dipping method. CONSTITUTION:One end of the lead wire 2 of the heat generating resistance body 1 is held by a clip 5, dipped in dipping liquid 4 (obtained by using a ketone solvent as a main solvent and mixing glass powder) and then lifted, and dried and baked to form the glass coating. Consequently, no external force is applied to the heat generating resistance body 1 in glass coating operation and the glass coating 3 which is homogeneous and has small variance is obtained, so the productivity is improved greatly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発熱抵抗体と流体間の熱伝達現象を利用した
熱線式空気流量計に関し、特に自動車エンジンの吸入空
気量を検出する熱線式空気流量計に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hot-wire type air flow meter that utilizes the heat transfer phenomenon between a heat-generating resistor and a fluid, and particularly relates to a hot-wire type air flow meter that uses a heat transfer phenomenon between a heating resistor and a fluid, and in particular, a hot-wire type air flowmeter for detecting the intake air amount of an automobile engine. Regarding air flow meters.

〔従来の技術〕[Conventional technology]

従来の熱線式空気流量計は、特開昭59−104513
号公報記載のように、ガラスコートの方法につい上記従
来技術である発熱抵抗体のガラスコート被覆は、ガラス
粉末を粘稠な液体に混合1分散させたものを塗布、焼成
して形成される。この塗布作業は、発熱抵抗体が小型で
あることや、作業中に巻線部に大きく外力を加えると変
形、ピッチずれを生じることから、作業者が顕微鏡を見
ながらの手塗りに拠っている。従って1作業に経験や熟
練を要し膜厚のコントロールが困難であり、均一性に欠
け、また生産性の向上が困難である。
The conventional hot wire air flow meter is disclosed in Japanese Patent Application Laid-Open No. 59-104513.
As described in the above-mentioned publication, the glass coating of a heat generating resistor according to the above-mentioned prior art glass coating method is formed by coating and firing a mixture of glass powder mixed and dispersed in a viscous liquid. This coating process relies on the operator applying the coating by hand while looking under a microscope, as the heating resistor is small and applying a large external force to the winding during the process can cause deformation and pitch deviation. . Therefore, each operation requires experience and skill, making it difficult to control the film thickness, lacking uniformity, and making it difficult to improve productivity.

本発明の目的は、ガラスコート塗布作業の自動化が可能
で、生産性を向上でき、且つガラスコート膜厚が全周均
一でばらつきの少ない被覆を形成し、精度、信頼性に優
れた熱線式空気流量計を提上記目的は、低粘度で揮発性
の大きな溶剤にガラス粉末を懸濁させ、この液中に発熱
抵抗体を浸漬させることにより達成される。
The purpose of the present invention is to automate glass coating application work, improve productivity, form a coating with uniform glass coating thickness all around the circumference, and have excellent accuracy and reliability. Proposing a Flow Meter The above object is achieved by suspending glass powder in a low viscosity, highly volatile solvent and immersing a heating resistor in this liquid.

〔作用〕[Effect]

ガラスコート塗布作業に、浸漬法を用いることにより1
発熱抵抗体自身、または巻線部に外力を加えることなく
塗布が行える。浸漬法によるガラス付着のメカニズムは
、浸漬後、液中から発熱抵抗体を引き上げる際のぬれ性
を利用し、発熱抵抗体表面に溶剤と共にガラス粒子が付
着することによるが、浸漬物の表面状態によって付着の
メカニズムが異なる場合があり、例えば、発熱抵抗体表
面に気孔が多数存在する場合、浸漬液中の溶剤が気孔中
に浸透し1発熱抵抗体表面付近のガラス濃度が高まり、
凝結して付着してくるため、これを利用して、厚い被膜
を形成させることも可能である。
By using the dipping method for glass coating work, 1
Coating can be done without applying external force to the heating resistor itself or the windings. The mechanism of glass adhesion by the immersion method is that glass particles adhere to the surface of the heating resistor together with the solvent by utilizing the wettability when the heating resistor is pulled up from the liquid after immersion, but depending on the surface condition of the immersed object. The adhesion mechanism may be different. For example, if there are many pores on the surface of the heating resistor, the solvent in the immersion liquid will penetrate into the pores, increasing the glass concentration near the surface of the heating resistor.
Since it condenses and adheres, it is also possible to use this to form a thick film.

また、ガラスの付着量は、主にガラス濃度に依存するた
め、ガラス濃度を適切に設定してやることで、ガラス膜
厚を制御できるので、作業者の経験や熟練を必要とせず
、従って自動化が可能で、生産性向上が図れる。浸漬液
として用いる溶剤は。
In addition, since the amount of glass deposited depends mainly on the glass concentration, the glass film thickness can be controlled by appropriately setting the glass concentration, so there is no need for operator experience or skill, and automation is therefore possible. This can improve productivity. What solvent is used as the immersion liquid?

その性状が低揮発性であったり、高粘度である場合、付
着したガラス粒子が溶剤の乾燥過程で下方へ移動したり
、液ダレを生ずる。適切な溶剤として、低粘度で速乾性
のエーテル系、ケトン系及びエステル系などの溶剤を用
いることで、この問題が解決でき、全周にわたり均一な
皮膜を形成できる。
If the properties of the solvent are low volatility or high viscosity, the attached glass particles may move downward during the drying process of the solvent or cause liquid dripping. This problem can be solved by using a low-viscosity, quick-drying ether-based, ketone-based, or ester-based solvent as an appropriate solvent, and a uniform film can be formed over the entire circumference.

また、溶剤中に、接着剤であるセルロース類を混入させ
ておけば、着膜したガラス膜に大きな接着力が生じるた
め1作業時の取扱いが悪くてもガラス膜の脱落が防止で
きるので、さらに生産性の向上ができる。
In addition, if cellulose, which is an adhesive, is mixed into the solvent, a large adhesive force will be generated on the deposited glass film, which will prevent the glass film from falling off even if it is handled poorly during one operation. Productivity can be improved.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。第1図は。 The present invention will be explained in detail below. Figure 1 is.

本発明なる浸漬によるガラスコート作業の実施例である
0作業は、発熱抵抗体1のリード線2の片端をクリップ
5で保持し、浸漬液4にデイプ後、引上げることにより
終了し、乾燥後、焼成してガラス皮膜3とする。第2図
は、浸漬液の組成を。
The 0 work, which is an embodiment of the glass coating work by dipping according to the present invention, is completed by holding one end of the lead wire 2 of the heating resistor 1 with a clip 5, dipping it in the dipping liquid 4, and pulling it up. , and then fired to form a glass film 3. Figure 2 shows the composition of the immersion liquid.

主溶剤にケトン系溶剤を用い、ガラス粉末の混合量を変
化させたときの発熱抵抗体1へ、ガラスの付着膜厚の状
況を示したものである。主溶剤としてエーテル系溶剤ま
たはエステル系溶剤を用いても、同様の膜厚増加がある
。また液中にセルロース類を0〜6%添加しておけば、
着膜したガラスに大きな接着力が生じるため、作業時の
取扱いが悪くてもガラス膜の脱落が防止できる。第3図
は、本実施例により形成したガラスコート被覆3の断面
を示し、第4図は、従来技術で形成したガラスコート被
覆3の断面を示したものである。
The figure shows the thickness of the glass film attached to the heating resistor 1 when a ketone solvent is used as the main solvent and the amount of glass powder mixed is varied. A similar increase in film thickness occurs even when an ether solvent or an ester solvent is used as the main solvent. Also, if 0 to 6% of cellulose is added to the liquid,
Since a large adhesion force is generated on the coated glass, it is possible to prevent the glass film from falling off even if it is handled poorly during work. FIG. 3 shows a cross section of the glass coat coating 3 formed according to this embodiment, and FIG. 4 shows a cross section of the glass coat coating 3 formed using the conventional technique.

以上の構成によれば、ガラスコート作業時に発熱抵抗体
1に外力が加わらず、均質且つばらつきの少ないガラス
コート被覆3を形成でき、大巾に生産性を向上できる。
According to the above configuration, no external force is applied to the heating resistor 1 during the glass coating operation, and a homogeneous glass coating 3 with less variation can be formed, thereby greatly improving productivity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、全周均一で、ばらつきの少ないガラス
コート被覆が可能で、精度、信頼性を向上でき、且つ生
産性が大巾に改善できる。
According to the present invention, it is possible to apply a glass coat uniformly around the entire circumference with little variation, and it is possible to improve precision and reliability, and to greatly improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は浸漬法によるガラスコートの説明図。 第2図は、浸漬液中のガラス濃度に対するガラス膜厚の
変化を示した図、第3図は本実施例で形成したガラスコ
ート被覆の断面図、第4図は従来技術で形成したガラス
コート被覆の断面図である。
FIG. 1 is an explanatory diagram of glass coating by dipping method. Fig. 2 is a diagram showing the change in glass film thickness with respect to the glass concentration in the immersion liquid, Fig. 3 is a cross-sectional view of the glass coating formed in this example, and Fig. 4 is a diagram showing the glass coating formed by the conventional technique. FIG. 3 is a cross-sectional view of the coating.

Claims (1)

【特許請求の範囲】[Claims] 1、発熱抵抗体と空気間の熱伝達現象により空気の流量
を検出する空気流量計において、前記発熱抵抗体のガラ
スコート被覆を、浸漬法により形成させたことを特徴と
する熱線式空気流量計。
1. A hot-wire air flow meter that detects the flow rate of air by a heat transfer phenomenon between a heating resistor and air, characterized in that a glass coating of the heating resistor is formed by a dipping method. .
JP63003736A 1988-01-13 1988-01-13 Hot wire type air flowmeter Pending JPH01180420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003736A JPH01180420A (en) 1988-01-13 1988-01-13 Hot wire type air flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003736A JPH01180420A (en) 1988-01-13 1988-01-13 Hot wire type air flowmeter

Publications (1)

Publication Number Publication Date
JPH01180420A true JPH01180420A (en) 1989-07-18

Family

ID=11565519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003736A Pending JPH01180420A (en) 1988-01-13 1988-01-13 Hot wire type air flowmeter

Country Status (1)

Country Link
JP (1) JPH01180420A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107277A (en) * 1990-08-28 1992-04-08 Ngk Insulators Ltd Formation of glass coating layer on thin film resistor element
JPH04184123A (en) * 1990-11-16 1992-07-01 Hitachi Ltd Physical quantity sensor
US5610572A (en) * 1994-03-24 1997-03-11 Ngk Insulators, Ltd. Resistor element having a plurality of glass layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107277A (en) * 1990-08-28 1992-04-08 Ngk Insulators Ltd Formation of glass coating layer on thin film resistor element
JP2568305B2 (en) * 1990-08-28 1997-01-08 日本碍子株式会社 Method of forming glass coat layer in thin film resistor element
JPH04184123A (en) * 1990-11-16 1992-07-01 Hitachi Ltd Physical quantity sensor
US5610572A (en) * 1994-03-24 1997-03-11 Ngk Insulators, Ltd. Resistor element having a plurality of glass layers

Similar Documents

Publication Publication Date Title
JPH01180420A (en) Hot wire type air flowmeter
US5431745A (en) Solder suspension for the application of thin layers of solder to substrates
US2362397A (en) Process of coating metals
CN109186792A (en) A kind of production method of preset lead type thin film sensor
JPS54101724A (en) Iron or iron alloy coated with corrosion resistant layer and manufacture thereof
JP2568305B2 (en) Method of forming glass coat layer in thin film resistor element
US11951480B2 (en) Solid phase microextraction device and method for forming
JP2657514B2 (en) Manufacturing method of heat fixing roller
CN107880598A (en) A kind of platinum rhodium thermocouple surface anti-carbon coating of high adhesion force and preparation method thereof
JPS6238272A (en) Method for painting plate shaped base material having uneven surface by curtain flow coater
JP2017180537A (en) Manufacturing method of resin coating spring, and resin coating spring
NL2023439B1 (en) Method for applying a coating layer on the inside and/or outside of a porous tube
JP2505014B2 (en) How to coat the inner surface of the pipe
JP2006065171A (en) Fixing roll manufacturing method
JPH01304702A (en) Manufacture of resistor, paste resistor, and resistive elements and thermal head
JPS63113483A (en) Manufacture of thermal fixing roller
US5271954A (en) Fluid flow visualization system
RU2228345C1 (en) Method of creating antistick coating on forming fixture for blended solid fuel charges of rocket engine
JPH0299164A (en) Insulating coating method using epoxy resin coating powder
Hughs et al. Photoresist dip coating on thin film networks. Final report
JPS63205173A (en) Apparatus for coating inner surface of pipe
JP2012064628A (en) Electronic component manufacturing device, and manufacturing method of the same
JP2813628B2 (en) Manufacturing method of enameled products
JPS62155972A (en) Variegated painting method for metallic paint
JPS5594668A (en) Method of painting metal member