JP4310834B2 - Method for producing alumina powder for sintered body - Google Patents

Method for producing alumina powder for sintered body Download PDF

Info

Publication number
JP4310834B2
JP4310834B2 JP05031699A JP5031699A JP4310834B2 JP 4310834 B2 JP4310834 B2 JP 4310834B2 JP 05031699 A JP05031699 A JP 05031699A JP 5031699 A JP5031699 A JP 5031699A JP 4310834 B2 JP4310834 B2 JP 4310834B2
Authority
JP
Japan
Prior art keywords
alumina
alumina powder
raw material
sintered body
pulverizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05031699A
Other languages
Japanese (ja)
Other versions
JP2000247751A (en
Inventor
績 亀田
聡 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP05031699A priority Critical patent/JP4310834B2/en
Publication of JP2000247751A publication Critical patent/JP2000247751A/en
Application granted granted Critical
Publication of JP4310834B2 publication Critical patent/JP4310834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は焼結体用アルミナ粉末の製造方法に関する。詳細には、粗粒が少なく、かつ高い成形密度を有する成形体を提供し得る焼結体用アルミナ粉末の製造方法に関する。
【0002】
【従来の技術】
従来より、アルミナ粉末は耐熱性、耐食性、耐摩耗性、電気絶縁性、機械的強度等の物性に優れていることにより、IC基板、透光管、軸受、切削工具又はNaS電池用電解質等の焼結体原料、フロッピーディスク又は磁気テープ等への充填材として使用されている。
【0003】
従来より、焼結体原料としてのアルミナ粉末は粗粒が少なく、かつ成形時の成形密度が高いものが良いとされている。しかして、該アルミナ粉末としては、商業的観点から、通常、バイヤー法により得られた原料アルミナを転動ボールミルや振動ボールミル等粉砕装置によって粉砕、或いは凝集粒を解砕したものが用いられている。
【0004】
しかしながら、前記粉砕装置を用いる方法では粉砕に供する原料アルミナ及び粉砕条件を最適化することによって、ある程度の成形密度を有するアルミナ粉末が得られるものの、粗粒が少なく、かつ成形密度が高いアルミナ粉末を得ることは困難であった。
【0005】
【発明が解決しようとする課題】
かかる事情下に鑑み、本発明者等はバイヤー法等で得られる原料アルミナから粗粒が少なく、かつ高い成形密度を有する成形体を提供し得る焼結体用アルミナ粉末を得るべく鋭意検討を進めた結果、特定の粒子径、比表面積を有する原料アルミナを粉砕した後、特定の粉砕機を用いて処理する場合には上記課題を解決し得ることを見出し本発明を完成するに至った。
【0006】
【課題を解決するための手段】
即ち、本発明は、平均二次粒子径が30μm〜150μmであり、BET比表面積が2m/g以下であり、ブレーン比表面積が9500cm/g以下である原料アルミナを転動ボールミルで粉砕した後、気流式粉砕機を用いて処理することを特徴とする焼結体用アルミナ粉末の製造方法を提供するにある。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いる原料アルミナは、平均二次粒子径が30μm〜150μm、好ましくは40μm〜100μmであり、BET比表面積が2m2/g以下、好ましくは0.4m2/g〜1.8m2/gであり、ブレーン比表面積が9500cm2/g以下、好ましくは5000cm2/g〜9000cm2/gの範囲である。該原料アルミナの平均粒子径が上記範囲を外れる場合には、高い成形密度を有するアルミナ粉末を得ることが困難である。該原料アルミナのBET比表面積が2m2/gより高い場合には、たとえ原料アルミナを粉砕した後、気流式粉砕機を用いて処理したとしても、粗粒の少なく、かつ高い成形密度を有するアルミナ粉末を得ることは困難である。ブレーン比表面積が9500cm2/gより大きい場合には、高い成形密度を有するアルミナ粉末を得ることは困難である。また、粉砕後のアルミナ粉末の粒度分布は、アルミナを構成する一次粒子の粒度分布に起因するため、該原料アルミナは、通常、平均一次粒子径が0.8μm〜4μm、好ましくは1μm〜2μmであるものを用いることが推奨される。本発明に用いる原料アルミナの製造方法としては、例えば、アルミン酸ナトリウム溶液から晶析により得られた水酸化アルミニウム(ギブサイト)をロータリーキルン、トンネルキルン等を用いて焼成する方法(以下、バイヤー法と称する。)が挙げられる。
【0008】
本発明は上記物性を有する原料アルミナを粉砕することを特徴とする。
【0009】
前記粉砕は、例えばローラーミル、高速回転粉砕機、転動ボールミル、振動ボールミル、遊星ミル、攪拌ミル等(化学工学便覧 改定五版、第828〜834頁、丸善株式会社昭和63年3月18日発行)が挙げられ、就中、転動ボールミルの適用が推奨される。尚、粉砕装置は回分式、連続式何れの方式であってもよい。また、前記粉砕は、通常、原料アルミナをその平均二次粒子径が約1/5以下、好ましくは1/8以下になる迄行うことが好ましい。平均二次粒子径が1/5以下になる迄粉砕することにより、より高い成形密度を有するアルミナ粉末を得ることが可能である。
【0010】
前記粉砕を行うに際しては、例えば転動ボールミルを用いて粉砕媒体100重量部に対して原料アルミナ約10重量部〜30重量部を供給し、その平均二次粒子径が約1/5以下になる迄粉砕する方法が挙げられる。また、粉砕媒体は製品汚染を防止できることから、Al23純度90%以上のアルミナ質球形媒体が好ましい。
【0011】
本発明は、次いで、粉砕して得られたアルミナを気流式粉砕機を用いて処理することを特徴とする。
【0012】
本発明に用いる気流式粉砕機としては、例えば、気流衝撃式粉砕機(気流によって粒子同士を衝突させて粉砕する装置)、気流衝突板式粉砕機(気流によって衝突板に粒子を衝突させて粉砕する装置)または対向気流式粉砕機等が挙げられる。粗粒を低減できることから気流衝撃式粉砕機の適用が推奨される。特に、粗粒の低減効果が高いことから分級機能が組み込まれている型式の気流式粉砕機の適用が推奨される。尚、気流式粉砕機に変えて転動ボールミルや振動ボールミル等を用いて処理する場合には本発明の効果は得られない。
【0013】
処理条件は、気流式粉砕機の機種によって異なり一義的ではないが、通常、粉砕空気圧力が約4kg/cm2以上、好ましくは約5kg/cm2〜約8kg/cm2である。また、アルミナ粉末は一般に研磨材として用いられているように高速で流動している場合には、粉砕機内面にある程度の摩耗が発生するので摩耗を受けやすい箇所、例えばノズル等の部分は耐摩耗性の高い材料、例えばアルミナ、炭化珪素等を用いることが望ましい。
【0014】
本発明の製造方法を行うに際しては、通常、平均二次粒子径が約30μm〜約100μmであり、BET比表面積が約2m2/g以下であり、ブレーン比表面積が9500cm2/g以下であるバイヤー法により得られた原料アルミナを粉砕した後、粉砕空気圧力4kg/cm2以上の条件で気流式粉砕機を用いて処理し、該気流式粉砕機から排出されたアルミナ粉末をサイクロンおよび/またはバグフィルター等によって捕集、回収すればよい。また、粉砕時又は気流式粉砕機を用いる処理時に必要に応じてエチレングリコール、ステアリン酸等の助剤、シランカップリング剤等の表面処理剤を添加してもよい。
【0015】
本発明により得られた焼結体用アルミナ粉末は、通常、平均二次粒子径が約0.8μm〜約4μm、好ましくは約1μm〜約2μmであり、+5μm量が約1%以下、好ましくは0.5%以下であり、成形密度は2.20g/cm3以上であり、高密度焼結体又は高強度焼結体を提供し得るものである。また、前記焼結体用アルミナ粉末はIC基板、透光管、軸受、切削工具及びNaS電池用電解質等の焼結体原料として好適に用いることができることは勿論、フロッピーディスク及び磁気テープ等への充填材、研磨材または耐火物等に用いることができるものである。
【0016】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は実施例により制限を受けるものではない。尚、原料アルミナ及びアルミナ粉末の物性測定は以下の方法で行った。
【0017】
原料アルミナの物性測定
平均一次粒子径(μm): 顕微鏡写真により100個のアルミナについて、各々の一次粒子径を測定し、これらの平均より求めた。
平均二次粒子径(μm): 篩別法により測定した。
BET比表面積(m2/g): 窒素吸着法により測定した。
ブレーン比表面積(cm2/g): ブレーン比表面積測定装置SS−100(島津製作所製)を用い、恒圧空気式測定方法により測定した。
【0018】
アルミナ粉末の物性測定
平均二次粒子径(μm): レーザー散乱式粒度分布計〔リード アンド ノースラップ(LEED&NORTHRUP)社製マイクロトラック〕により、50重量%径を測定した。
成形密度(g/cm3): 冷間静水圧成形機(成形圧:500kg/cm2)を用いて成形した後、得られた成形体の密度を水銀アルキメデス法により測定した。
【0019】
実施例1
バッチ式転動ボールミル(粉砕媒体:25mmφの純度93%アルミナボール、回転数:36rpm)に、前記粉砕媒体100重量部に対して平均二次粒子径45μm、平均一次粒子径1.5μm、BET比表面積1.3m2/g、ブレーン比表面積8000cm2/gのバイヤー法により得られた原料アルミナ11重量部を入れて粉砕し、平均二次粒子径1.7μmのアルミナを得た。次いで得られたアルミナを気流衝撃式粉砕機PJM−280SP型(商品名、日本ニューマチック製、フィード量:30kg/hr、粉砕空気圧力:5kg/cm2の条件で)を用いて処理し、前記粉砕機から排出されたアルミナ粉末をサイクロンによって捕集、回収し、アルミナ粉末Aを得た。得られたアルミナ粉末Aの物性を第1表に示す。
【0020】
比較例1
実施例1で用いたと同じ原料アルミナをフィード量30kg/hr、粉砕空気圧力5kg/cm2の条件で気流衝撃式粉砕機(商品名:PJM−280SP型、日本ニューマチック製)を用いて粉砕し、該粉砕機から排出されたアルミナ粉末をサイクロンによって捕集、回収し、アルミナ粉末Bを得た。得られたアルミナ粉末Bの物性を第1表に示す。
【0021】
比較例2
バッチ式転動ボールミル(粉砕媒体:25mmφの純度93%アルミナボール、回転数:36rpm)に、前記粉砕媒体100重量部に対して実施例1で用いたと同じ原料アルミナ11重量部を入れて粉砕し、平均二次粒子径1.7μmのアルミナ粉末Cを得た。得られたアルミナ粉末Cの物性を第1表に示す。
【表1】

Figure 0004310834
【0022】
【発明の効果】
以上詳述した如く、本発明はバイヤー法により得られた原料アルミナ等から、粗粒が少なく、かつ高い成形密度を有する成形体を提供し得るアルミナ粉末の製造方法を提供するものであり、その工業的価値は大なるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alumina powder for a sintered body. More specifically, the present invention relates to a method for producing an alumina powder for a sintered body that can provide a molded body with few coarse particles and a high molding density.
[0002]
[Prior art]
Conventionally, alumina powder has excellent physical properties such as heat resistance, corrosion resistance, wear resistance, electrical insulation, mechanical strength, etc., so that it can be used for IC substrates, light-transmitting tubes, bearings, cutting tools, NaS battery electrolytes, etc. It is used as a filler for sintered compacts, floppy disks, magnetic tapes and the like.
[0003]
Conventionally, alumina powder as a sintered body raw material is good in that it has few coarse particles and has a high molding density during molding. Thus, as the alumina powder, from a commercial viewpoint, the raw material alumina obtained by the Bayer method is usually pulverized by a pulverizing apparatus such as a rolling ball mill or a vibration ball mill, or the agglomerated grains are crushed. .
[0004]
However, in the method using the pulverizer, alumina powder having a certain molding density can be obtained by optimizing the raw material alumina to be pulverized and the pulverization conditions. It was difficult to get.
[0005]
[Problems to be solved by the invention]
In view of such circumstances, the present inventors proceeded diligently to obtain an alumina powder for a sintered body that can provide a molded body having a small number of coarse particles and a high molding density from raw material alumina obtained by the Bayer method. As a result, it was found that the above problems can be solved when the raw material alumina having a specific particle diameter and specific surface area is pulverized and then processed using a specific pulverizer, and the present invention has been completed.
[0006]
[Means for Solving the Problems]
That is, in the present invention, raw material alumina having an average secondary particle diameter of 30 μm to 150 μm, a BET specific surface area of 2 m 2 / g or less, and a brane specific surface area of 9500 cm 2 / g or less was pulverized by a rolling ball mill . Then, it is providing the manufacturing method of the alumina powder for sintered compacts characterized by processing using an airflow-type grinder.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Alumina raw material used in the present invention have an average secondary particle size 30Myuemu~150myuemu, preferably 40 m to 100 m, BET specific surface area of 2m 2 / g or less, preferably 0.4m 2 /g~1.8m 2 / g, the Blaine specific surface area of 9500cm 2 / g or less, preferably in the range of 5000cm 2 / g~9000cm 2 / g. When the average particle diameter of the raw material alumina is out of the above range, it is difficult to obtain an alumina powder having a high molding density. When the BET specific surface area of the raw material alumina is higher than 2 m 2 / g, even if the raw material alumina is pulverized and then processed using an airflow type pulverizer, it has few coarse particles and has a high molding density. It is difficult to obtain a powder. When the Blaine specific surface area is larger than 9500 cm 2 / g, it is difficult to obtain an alumina powder having a high molding density. Further, since the particle size distribution of the pulverized alumina powder is caused by the particle size distribution of the primary particles constituting the alumina, the raw material alumina usually has an average primary particle size of 0.8 μm to 4 μm, preferably 1 μm to 2 μm. It is recommended to use some. As a method for producing raw material alumina used in the present invention, for example, a method of firing aluminum hydroxide (gibbsite) obtained by crystallization from a sodium aluminate solution using a rotary kiln, tunnel kiln or the like (hereinafter referred to as a buyer method). .).
[0008]
The present invention is characterized in that the raw material alumina having the above physical properties is pulverized.
[0009]
The pulverization may be performed by, for example, a roller mill, a high-speed rotary pulverizer, a rolling ball mill, a vibrating ball mill, a planetary mill, a stirring mill, etc. (Chemical Engineering Handbook 5th revised edition, pages 828-834, Maruzen Co., Ltd. March 18, 1988) In particular, the application of a rolling ball mill is recommended. The pulverizer may be either a batch type or a continuous type. The pulverization is usually preferably carried out until the average secondary particle diameter of the raw material alumina is about 1/5 or less, preferably 1/8 or less. By pulverizing until the average secondary particle diameter becomes 1/5 or less, it is possible to obtain an alumina powder having a higher molding density.
[0010]
When performing the pulverization, for example, using a rolling ball mill, about 10 to 30 parts by weight of the raw material alumina is supplied to 100 parts by weight of the pulverization medium, and the average secondary particle size becomes about 1/5 or less. The method which grind | pulverizes until is mentioned. Further, since the grinding medium can prevent product contamination, an alumina spherical medium having an Al 2 O 3 purity of 90% or more is preferable.
[0011]
Next, the present invention is characterized in that the alumina obtained by pulverization is treated using an airflow pulverizer.
[0012]
Examples of the airflow type pulverizer used in the present invention include an airflow impact type pulverizer (an apparatus that pulverizes particles by colliding with airflow), an airflow collision plate type pulverizer (the particles collide with the collision plate by an airflow and pulverize). Apparatus) or an opposed air flow type pulverizer. The application of an airflow impact pulverizer is recommended because coarse particles can be reduced. In particular, it is recommended to use a type of airflow type pulverizer having a classification function because of its high effect of reducing coarse particles. It should be noted that the effect of the present invention cannot be obtained when processing is performed using a rolling ball mill, a vibrating ball mill or the like instead of the airflow type pulverizer.
[0013]
The treatment conditions differ depending on the model of the airflow type pulverizer and are not unambiguous, but usually the pulverization air pressure is about 4 kg / cm 2 or more, preferably about 5 kg / cm 2 to about 8 kg / cm 2 . In addition, when alumina powder is flowing at a high speed as is generally used as an abrasive, a certain amount of wear occurs on the inner surface of the pulverizer. It is desirable to use a high-performance material such as alumina or silicon carbide.
[0014]
In carrying out the production method of the present invention, the average secondary particle diameter is usually about 30 μm to about 100 μm, the BET specific surface area is about 2 m 2 / g or less, and the brane specific surface area is 9500 cm 2 / g or less. After the raw material alumina obtained by the Bayer method is pulverized, it is treated with an airflow pulverizer under a pulverization air pressure of 4 kg / cm 2 or more, and the alumina powder discharged from the airflow pulverizer is treated with a cyclone and / or Collect and collect with a bag filter or the like. Moreover, you may add surface treatment agents, such as auxiliary agents, such as ethylene glycol and a stearic acid, and a silane coupling agent at the time of a grinding | pulverization or the process which uses an airflow-type grinder.
[0015]
The alumina powder for sintered bodies obtained by the present invention usually has an average secondary particle size of about 0.8 μm to about 4 μm, preferably about 1 μm to about 2 μm, and an amount of +5 μm is about 1% or less, preferably The molding density is 2.20 g / cm 3 or more, and can provide a high-density sintered body or a high-strength sintered body. In addition, the alumina powder for a sintered body can be suitably used as a raw material for a sintered body such as an IC substrate, a light-transmitting tube, a bearing, a cutting tool, and an electrolyte for a NaS battery. It can be used as a filler, abrasive or refractory.
[0016]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by an Example. The physical properties of the raw material alumina and the alumina powder were measured by the following method.
[0017]
Measurement of primary physical properties of raw material alumina Average primary particle diameter (μm): The primary particle diameter of each of 100 aluminas was measured by a micrograph and obtained from the average.
Average secondary particle diameter (μm): measured by a sieving method.
BET specific surface area (m 2 / g): Measured by nitrogen adsorption method.
Blaine specific surface area (cm 2 / g): Measured by a constant pressure pneumatic measurement method using a Blaine specific surface area measuring device SS-100 (manufactured by Shimadzu Corporation).
[0018]
Measurement of physical properties of alumina powder Average secondary particle diameter (μm): A 50 wt% diameter was measured with a laser scattering type particle size distribution meter (Microtrac manufactured by LEED & NORTHUP).
Molding density (g / cm 3 ): After molding using a cold isostatic press (molding pressure: 500 kg / cm 2 ), the density of the obtained molded body was measured by the mercury Archimedes method.
[0019]
Example 1
In a batch type rolling ball mill (grinding medium: 93% alumina ball of 25 mmφ, rotation speed: 36 rpm), the average secondary particle diameter is 45 μm, the average primary particle diameter is 1.5 μm, and the BET ratio is 100 parts by weight of the grinding medium. 11 parts by weight of raw material alumina obtained by the Bayer method having a surface area of 1.3 m 2 / g and a Blaine specific surface area of 8000 cm 2 / g was added and pulverized to obtain alumina having an average secondary particle size of 1.7 μm. Next, the obtained alumina was treated using an air-flow impact pulverizer PJM-280SP type (trade name, manufactured by Nippon Pneumatic, feed amount: 30 kg / hr, pulverization air pressure: 5 kg / cm 2 ), The alumina powder discharged from the pulverizer was collected and collected by a cyclone to obtain alumina powder A. Table 1 shows the physical properties of the obtained alumina powder A.
[0020]
Comparative Example 1
The same raw material alumina as used in Example 1 was pulverized using an airflow impact pulverizer (trade name: PJM-280SP type, manufactured by Nippon Pneumatic Co., Ltd.) under the conditions of a feed amount of 30 kg / hr and a pulverization air pressure of 5 kg / cm 2. The alumina powder discharged from the pulverizer was collected and collected by a cyclone to obtain alumina powder B. The physical properties of the obtained alumina powder B are shown in Table 1.
[0021]
Comparative Example 2
11 parts by weight of the same raw material alumina as used in Example 1 was added to 100 parts by weight of the grinding medium in a batch type rolling ball mill (grinding medium: 93% alumina ball of 25 mmφ, rotation speed: 36 rpm) and pulverized. Alumina powder C having an average secondary particle diameter of 1.7 μm was obtained. The physical properties of the obtained alumina powder C are shown in Table 1.
[Table 1]
Figure 0004310834
[0022]
【The invention's effect】
As described above in detail, the present invention provides a method for producing an alumina powder that can provide a molded body having a small number of coarse particles and a high molding density from raw material alumina obtained by the Bayer method. Industrial value is great.

Claims (2)

平均二次粒子径が30μm〜150μmであり、BET比表面積が2m/g以下であり、ブレーン比表面積が9500cm/g以下である原料アルミナを転動ボールミルで粉砕した後、気流式粉砕機を用いて処理することを特徴とする焼結体用アルミナ粉末の製造方法。After pulverizing the raw material alumina having an average secondary particle diameter of 30 μm to 150 μm, a BET specific surface area of 2 m 2 / g or less, and a Blaine specific surface area of 9500 cm 2 / g or less with a rolling ball mill, an airflow type pulverizer A method for producing an alumina powder for a sintered body, characterized by comprising using 原料アルミナがバイヤー法により得られたアルミナであることを特徴とする請求項1記載の焼結体用アルミナ粉末の製造方法。  2. The method for producing an alumina powder for a sintered body according to claim 1, wherein the raw material alumina is alumina obtained by a Bayer method.
JP05031699A 1999-02-26 1999-02-26 Method for producing alumina powder for sintered body Expired - Fee Related JP4310834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05031699A JP4310834B2 (en) 1999-02-26 1999-02-26 Method for producing alumina powder for sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05031699A JP4310834B2 (en) 1999-02-26 1999-02-26 Method for producing alumina powder for sintered body

Publications (2)

Publication Number Publication Date
JP2000247751A JP2000247751A (en) 2000-09-12
JP4310834B2 true JP4310834B2 (en) 2009-08-12

Family

ID=12855508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05031699A Expired - Fee Related JP4310834B2 (en) 1999-02-26 1999-02-26 Method for producing alumina powder for sintered body

Country Status (1)

Country Link
JP (1) JP4310834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995378A (en) * 2020-08-27 2020-11-27 建德华明高纳新材料有限公司 Low-water-content alumina for lithium battery ceramic diaphragm and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514894B2 (en) * 2000-04-28 2010-07-28 昭和電工株式会社 Aluminum oxide powder with excellent fillability and process for producing the same
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
JP4270848B2 (en) * 2002-11-08 2009-06-03 昭和電工株式会社 Alumina particles and method for producing the same
JP5065728B2 (en) * 2007-03-28 2012-11-07 株式会社ブリヂストン Crusher
CN103237604B (en) * 2011-02-28 2015-07-22 日清工程株式会社 Method for grinding powder
JPWO2012124452A1 (en) * 2011-03-16 2014-07-17 株式会社日清製粉グループ本社 Powder manufacturing method
JP6811936B2 (en) * 2016-11-02 2021-01-13 日本電気硝子株式会社 Manufacturing method of aluminosilicate glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995378A (en) * 2020-08-27 2020-11-27 建德华明高纳新材料有限公司 Low-water-content alumina for lithium battery ceramic diaphragm and preparation method thereof

Also Published As

Publication number Publication date
JP2000247751A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
US9884982B2 (en) Abrasive grain based on melted spherical corundum
CN105924140B (en) A kind of method that rolling molding prepares high resistance to compression aluminum oxide milling media
JP4310834B2 (en) Method for producing alumina powder for sintered body
CN110944943A (en) Magnesium oxide powder, method for producing same, thermally conductive resin composition, thermally conductive paste, and thermally conductive coating material
KR20220112798A (en) Silicon fine particles and manufacturing method thereof
EP0960655B1 (en) Method for grinding silicon metalloid
JP3280056B2 (en) Sintered microcrystalline ceramic material and method for producing the same
JP3296091B2 (en) Alpha-alumina for abrasive and method for producing the same
CN103357480B (en) A kind of carborundum cutting blade material and preparation method thereof
JP3972380B2 (en) Method for producing α-alumina
JP3316872B2 (en) Dry grinding of alumina
JP4940289B2 (en) Abrasive
CA1276428C (en) Vibratory grinding of silicon carbide
JP4284771B2 (en) Α-alumina abrasive for metal polishing and its production method
CN101157848B (en) Cerium oxide type abrasive material
JP2008272688A (en) Crushing method of ceramic raw material
JP2699770B2 (en) Highly-fillable silicon nitride powder and method for producing the same
JP2626820B2 (en) Manufacturing method of high fine powder blast furnace cement
JP7474221B2 (en) Manufacturing method of spherical silica powder
JP2000191320A (en) Production of alumina powder or sintered body
Russell FINE GRINDING- A REVIEW
CN102114544A (en) Method for preparing tungsten powder having uniform size distribution as well as excellent degree of sphericity and dispersity
JP3387555B2 (en) Method for producing α-alumina
JPH0210787B2 (en)
KR101917512B1 (en) The method and apparatus for the fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees