JPH01180285A - Classifying method - Google Patents
Classifying methodInfo
- Publication number
- JPH01180285A JPH01180285A JP63002510A JP251088A JPH01180285A JP H01180285 A JPH01180285 A JP H01180285A JP 63002510 A JP63002510 A JP 63002510A JP 251088 A JP251088 A JP 251088A JP H01180285 A JPH01180285 A JP H01180285A
- Authority
- JP
- Japan
- Prior art keywords
- classification
- powder
- dispersion
- aid
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 30
- 239000000843 powder Substances 0.000 claims abstract description 102
- 239000006185 dispersion Substances 0.000 claims abstract description 43
- 239000002893 slag Substances 0.000 claims description 25
- 150000001412 amines Chemical class 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 42
- 238000009826 distribution Methods 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 5
- 239000000654 additive Substances 0.000 abstract description 4
- 230000000996 additive effect Effects 0.000 abstract description 4
- 239000012467 final product Substances 0.000 abstract 1
- 238000000227 grinding Methods 0.000 description 16
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 15
- 239000002994 raw material Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011802 pulverized particle Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010332 dry classification Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Combined Means For Separation Of Solids (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、粉体を所定の粒径を基準に粗粉と微粉とに
分離する分級方法に関し、特に、乾式で分級する分級方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a classification method for separating powder into coarse powder and fine powder based on a predetermined particle size, and particularly relates to a classification method for dry classification.
[従来の技術]
所定の粒径分布を有する粉体を、より粒度が揃ったいく
つかの部分に分けることを一般的に分級という。工業的
に多用されている分級としては、粒度分布が比較的広い
粉体をある粒径を基準として、微粉側と粗粉側とに分離
するものがある。[Prior Art] The process of dividing a powder having a predetermined particle size distribution into several parts with more uniform particle sizes is generally called classification. As a classification method that is often used industrially, there is a method that separates powder having a relatively wide particle size distribution into fine powder and coarse powder based on a certain particle size.
このような分級は、例えば高炉水砕スラグ等のガラス質
高炉スラグからセメント等の水硬性材料を得る場合に使
用されている。即ち、このようなスラグを用いたセメン
トは水和硬化、特に初期材料における水和硬化が遅いと
いう欠点を有するため、このスラグをボールミル等で所
定のプレーン比表面積まで粉砕した後分級して微粉側の
ものをセメント材料として使用し、水和硬化性を高めて
いる(特開昭6l−141647)。Such classification is used, for example, when obtaining a hydraulic material such as cement from vitreous blast furnace slag such as granulated blast furnace slag. In other words, since cement using such slag has the disadvantage that hydration hardening, especially in the initial material, is slow, this slag is ground to a predetermined plane specific surface area using a ball mill, etc., and then classified to form a fine powder. is used as a cement material to improve its hydration hardening properties (Japanese Unexamined Patent Publication No. 61-141647).
[発明が解決しようとする課題]
しかしながら、このようなガラス質高炉スラグは、粉砕
中又は粉砕後に凝集粒を形成しやすく、また、分級後も
凝集粒を形成しやすいので、微粉の回収効率が極めて低
いという問題点がある。[Problems to be Solved by the Invention] However, such glassy blast furnace slag tends to form agglomerated particles during or after crushing, and also tends to form agglomerated particles after classification, so the collection efficiency of fine powder is low. The problem is that it is extremely low.
ところで、このようなガラス質高炉スラグから水硬性材
料を製造する場合に、粉砕助剤としてアルコール類を添
加してこのスラグを粉砕し、その後、この粉砕物を分級
してプレーン比表面積で6000乃至12000cIj
/gのスラグ粉末を得る方法が提案されている(特開昭
6l−270240)。この技術に用いる粉砕助剤は、
粉砕効率を向上させるために添加されるものである。こ
の粉砕助剤の添加により粉砕工程における凝集粒子の生
成を抑制し、微粉存在量を増加することができ、結果と
してその後の分級工程における分級効率をある程度向上
させるものである。即ち、このような粉砕助剤は、あく
までも全体的な粉砕効率を向上させるために添加するも
のであり、粉砕助剤自体が粉砕工程中に経時変化を起こ
すような場合もあって、特に微細な粒子の凝集を十分有
効に防止することはできない。また、後述するように、
粉砕時の機械的力により密な凝集粒子を形成してしまう
場合もある等、この技術においても、微粉収率が不十分
である。By the way, when producing a hydraulic material from such glassy blast furnace slag, the slag is crushed by adding alcohol as a crushing aid, and then the crushed material is classified to have a plain specific surface area of 6,000 to 6,000. 12000cIj
A method for obtaining a slag powder of 1.2 g/g has been proposed (Japanese Unexamined Patent Publication No. 61-270240). The grinding aid used in this technique is
It is added to improve grinding efficiency. By adding this grinding aid, it is possible to suppress the generation of aggregated particles in the grinding process and increase the amount of fine powder present, and as a result, the classification efficiency in the subsequent classification process is improved to some extent. In other words, such grinding aids are added only to improve the overall grinding efficiency, and the grinding aids themselves may change over time during the grinding process, so they are not suitable for particularly fine particles. Particle agglomeration cannot be prevented effectively enough. In addition, as described later,
Even in this technique, the yield of fine powder is insufficient, as dense agglomerated particles may be formed due to the mechanical force during crushing.
上述のような問題点は、粉砕後のガラス質高炉スラグを
分級する際に限らず存在するものであり、分級により微
粉を得ようとする場合に一般的に発生する問題点であっ
て、ひいては分級効率を著しく低下させてしまう。The above-mentioned problems exist not only when classifying vitreous blast furnace slag after crushing, but they are problems that generally occur when trying to obtain fine powder by classification, and even worse. Classification efficiency will be significantly reduced.
この発明は、かかる事情に鑑みてなされたものであって
、分級効率が高く、特に微粉収率が高い分級方法を提供
することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a classification method with high classification efficiency and particularly high fine powder yield.
[課題を解決するための手段]
この発明に係る分級方法は、粉体に分級助剤を添加した
後、この粉体を分級する分級方法であって、前記粉体の
分級直前の分散度を測定し、この分散度の値に基づいて
前記分級助剤の添加量を制御することを特徴とする。こ
の場合に、分級助剤としてアルコール類又はアミン類を
用いることができる。分級しようとする粉体の分散度は
、分級直前にサンプリングして測定することができる。[Means for Solving the Problem] The classification method according to the present invention is a classification method in which a classification aid is added to powder and then the powder is classified, and the dispersion degree of the powder immediately before classification is The method is characterized in that the amount of the classification aid added is controlled based on the value of the degree of dispersion. In this case, alcohols or amines can be used as classification aids. The degree of dispersion of the powder to be classified can be measured by sampling immediately before classification.
また、分級は乾式の気流分級機を用いて行なうことが好
ましい。更に、分級する粉体としてガラス質高炉スラグ
を用いることができ、この場合には分級後の微粉側がプ
レーン比表面積で6000cta2 / g以上である
ことが好ましい。Further, it is preferable that the classification is performed using a dry air classifier. Furthermore, vitreous blast furnace slag can be used as the powder to be classified, and in this case, it is preferable that the fine powder side after classification has a plain specific surface area of 6000 cta2/g or more.
[作用]
この発明においては、分級する直前の粉体に、分級効率
を高めるための分級助剤を粉体に添加するに際し、分級
直前の粉体の分散度を測定し、その値に基づいて分級助
剤の添加量を制御する。分級助剤は、粉体に存在する反
応サイトを中和する作用があり、これにより、粉体粒子
の凝集を抑制すると共に、既に形成された凝集粒子を分
散させるが、この分級助剤の適切な添加量は、分級直前
の粉体の分散度を測定することにより把握することがで
きる。従って、上述のように粉体の分散度に基づいて分
級助剤の添加量を制御することにより、分級効率を著し
く高めることができ、特に、微粉収率を極めて高くする
ことができる。[Function] In this invention, when adding a classification aid to the powder to improve the classification efficiency, the degree of dispersion of the powder immediately before classification is measured, and the dispersion degree of the powder is measured based on the value. Control the amount of classification aid added. The classification aid has the effect of neutralizing the reaction sites present in the powder, thereby suppressing the agglomeration of powder particles and dispersing the already formed agglomerated particles. The amount added can be determined by measuring the degree of dispersion of the powder immediately before classification. Therefore, by controlling the amount of the classification aid added based on the degree of dispersion of the powder as described above, the classification efficiency can be significantly increased, and in particular, the yield of fine powder can be extremely increased.
[実施例]
粉体番分級するにあたり、高精度の分級を実現するため
には、分級機に供給される粉体を極カー次粒子まで分散
させることが必要である。粉砕後の粉体には、0然的に
凝集した比較的粗な構造の凝集粒子と、粉砕時に機械的
に密に凝集して形成された凝集粒子があり、これらを分
散させる必要がある。一般に、高性能な分級機には、粉
体の分散機構が内臓されている場合が多く、前記凝集粒
子のうち前者は、この分散機構により充分に分散させる
ことができる。しかし、後者の場合にはこのような分散
機構では分散することが困難である。[Example] When classifying powder by number, in order to achieve highly accurate classification, it is necessary to disperse the powder supplied to the classifier down to the polar particles. The powder after pulverization includes agglomerated particles with a relatively coarse structure that are naturally agglomerated, and agglomerated particles that are mechanically densely agglomerated during pulverization, and these need to be dispersed. Generally, high-performance classifiers often have a built-in powder dispersion mechanism, and the former of the agglomerated particles can be sufficiently dispersed by this dispersion mechanism. However, in the latter case, it is difficult to disperse using such a dispersion mechanism.
このような問題点を解消するため、本願発明者等は、分
級する前の粉体に粉体の分散を促進する薬剤(以下、分
級助剤という)を添加し、その後分級する分級方法を提
案している(特願昭62−241454)。この分級助
剤により、分級後の凝集粒子の生成を抑制し、分級前に
既に形成された凝集粒子を分散しやすい状態にし、ある
いは分散させることができ、これにより分級効率を高め
ることができる。この場合に、分級助剤としてアルコー
ル類又はアミン類のように極性(双極子モーメント)が
大きい分子で構成されているものを用いることが好まし
い。即シ、極性が大きい分子を粉体粒子の表面に吸着さ
せることによって、粒子表面を電気的に中和させること
ができると共に、吸若層の外側を負極性にすることがで
きる。このため、既に形成された凝集粒子の分散を容易
にすることができ、更に再凝集を抑制することもできる
。In order to solve these problems, the present inventors proposed a classification method in which an agent that promotes the dispersion of the powder (hereinafter referred to as a classification aid) is added to the powder before classification, and then classified. (Patent application No. 62-241454). This classification aid suppresses the formation of aggregated particles after classification, and makes it easier to disperse or disperse the aggregated particles that have already been formed before classification, thereby increasing the classification efficiency. In this case, it is preferable to use a classification aid composed of molecules with large polarity (dipole moment), such as alcohols or amines. Immediately, by adsorbing highly polar molecules to the surface of the powder particles, the particle surface can be electrically neutralized, and the outside of the young absorbing layer can be made negative polar. Therefore, it is possible to facilitate the dispersion of already formed aggregated particles, and it is also possible to suppress reagglomeration.
しかし、分級助剤をただ単に添加するだけでは、以下に
示すような不都合が生ずる虞れがある。However, simply adding a classification aid may cause the following disadvantages.
(1)分級する原料の種類性状等により、また、分級助
剤の種類及び添加方法等により、分級助剤の最適添加量
が異なる。(1) The optimum amount of the classification aid to be added varies depending on the type and properties of the raw material to be classified, as well as the type and addition method of the classification aid.
(2)分散助剤の添加量は基本的には粒子表面に単分子
吸着させる量が最適であるが、均一に吸着させることは
困難であり、極度に過剰に添加する場合には架橋現象等
によりかえって粒子を凝集させてしまう虞れがある。(2) Basically, the optimum amount of dispersion aid to be added is the amount that allows single molecules to be adsorbed on the particle surface, but it is difficult to make it adsorb uniformly, and if it is added in an extremely excessive amount, crosslinking may occur. There is a possibility that the particles may be agglomerated instead.
(3)分級条件が変更されると、微粉・粗粉の収率及び
品質(粒度分布等)が変化し、特に粗粉が再循環される
場合、助剤の存在量も変化し、分級助剤の添加量管理が
複雑になる。(3) When the classification conditions are changed, the yield and quality (particle size distribution, etc.) of fine powder/coarse powder will change, and especially when coarse powder is recycled, the amount of auxiliary agent will also change. Managing the amount of additive added becomes complicated.
(4)分級前の粉砕過程で、粉砕助剤として分級助剤と
同様の組成を有するものを添加する場合があり、この場
合にも分級助剤の添加量管理が複雑となる。(4) In the grinding process before classification, a grinding aid having the same composition as the classification aid may be added, and in this case as well, the control of the amount of the classification aid added becomes complicated.
以Eのような不都合は、分級する粉体の分級性を迅速に
且つ高精度で判定し、それに適した量の分級助剤を添加
することにより解消することができる。本願発明者等が
種々検討を重ねた結果、この分級性は粉体特性の一つで
ある分散度によって代表され、この分散度を予め測定す
ることにより分級助剤の最適添加量を把握することがで
きることを見出した。この発明はこのような知見に基づ
いてなされたものである。Inconveniences such as E can be overcome by quickly and highly accurately determining the classifiability of the powder to be classified and adding an appropriate amount of classification aid. As a result of various studies carried out by the inventors of the present application, the classification property is represented by the degree of dispersion, which is one of the characteristics of powder, and by measuring this degree of dispersion in advance, the optimum amount of the classification aid to be added can be determined. I discovered that it can be done. This invention was made based on such knowledge.
以下この発明について具体的に説明する。This invention will be specifically explained below.
この発明に用いる分級助剤としては、前述した特願昭6
2−241454に示すように、粉体表面に速やかに吸
着又は結合しなければならないので、粘性の低い液体を
用いることが好ましい。このように、粘性が低い液体で
あれば、粉体に対して噴霧等の手段により迅速且つ均一
に添加することができる。−層均一にこの分級助剤を添
加しようとする場合には、この助剤を粉体に噴霧した後
、適宜の混合装置にて混1合することもできる。このよ
うな分級助剤としては、前述したようにアルコール類又
はアミン類が好ましい。これらは一般に極性が大きく、
粘性が低いので、上述の条件に合致している。これらは
、必要に応じて水等で希釈して使用することができる。As the classification aid used in this invention, the above-mentioned patent application
As shown in No. 2-241454, it is preferable to use a liquid with low viscosity because it must be quickly adsorbed or bonded to the powder surface. In this way, a liquid with low viscosity can be quickly and uniformly added to powder by means such as spraying. - When it is desired to add the classification aid to a uniform layer, the aid may be sprayed onto the powder and then mixed using an appropriate mixing device. As such a classification aid, alcohols or amines are preferred as described above. These are generally highly polar;
Since the viscosity is low, the above conditions are met. These can be used after being diluted with water, etc., if necessary.
次に、粉体としてガラス質高炉スラグを用いた場合を例
にとって、分級助剤が粉体粒子の凝集を抑制する機構に
ついて説明する。Next, the mechanism by which the classification aid suppresses agglomeration of powder particles will be explained, taking as an example the case where vitreous blast furnace slag is used as the powder.
ガラス質高炉スラグは、明確な結晶構造はとらないもの
の、ケイ酸カルシウムと同様に、共有結合性が強い5t
−0結合及びイオン結合性が強いCa−0結合等を構造
のベースとしている。このガラス質高炉スラグを粉砕し
て粉体状にする場合には、回転ミル等の粉砕装置を使用
するが、このスラグの破砕は、比較的弱い結合力のCa
−0結合の部分で選択的に進行する。この場合に、粉砕
後のスラグ粒子表面には、電気的に不飽和なCa2÷又
は02−が残り、また、微視的には粉砕粒子の電子密度
にばらつきがあるため、これら粒子相互間で不飽和電子
同士の電気的な結合が生じ、この部分で再凝集が発生し
やすい。Glassy blast furnace slag does not have a clear crystal structure, but like calcium silicate, it has a strong covalent bond of 5t.
The structure is based on -0 bonds and Ca-0 bonds with strong ionic bonding properties. To crush this glassy blast furnace slag into powder, a crushing device such as a rotary mill is used.
-Proceeds selectively at the 0 bond. In this case, electrically unsaturated Ca2÷ or 02- remains on the surface of the slag particles after pulverization, and since the electron density of the pulverized particles varies microscopically, there is a difference between these particles. Electrical bonding occurs between unsaturated electrons, and reaggregation is likely to occur in this part.
このようにして形成されたガラス質高炉スラグの粉砕粒
子に、アルコール類等の極性(双極子モーメント)が大
きな分子を添加した場合に、上述した粒子表面の電気的
に不飽和な部分(以下、反応サイトという)にアルコー
ル等の極性分子が化学的に吸着し、反応サイトの不飽和
な電子価を中和する。これにより、粉砕粒子の再凝集を
抑制することができる。When molecules with large polarity (dipole moment) such as alcohols are added to the pulverized particles of glassy blast furnace slag thus formed, electrically unsaturated portions (hereinafter referred to as Polar molecules such as alcohol chemically adsorb onto the reaction site (referred to as the reaction site) and neutralize the unsaturated electron valence of the reaction site. Thereby, reagglomeration of the pulverized particles can be suppressed.
ところで、粉砕後のガラス質高炉スラグには、前述した
ように微粉粒子(1次粒子)及び2次粒子が粉砕時に機
械的に密に凝集して形成された凝集粒子が存在し、この
密に凝集した凝集粒子が分級効率を低下させる主原因と
なる。分級助剤はこのような凝集粒子を分散しやすい状
態にする機能、又は、積極的に分散させる機能をも有し
ている7ので、凝集粒子の分散効果が大きい気流分級方
式の分級装置に適用されることにより、−層大きな分散
効果を得るーことができ、分級効率を極めて大きくする
ことができる。By the way, as mentioned above, in the vitreous blast furnace slag after pulverization, there are agglomerated particles formed by mechanically densely aggregating fine powder particles (primary particles) and secondary particles during pulverizing. Agglomerated particles are the main cause of reducing classification efficiency. Classification aids have the function of making these aggregated particles easier to disperse, or have the function of actively dispersing them7, so they are applied to airflow classification type classification equipment that has a large dispersion effect on aggregated particles. By doing so, a large dispersion effect can be obtained, and the classification efficiency can be extremely increased.
一方、上述の分散助剤の最適量を把握するための粉体の
分散度は、例えば以下のように測定する。On the other hand, the degree of dispersion of the powder in order to determine the optimum amount of the above-mentioned dispersion aid is measured, for example, as follows.
ロート径15m1のホッパに粉体試料を10g投入し、
所定の高さ(例えば400 w+m)から試料を直径8
0a+sの受皿に自由落下させる。この場合に、分散度
は以下に示す式で表すことができる。Pour 10g of powder sample into a hopper with a funnel diameter of 15m1,
From a predetermined height (e.g. 400 w+m)
Let it fall freely into a saucer at 0a+s. In this case, the degree of dispersion can be expressed by the formula shown below.
分散度−((試料投入量−受皿に溜ったm)/試料投入
量) X100 (%)
即ち、この場合の分散度は、試料粉体の位置エネルギー
を運動エネルギに変化させた場合における粉体の飛散す
る度合いとして示されるもので、この分散度が大きいほ
ど凝集粒子が少ないこととなり、分級性が良好となる。Dispersity - ((sample input amount - m accumulated in the saucer) / sample input amount) This is expressed as the degree of scattering of particles, and the larger the degree of dispersion, the fewer aggregated particles, and the better the classification performance.
つまり、この分散度が高いほど分級後の微粉収率が上昇
する。従って、粉体の分散度が最高になるような量の分
級助剤を添加することにより微粉収率、即ち分級効率を
向上させることができる。なお、このような分散度の測
定は、粉体の経時変化等を考慮して分級直前に行なう。In other words, the higher the degree of dispersion, the higher the yield of fine powder after classification. Therefore, by adding the classification aid in an amount that maximizes the degree of dispersion of the powder, the fine powder yield, that is, the classification efficiency can be improved. Note that such a measurement of the degree of dispersion is carried out immediately before classification, taking into consideration changes in the powder over time.
このような原理を実際の分級に応用する場合には、例え
ば第1図に示すような設備を用いる。図中実線は粉体の
流れを示し、破線は信号の流れを示す。ボールミル、ロ
ーラミル振動ミル等の粉砕機により粉砕され粉粒状にな
った粉砕原料に後述する粉砕装置3で粉砕された再粉砕
粉を加えて分級原料とし、この分級原料に分級助剤を添
加する。When such a principle is applied to actual classification, equipment as shown in FIG. 1 is used, for example. In the figure, solid lines indicate the flow of powder, and broken lines indicate the flow of signals. A re-pulverized powder crushed by a crushing device 3 described later is added to a crushed raw material that has been crushed into powder by a crusher such as a ball mill or a roller mill vibrating mill to obtain a classified raw material, and a classification aid is added to this classified raw material.
その後、この原料粉を混合装置1にて均一に混合する。Thereafter, this raw material powder is uniformly mixed in a mixing device 1.
混合された分級原料を高性能の分級装置2で分級する。The mixed classified raw materials are classified by a high-performance classifier 2.
分級後、微粉は捕集装置4で捕集されて製品となり、粗
粉は前述の粉砕装置3で再粉砕されて系内を循環する。After classification, the fine powder is collected by the collecting device 4 to become a product, and the coarse powder is re-pulverized by the aforementioned crushing device 3 and circulated within the system.
分散原料の一部は分級装置2の直前でサンプリングされ
、分散度測定装置10に導かれる。この分散度測定装置
10には、分級装置2で実際に分級された後の微粉及び
粗粉について測定した分級収率及び品質(粒度分布)デ
ータが入力され、ここで測定された分散度のデータと共
に、分級助剤の供給量を調節する電磁弁5に信号が出力
され、分級助剤が最適量になるように制御される。A portion of the dispersed raw material is sampled just before the classifier 2 and guided to the dispersity measuring device 10. The classification yield and quality (particle size distribution) data measured on the fine powder and coarse powder after they have been actually classified by the classifier 2 are input to the dispersity measurement device 10, and the dispersity data measured here is inputted. At the same time, a signal is output to the solenoid valve 5 that adjusts the amount of the classification aid supplied, and the classification aid is controlled to be in the optimum amount.
この分散度測定装置10について第2図を参照して更に
詳細に説明する。装置10内ではサンプリングされた試
料が2つのルートに分けられ、−方はそのまま分散度測
定器12により分散度が測定され、他方は分級助剤が例
えば0.01重量%添加され、混合機11で混合された
後に分散度測定器13にて分散度が測定される。そして
、これらのデータ信号はデータ処理コントロールユニッ
ト14に入力され、前述の分級収率及び品質データと共
に、電磁弁5に出力される。この場合に、分級助剤は通
常その添加量に最適量があり、その量において分散度の
ピークを有するので、測定器12の分散度が測定器13
よりも大きい場合には分級助剤添加量を減少させるよう
な信号を出力し、逆の場合には分級助剤の添加量を増加
させる信号を出力するようにコントロールユニット14
を設定する。このようにすることにより分級助剤の添加
量を常に最適に制御することができ、前述した分級原料
の性状変化、粗粉の再循環使用等に起因する問題点を解
消することができる。This dispersion measuring device 10 will be explained in more detail with reference to FIG. 2. In the apparatus 10, the sampled sample is divided into two routes, one route is directly measured for dispersion by the dispersity measuring device 12, and the other is added with a classification aid of, for example, 0.01% by weight, and is routed to the mixer 11. After mixing, the degree of dispersion is measured by a degree of dispersion measurement device 13. These data signals are then input to the data processing control unit 14 and output to the solenoid valve 5 together with the aforementioned classification yield and quality data. In this case, the classification aid usually has an optimum amount of addition, and the dispersity peaks at that amount.
The control unit 14 outputs a signal to decrease the amount of classification aid added when the amount is larger than , and outputs a signal to increase the amount of classification aid added in the opposite case.
Set. By doing so, the amount of the classification aid added can always be optimally controlled, and the aforementioned problems caused by changes in the properties of the classified raw material, recirculation of coarse powder, etc. can be solved.
次に、この発明の方法を実際に実施した試験例について
具体的に説明する。Next, a test example in which the method of the present invention was actually implemented will be specifically explained.
先ず、この試験に先立って、分級後の微粉収率及び分散
度に及ぼす分級助剤の影響について試験した。第1表に
示す化学組成を有するガラス質高炉スラグを乾燥及び脱
鉄した後、内容積が385ノのボールミルに50kg投
入し、プレーン比表面積が4000d/gになるまで粉
砕した。First, prior to this test, the influence of the classification aid on the fine powder yield and degree of dispersion after classification was tested. After drying and deironating the vitreous blast furnace slag having the chemical composition shown in Table 1, 50 kg of the slag was placed in a ball mill with an internal volume of 385 mm and pulverized until the plain specific surface area became 4000 d/g.
第1表
(単位:重塁%)
次いで、この粉砕後のスラグ粉末2kgに対し、分級助
剤を夫々0.05.0.10.0.15.0.20及び
0.25重量%スプレー添加したものを作成し、夫々高
速流動型混合機(日清エンジニアリング製、容量4.2
)、撹拌回転数3000 rpm )にて5分間混合し
、この粉末を分散度試験及び分散度試験に供した。ここ
で、分級助剤としてはジエチレングリコール及びトリエ
タノールアミンを用いた。また、比較例として、混合機
で同様に処理した分級助剤無添加のスラグ粉末を分散度
試験及び分級試験に供した。Table 1 (unit: % weight) Next, 0.05, 0.10, 0.15, 0.20 and 0.25% by weight of classification aids were added by spraying to 2 kg of the pulverized slag powder. A high-speed fluid mixer (manufactured by Nisshin Engineering, capacity 4.2
), the stirring speed was 3000 rpm) for 5 minutes, and the powder was subjected to a dispersity test and a dispersity test. Here, diethylene glycol and triethanolamine were used as classification aids. Further, as a comparative example, slag powder without the addition of a classification aid, which had been treated in the same manner using a mixer, was subjected to a dispersity test and a classification test.
分散度試験は、前述したような方法により行なった。The dispersity test was conducted as described above.
分級試験は、強制渦遠心分級方式の分級機(日清エンジ
ニアリング製ターボクラシファイアTC−15型)によ
り行なった。この際に、分級点を5μmに設定し、原料
供給速度を5.7kg/時、ロータ回転数を391Or
pm、風量を1.4m3/分に設定した。第3図は、横
軸に分級助剤の添加率をとり、縦軸に分級後の微粉収率
をとって、これらの間の関係を示すグラフ図であり、分
級試験の結果を示すものである。tJ3図中丸印は分級
助剤としてジエチレングリコールを使用した場合を示し
、三角印はトリエタノールアミンを使用した場合につい
て示す。このグラフから明らかなように分級助剤の添加
により微粉収率が向上しているが、いずれの分級助剤も
最適添加量が存在し、その量を超えるとかえって微粉収
率が低下することがわかる。ここで用いたジエチレング
リコール及びトリエタノールアミンはいずれも最適添加
量が0.1重量%であった。The classification test was conducted using a forced vortex centrifugal classifier (Nissin Engineering Turbo Classifier TC-15 model). At this time, the classification point was set to 5 μm, the raw material supply rate was 5.7 kg/hour, and the rotor rotation speed was 391 Or
pm and air volume were set to 1.4 m3/min. Figure 3 is a graph showing the relationship between the addition rate of the classification aid on the horizontal axis and the fine powder yield after classification on the vertical axis, and shows the results of the classification test. be. The circles in Figure tJ3 indicate the case where diethylene glycol was used as a classification aid, and the triangle marks indicate the case where triethanolamine was used. As is clear from this graph, the fine powder yield improves with the addition of the classification aid, but there is an optimum amount for each classification aid, and exceeding that amount may actually reduce the fine powder yield. Recognize. The optimum amount of diethylene glycol and triethanolamine used here was 0.1% by weight.
また、第4図は、横軸に分級助剤の添加率をとり、縦軸
に粉体の分散度をとって、これらの間の関係を示すグラ
フ図であり、分散度試験の結果を示すものである。なお
、第4図中丸印及び三角印は第3図と同様である。これ
によれば、分散度は第3図の微粉収率と同様な傾向を示
し、最適添加量も同様にジエチレングリコール及びトリ
エタノールアミンのいずれも0.1重量%であった。Figure 4 is a graph showing the relationship between the addition rate of the classification aid on the horizontal axis and the degree of dispersion of the powder on the vertical axis, and shows the results of the dispersion test. It is something. Note that the circles and triangles in FIG. 4 are the same as in FIG. 3. According to this, the degree of dispersion showed the same tendency as the fine powder yield shown in FIG. 3, and the optimum addition amount was also 0.1% by weight for both diethylene glycol and triethanolamine.
即ち、分級直前の粉体の分散度を測定することにより、
分級後の微粉収率を把握できることがわかった。That is, by measuring the degree of dispersion of the powder just before classification,
It was found that the yield of fine powder after classification can be determined.
次に、上で用いたスラグと同様の組成を有するガラス質
高炉スラグを第1図に示す装置にて分級した。原料の粉
砕はボールミルでプレーン比表面積が約4000c+a
2/gになるまで行なった。なお、この粉砕に際して粉
砕助剤は添加しなかった。Next, vitreous blast furnace slag having the same composition as the slag used above was classified using the apparatus shown in FIG. The raw material is ground using a ball mill with a plain specific surface area of approximately 4000c+a.
This was done until the concentration reached 2/g. Note that no grinding aid was added during this grinding.
分級助剤としてはジエチレングリコールを用いた。Diethylene glycol was used as a classification aid.
混合機は前述と同様の高速流動型のものを使用した。分
級機は強制渦遠心分級方式のもの(ターボクラシファイ
アTC−40型、日清エンジニアリング製)を用い、分
級微粉の捕集はサイクロン、バグフィルタの2段捕集と
した。分級粗粉をボールミルでプレーン比表面積が約4
000es2/gになるよう再粉砕し、系内を循環させ
るようにした。分散度の測定は、前述したようにロート
径15m+++のホッパにサンプリング試料10gを投
入させ、この試料を400mmの高さから直径80mm
の受皿に自由落下させ、受皿に溜った量を測定すること
によって行なった。゛このようにして得られた分級後の
粉体について、微粉収率を測定し、更に分級後の微粉・
粗粉の粒度分布(レーザ回折方式マイクロトラック粒度
分析計)から50%分離粒子径(DP5o)、分級精度
(25%粒子径/75%粒子径、D p 25/ D
P 75) 、及び50%分離粒子径におけるニュート
ン効率(ηN)を求めた。また、比較例1として粉砕原
料(再粉砕粉は除く)に対し0.10重量%の分級助剤
を添加したもの、比較例2として分級助剤を全く添加し
ないものを用い、同・様の測定を行なった。その結果を
第2表に示す。The mixer used was of the same high-speed flow type as described above. A forced vortex centrifugal classifier (Turbo Classifier TC-40, manufactured by Nisshin Engineering) was used as the classifier, and the classified fine powder was collected in two stages: a cyclone and a bag filter. The plain specific surface area of the classified coarse powder is approximately 4 by ball milling.
The powder was re-pulverized to 000 es2/g and circulated within the system. To measure the degree of dispersion, as described above, 10 g of the sampling sample was placed in a hopper with a funnel diameter of 15 m +++, and the sample was placed at a height of 400 mm with a diameter of 80 mm.
This was done by letting the liquid fall freely into a saucer and measuring the amount collected in the saucer.゛For the powder after classification obtained in this way, the fine powder yield was measured, and the fine powder after classification was further measured.
From the particle size distribution of coarse powder (laser diffraction type Microtrac particle size analyzer), 50% separation particle size (DP5o), classification accuracy (25% particle size/75% particle size, D p 25/D
P 75) and the Newtonian efficiency (ηN) at 50% separated particle size were determined. In addition, as Comparative Example 1, 0.10% by weight of a classification aid was added to the pulverized raw material (excluding re-ground powder), and as Comparative Example 2, no classification aid was added at all. Measurements were made. The results are shown in Table 2.
この表かられかるように、この試験例の場合には、比較
例よりも微粉収率が高く、また、分級効率が高いことが
わかる。これにより、この発明の効果を確認することが
できた。As can be seen from this table, this test example has a higher fine powder yield and higher classification efficiency than the comparative example. Thereby, the effect of this invention could be confirmed.
、なお、以上ガラス質高炉スラグの場合について示した
が、他の粉体についても同様にこの発明を適用すること
ができる。Although the case of vitreous blast furnace slag has been described above, the present invention can be similarly applied to other powders.
[発明の効果]
この発明によれば、分級前の粉体の分散度を測定し、そ
の値に基づいて分級助剤の量を適切に制御することがで
きるので、分級効率、特に微粉収率を高くすることがで
きる。また、分級原料の種類性状が変化し、あるいは分
級助剤の種類を変更等しても、速やかに分級助剤を最適
添加量にすることができ、分級助剤の添加量管理が容易
になる。[Effects of the Invention] According to the present invention, the degree of dispersion of the powder before classification can be measured and the amount of the classification aid can be appropriately controlled based on the measured value, so that the classification efficiency, especially the fine powder yield can be improved. can be made higher. In addition, even if the type and properties of the classified raw materials change or the type of classification aid changes, the addition amount of the classification aid can be quickly adjusted to the optimum amount, making it easier to manage the addition amount of the classification aid. .
更に、分級助剤の過剰添加を防止することができる。更
にまた、分級装置゛が粗粉を循環するタイプのも、ので
あっても、分級助剤の量を粗粉循環量の変化に即時に対
応させることができる。更にまた、粉砕過程で粉砕助剤
が添加される場合にも、この粉砕助剤の残存量も含めて
分級助剤を一括して管理することができる。Furthermore, excessive addition of the classification aid can be prevented. Furthermore, whether the classification device is of the type that circulates coarse powder or the type that circulates coarse powder, the amount of the classification aid can be made to correspond immediately to changes in the amount of circulating coarse powder. Furthermore, even when a grinding aid is added during the grinding process, the classification aid can be managed all at once, including the remaining amount of the grinding aid.
第1図はこの発明の実施例に係る分級方法を示す系統図
、第2図はこの分級方法に用いる分散度測定装置の構成
図、第3図は分級助剤の添加量と微粉収率との関係を示
すグラフ図、第4図は分級助剤の添加量を分散度との関
係を示すグラフ図である。
1;混合装置、2;分級装置、3;粉砕装置、4;捕集
装置、5;分級助剤電磁弁、10;分散度測定装置。
出願人代理人 弁理士 鈴江武彦
身振助剤9志加)(製電−)
第3図
イi嶋J11号りA5力υt (lシー)第4@Fig. 1 is a system diagram showing a classification method according to an embodiment of the present invention, Fig. 2 is a configuration diagram of a dispersity measuring device used in this classification method, and Fig. 3 shows the amount of classification aid added and the fine powder yield. FIG. 4 is a graph showing the relationship between the amount of the classification aid added and the degree of dispersion. 1; Mixing device; 2; Classifying device; 3; Grinding device; 4; Collection device; 5; Classification aid solenoid valve; 10; Dispersity measurement device. Applicant's representative Patent attorney Takehiko Suzue Motion aid 9 Shika) (Electronic manufacturing -) Figure 3 Ai Shima J11 No. A5 power υt (l Sea) No. 4@
Claims (6)
る分級方法であって、前記粉体の分級直前の分散度を測
定し、この分散度の値に基づいて前記分級助剤の添加量
を制御することを特徴とする分級方法。(1) A classification method in which a classification aid is added to a powder and then the powder is classified, the degree of dispersion of the powder is measured immediately before classification, and the degree of dispersion of the powder is measured based on the value of the degree of dispersion. A classification method characterized by controlling the amount of agent added.
ことを特徴とする特許請求の範囲第1項に記載の分級方
法。(2) The classification method according to claim 1, wherein the classification aid is an alcohol or an amine.
て測定することを特徴とする特許請求の範囲第1項又は
第2項に記載の分級方法。(3) The classification method according to claim 1 or 2, wherein the degree of dispersion is measured by sampling the powder immediately before classification.
とを特徴とする特許請求の範囲第1項乃至第3項のいず
れか1項に記載の分級方法。(4) The classification method according to any one of claims 1 to 3, wherein the classification is performed using a dry air classifier.
徴とする特許請求の範囲第1項乃至第5項に記載の分級
方法。(5) The classification method according to any one of claims 1 to 5, wherein the powder is vitreous blast furnace slag.
、そのプレーン比表面積が6000cm^2/g以上で
あることを特徴とする特許請求の範囲第5項に記載の分
級方法。(6) The classification method according to claim 5, wherein the fine powder side of the classified vitreous blast furnace slag has a plane specific surface area of 6000 cm^2/g or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63002510A JPH01180285A (en) | 1988-01-11 | 1988-01-11 | Classifying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63002510A JPH01180285A (en) | 1988-01-11 | 1988-01-11 | Classifying method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01180285A true JPH01180285A (en) | 1989-07-18 |
Family
ID=11531369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63002510A Pending JPH01180285A (en) | 1988-01-11 | 1988-01-11 | Classifying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01180285A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010047175A1 (en) * | 2008-10-24 | 2010-04-29 | 株式会社日清製粉グループ本社 | Method for classifying powder |
WO2010106716A1 (en) * | 2009-03-18 | 2010-09-23 | 日清エンジニアリング株式会社 | Method for classifying powder |
WO2011132301A1 (en) * | 2010-04-23 | 2011-10-27 | 日清エンジニアリング株式会社 | Method for classifying powder |
WO2012124453A1 (en) * | 2011-03-16 | 2012-09-20 | 株式会社日清製粉グループ本社 | Powder-classification method |
JPWO2019188149A1 (en) * | 2018-03-29 | 2021-02-12 | 東邦チタニウム株式会社 | Metal powder manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5440829A (en) * | 1977-09-07 | 1979-03-31 | Rejino Karaa Kougiyou Kk | Pigment composition |
JPS61270240A (en) * | 1985-05-22 | 1986-11-29 | 日本鋼管株式会社 | Manufacture of hydraulic material |
JPS6287237A (en) * | 1985-10-11 | 1987-04-21 | Miyoshi Kasei:Kk | Surface treated powders and its preparation |
-
1988
- 1988-01-11 JP JP63002510A patent/JPH01180285A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5440829A (en) * | 1977-09-07 | 1979-03-31 | Rejino Karaa Kougiyou Kk | Pigment composition |
JPS61270240A (en) * | 1985-05-22 | 1986-11-29 | 日本鋼管株式会社 | Manufacture of hydraulic material |
JPS6287237A (en) * | 1985-10-11 | 1987-04-21 | Miyoshi Kasei:Kk | Surface treated powders and its preparation |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8925398B2 (en) | 2008-10-24 | 2015-01-06 | Nisshin Seifun Group Inc. | Method for classifying powder |
EP2351620A1 (en) * | 2008-10-24 | 2011-08-03 | Nisshin Seifun Group Inc. | Method for classifying powder |
CN102196868A (en) * | 2008-10-24 | 2011-09-21 | 株式会社日清制粉集团本社 | Method for classifying powder |
WO2010047175A1 (en) * | 2008-10-24 | 2010-04-29 | 株式会社日清製粉グループ本社 | Method for classifying powder |
EP2351620A4 (en) * | 2008-10-24 | 2012-04-11 | Nisshin Seifun Group Inc | Method for classifying powder |
TWI498172B (en) * | 2008-10-24 | 2015-09-01 | Nisshin Seifun Group Inc | Powder classification method |
JP5362734B2 (en) * | 2008-10-24 | 2013-12-11 | 株式会社日清製粉グループ本社 | Powder classification method |
WO2010106716A1 (en) * | 2009-03-18 | 2010-09-23 | 日清エンジニアリング株式会社 | Method for classifying powder |
JP5323174B2 (en) * | 2009-03-18 | 2013-10-23 | 日清エンジニアリング株式会社 | Powder classification method |
TWI471179B (en) * | 2009-03-18 | 2015-02-01 | Nisshin Eng Inc | Powder grading method |
WO2011132301A1 (en) * | 2010-04-23 | 2011-10-27 | 日清エンジニアリング株式会社 | Method for classifying powder |
JP5362909B2 (en) * | 2010-04-23 | 2013-12-11 | 日清エンジニアリング株式会社 | Powder classification method |
KR101484828B1 (en) * | 2010-04-23 | 2015-01-20 | 닛신 엔지니어링 가부시키가이샤 | Method for classifying powder |
US8960027B2 (en) | 2010-04-23 | 2015-02-24 | Nisshin Engineering Inc. | Method for classifying powder |
CN103442814A (en) * | 2011-03-16 | 2013-12-11 | 株式会社日清制粉集团本社 | Powder-classification method |
WO2012124453A1 (en) * | 2011-03-16 | 2012-09-20 | 株式会社日清製粉グループ本社 | Powder-classification method |
JP5785250B2 (en) * | 2011-03-16 | 2015-09-24 | 株式会社日清製粉グループ本社 | Powder classification method |
JPWO2019188149A1 (en) * | 2018-03-29 | 2021-02-12 | 東邦チタニウム株式会社 | Metal powder manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1360012B1 (en) | Purified attapulgite clay | |
JP3578880B2 (en) | Crusher | |
TWI809042B (en) | Fused spherical silica powder and its production method | |
EP0672025B1 (en) | Method of grinding cement | |
JP2008088041A (en) | Talc fine powder and its production method | |
JPH01180285A (en) | Classifying method | |
EP4299519A1 (en) | Silica powder and production method therefor | |
JP4092568B2 (en) | Method for producing fine powder silicon or silicon compound | |
JP2626820B2 (en) | Manufacturing method of high fine powder blast furnace cement | |
JP4310834B2 (en) | Method for producing alumina powder for sintered body | |
JP7474221B2 (en) | Manufacturing method of spherical silica powder | |
JPS63210048A (en) | Hydraulic fine powder material and manufacture | |
JP3008498B2 (en) | Method for producing carbon black with increased degree of graphitization | |
JP2021023897A (en) | Method for separating unburned carbon from fly ash | |
JP7576588B2 (en) | Tantalum Carbide Powder | |
JP3901241B2 (en) | Manufacturing method of wire saw abrasive and wire saw abrasive | |
JP7438305B2 (en) | silver powder | |
JPS61166905A (en) | Production of raw material powder for permanent magnet | |
JP3036238B2 (en) | Classification method of fine powder particles | |
JP2002273258A (en) | Superfine pulverizing method for waste material | |
JPH06279094A (en) | Method for grinding ceramic raw material | |
JP2007106658A (en) | Method of manufacturing fine talc particles | |
JPH0653234B2 (en) | Method for producing fine powder | |
JPS60241940A (en) | Manufacture of powdered and granular material using verticaltype roller mill | |
JPS5728140A (en) | Preparation of fine particle for polyester additive |