JP2000191320A - Production of alumina powder or sintered body - Google Patents

Production of alumina powder or sintered body

Info

Publication number
JP2000191320A
JP2000191320A JP10370827A JP37082798A JP2000191320A JP 2000191320 A JP2000191320 A JP 2000191320A JP 10370827 A JP10370827 A JP 10370827A JP 37082798 A JP37082798 A JP 37082798A JP 2000191320 A JP2000191320 A JP 2000191320A
Authority
JP
Japan
Prior art keywords
pulverizer
alumina
air stream
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10370827A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahashi
浩 高橋
Isao Kameda
績 亀田
Toru Ogawa
透 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10370827A priority Critical patent/JP2000191320A/en
Publication of JP2000191320A publication Critical patent/JP2000191320A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily obtain alumina powder having good binder removing ability and giving a high density sintered body by pulverizing alumina having a specified average primary particle diameter and a specified specific surface area with an air stream pulverizer. SOLUTION: Alumina having 0.5-5 μm average primary particle diameter, <=2 m2/g BET specific surface area and <=9,500 cm2/g Blain specific surface area is pulverized with an air stream pulverizer. The average particle diameter of secondary particles formed by the aggregation of primary particles is about 30-100 μm. The alumina is obtained, e.g. by firing aluminum hydroxide (gibbsite) obtained by the Bayer process in a rotary kiln, a tunnel kiln or the like. The air stream pulverizer is, e.g. an air stream impact pulverizer, an air stream collision pulverizer, a counter air stream pulverizer or the like. The air stream impact pulverizer is preferably used because the occurrence of fine particles is suppressed. The pressure of pulverization air is usually about >=5 kg/cm2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焼結体用アルミナ粉
末の製造方法に関する。詳細にはアルミナ粉末と有機物
バインダーを混合し、成形して得られた成形体が、その
焼結に際しH2/H2O等の焼結雰囲気においても焼結後
の焼結体中に有機物残査が少ない、すなわち脱バインダ
ー性が良好であり、高密度成形体を得ることが可能な焼
結体用アルミナ粉末の製造方法に関するものである。
The present invention relates to a method for producing alumina powder for a sintered body. In detail, a compact obtained by mixing and molding an alumina powder and an organic binder has an organic residue remaining in the sintered body after sintering even in a sintering atmosphere such as H 2 / H 2 O. The present invention relates to a method for producing alumina powder for a sintered body, which has a small amount of inspection, that is, has a good binder removal property and can obtain a high-density molded body.

【0002】[0002]

【従来の技術】従来より、アルミナ粉末は耐熱性、耐食
性、耐摩耗性、電気絶縁性、機械的強度等の物性に優れ
ていることにより、IC基板、透光管、軸受、切削工具
等の焼結体原料、あるいはフロッピー(登録商標)ディ
スク、磁気テープ等への充填材として使用されている。
2. Description of the Related Art Conventionally, alumina powder has excellent physical properties such as heat resistance, corrosion resistance, abrasion resistance, electric insulation, and mechanical strength, so that it can be used for IC substrates, light-transmitting tubes, bearings, cutting tools, and the like. It is used as a raw material for sintered bodies or as a filler for floppy (registered trademark) disks, magnetic tapes and the like.

【0003】これらの内、焼結体原料、特にIC基板等
の有機物をバインダーとして混合し、焼結をH2/H2
等の非酸化性雰囲気中で行う原料アルミナ粉末として
は、焼結を阻害するような粗粒が少ないのみならず、脱
バインダー性が良好であることが必要となる。
[0003] Among them, a raw material of a sintered body, in particular, an organic substance such as an IC substrate is mixed as a binder, and sintering is performed using H 2 / H 2 O.
The raw material alumina powder used in a non-oxidizing atmosphere such as that described above must have not only a small amount of coarse particles that hinder sintering but also a good binder removal property.

【0004】通常、IC基板等ではアルミナ粉末を成形
して得られた、焼結していない生成形体(グリーンシー
トと称する場合がある。)を基板として、該基板上に配
線を印刷した後、焼結する。前記基板を白基板の様に酸
化雰囲気下で焼結した場合には配線材料として用いたタ
ングステン、モリブデン等の高融点金属が酸化されるの
で、基板はH2/H2O等の酸素分圧をコントロールした
非酸化雰囲気下で焼結されている。
[0004] Normally, in the case of an IC substrate or the like, an unsintered formed body (sometimes referred to as a green sheet) obtained by molding alumina powder is used as a substrate, and wiring is printed on the substrate. Sinter. When the substrate is sintered in an oxidizing atmosphere like a white substrate, the high melting point metal such as tungsten and molybdenum used as a wiring material is oxidized, and the substrate is subjected to an oxygen partial pressure such as H 2 / H 2 O. Sintering under a non-oxidizing atmosphere where

【0005】しかしながら、前記基板の焼結に際し、非
酸化雰囲気下ではアルミナ粉末の成形時に用いた有機物
バインダーが、酸化雰囲気下で焼結した場合に比較し、
より高温でないと分解せず気体として系外に排出されに
くいことが知られている。この結果、焼結時の脱バイン
ダー性が良くないアルミナ粉末から得られた基板を非酸
化雰囲気下で焼結する場合には、焼結し得られた基板の
内部にポアが残り、高密度焼結体である基板が得られな
かった。
However, when sintering the substrate, the organic binder used for molding the alumina powder under a non-oxidizing atmosphere is compared with the case where the organic binder is sintered under an oxidizing atmosphere.
It is known that, unless the temperature is higher, it does not decompose and is hardly discharged out of the system as a gas. As a result, when sintering a substrate obtained from alumina powder having a poor binder removal property during sintering in a non-oxidizing atmosphere, pores remain inside the sintering substrate and high-density firing is performed. Substrates that were aggregates could not be obtained.

【0006】従来より、脱バインダー性が優れ、高密度
焼結体となり得るアルミナ粉末としては粒度分布が均一
で著しく大きい粗粒が少なく、かつ著しい微粒も少ない
ものがよいとされている。しかして、該アルミナ粉末と
しては、商業的観点から、通常、バイヤー法により得ら
れたアルミナをボールミルや振動ミル等の粉砕装置によ
って粉砕、或いは凝集粒を解砕したものが用いられてい
るが、該粉砕装置により得られたアルミナ粉末を用いる
場合には、微粒の発生が多いためか脱バインダー性に劣
り、高密度焼結体が得られないとの問題があった。
Conventionally, as an alumina powder which has excellent binder removal properties and can be a high-density sintered body, a powder having a uniform particle size distribution, a small number of extremely large coarse particles, and a small number of significant fine particles is preferred. Thus, as the alumina powder, from a commercial point of view, usually, alumina obtained by the Bayer method is pulverized by a pulverizer such as a ball mill or a vibration mill, or a powder obtained by pulverizing aggregated particles is used. In the case of using the alumina powder obtained by the pulverizer, there is a problem that a high-density sintered body cannot be obtained due to poor generation of binder due to generation of many fine particles.

【0007】他方、ボールミル等を用いた方法により得
られたアルミナ粉末であっても、分級機を併用すればあ
る程度微粒を除去することは可能であるが、分級精度の
面から満足できるレベルのアルミナ粉末を得ることがで
きなかった。
On the other hand, even with an alumina powder obtained by a method using a ball mill or the like, it is possible to remove fine particles to some extent by using a classifier, but it is possible to obtain an alumina powder having a satisfactory level of classification accuracy. No powder could be obtained.

【0008】[0008]

【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者等は脱バインダー性が良好であって高密度焼結
体が得られるアルミナ粉末を簡易な方法で得るべく鋭意
検討を進めた結果、意外にも特定の平均一次粒子径と比
表面積を有するアルミナを特定の粉砕機で処理する場合
には上記目的を満足するアルミナ粉末が得られることを
見出し、本発明を完成するに至った。
In view of such circumstances,
The present inventors have conducted intensive studies to obtain an alumina powder having a good binder removal property and a high-density sintered body by a simple method.As a result, surprisingly, the specific average primary particle diameter and the specific surface area were increased. It has been found that when the alumina having the above properties is treated with a specific pulverizer, an alumina powder satisfying the above object can be obtained, and the present invention has been completed.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、平
均一次粒子径が0.5μm〜5μmであり、BET比表
面積が2m2/g以下であり、ブレーン比表面積が95
00cm2/g以下であるアルミナを気流式粉砕機を用
いて粉砕することを特徴とする焼結体用アルミナ粉末の
製造方法を提供するにある。
That is, according to the present invention, the average primary particle diameter is 0.5 μm to 5 μm, the BET specific surface area is 2 m 2 / g or less, and the Blaine specific surface area is 95 μm or less.
It is an object of the present invention to provide a method for producing alumina powder for a sintered body, characterized in that alumina having a flow rate of not more than 00 cm 2 / g is pulverized using an airflow pulverizer.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に用いる原料アルミナ(以下、単にアルミナと称
する。)は、平均一次粒子径が0.5μm〜5μm、好
ましくは1μm〜4μm、さらに好ましくは1.2μm
〜3.2であり、BET比表面積が2m2/g以下、好
ましくは0.4m2/g〜1.8m2/gであり、ブレー
ン比表面積が9500cm2/g以下、好ましくは50
00cm2/g〜9500cm2/gの範囲であればよ
く、一次粒子が凝集して形成された二次粒子の大きさに
ついては、通常、平均二次粒子径が約30μm〜約10
0μmである。該アルミナの平均一次粒子径が上記範囲
を外れる場合またはその比表面積が上記範囲を外れる場
合には、たとえ気流式粉砕機を用いて粉砕したとして
も、高密度焼結体が得られるアルミナ粉末を得ることが
できない。また、粉砕後のアルミナ粉末の粒度分布は、
アルミナを構成する一次粒子の粒度分布に起因するた
め、該アルミナは、通常、ロジン−ラムラー(Rosi
n−Rammler)線図で表すところの傾き(n値)
が累積重量20%〜90%の範囲内で約2.5以上のシ
ャープな一次粒子の粒度分布を有するものを用いること
が推奨される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The raw material alumina (hereinafter, simply referred to as alumina) used in the present invention has an average primary particle diameter of 0.5 μm to 5 μm, preferably 1 μm to 4 μm, and more preferably 1.2 μm.
It is to 3.2, BET specific surface area of 2m 2 / g or less, preferably 0.4m 2 /g~1.8m 2 / g, the Blaine specific surface area of 9500cm 2 / g or less, preferably 50
00cm 2 / g~9500cm 2 / g may be in the range of, about the size of the secondary particles in which primary particles are formed by aggregation is usually an average secondary particle size of about 30μm~ about 10
0 μm. If the average primary particle diameter of the alumina is out of the above range or if the specific surface area is out of the above range, even if pulverized using an air-flow type pulverizer, alumina powder from which a high-density sintered body can be obtained is obtained. I can't get it. Also, the particle size distribution of the alumina powder after pulverization,
Due to the particle size distribution of the primary particles that make up the alumina, the alumina is usually rosin-Rammler (Rosi
n-Rammler) slope (n-value) represented by a diagram
It is recommended to use those having a sharp primary particle size distribution of about 2.5 or more in the range of 20% to 90% of the cumulative weight.

【0011】本発明に用いるアルミナの製造方法として
は、例えば、バイヤー法により得られた水酸化アルミニ
ウム(ギブサイト)をロータリーキルン、トンネルキル
ン等で焼成する方法等が挙げられる。
The method for producing alumina used in the present invention includes, for example, a method in which aluminum hydroxide (gibbsite) obtained by the Bayer method is calcined in a rotary kiln, tunnel kiln, or the like.

【0012】本発明は、上記物性を有するアルミナを気
流式粉砕機で粉砕することを必須とする。
In the present invention, it is essential that alumina having the above-mentioned physical properties is pulverized by a pneumatic pulverizer.

【0013】本発明に用いる気流式粉砕機としては、例
えば、気流衝撃式粉砕機(気流によって粒子同士を衝突
させて粉砕する装置)、気流衝突板式粉砕機(気流によ
って衝突板に粒子を衝突させて粉砕する装置)または対
向気流式粉砕機等が挙げられる。微粒の発生を低減でき
ることから気流衝撃式粉砕機の適用が推奨され、また粗
粒の残量を低減できることから分級機能が組み込まれて
いる機種の気流式粉砕機の適用が推奨される。特に、粒
子同士を衝突させて粉砕し、分級機能により粗粒がリサ
イクルされる機種の気流衝撃式粉砕機の適用が推奨され
る。
Examples of the air-flow type pulverizer used in the present invention include an air-flow impact type pulverizer (a device for crushing particles by colliding particles by air flow) and an air-flow collision plate type pulverizer (particles are caused to collide with a collision plate by air flow). Crusher) or a counter-current crusher. It is recommended to use an airflow impact crusher because it can reduce the generation of fine particles, and it is recommended to use an airflow crusher of a model that incorporates a classification function because it can reduce the remaining amount of coarse particles. In particular, it is recommended to use an airflow impact type pulverizer of a type in which particles collide and pulverize, and coarse particles are recycled by a classification function.

【0014】粉砕条件は、気流式粉砕機の機種によって
異なり一義的ではないが、通常、アルミナの凝集粒が解
砕され、一次粒子径近傍になるような条件を選択すれば
い。かかる条件の設定は、用いる気流式粉砕機の機種、
粉砕に供するアルミナが決まれば予備実験により設定し
得る。粉砕条件の具体例としては、粉砕空気圧力が約5
kg/cm2以上、好ましくは約6kg/cm2〜約8k
g/cm2である。また、アルミナ粉末は一般に研磨材
として用いられているように高速で流動している場合に
は、粉砕機内面にある程度の摩耗が発生するので摩耗を
受けやすい箇所、例えばノズル等の部分は耐摩耗性の高
い材料、例えばアルミナ、炭化珪素等を用いることが望
ましい。
The pulverizing conditions are different depending on the type of the air-flow type pulverizer and are not unique. However, usually, the conditions should be selected so that the aggregated particles of alumina are pulverized and become close to the primary particle diameter. The setting of such conditions depends on the model of the airflow crusher to be used,
Once the alumina to be pulverized is determined, it can be set by preliminary experiments. As a specific example of the crushing conditions, the crushing air pressure is about 5
kg / cm 2 or more, preferably about 6 kg / cm 2 to about 8 k
g / cm 2 . In addition, when the alumina powder is flowing at a high speed as generally used as an abrasive, a certain amount of abrasion occurs on the inner surface of the crusher, so that a portion susceptible to abrasion, for example, a portion such as a nozzle, has abrasion resistance. It is desirable to use a material having high properties, such as alumina and silicon carbide.

【0015】本発明の製造方法を行うに際しては、通
常、バイヤー法により得た水酸化アルミニウムをロータ
リーキルンで焼成して得た、平均二次粒子径が約30μ
m〜約100μmであり、平均一次粒子径が約0.5μ
m〜5μmであり、BET比表面積が約2m2/g以下
であり、ブレーン比表面積が9500cm2/g以下で
あるアルミナを、粉砕空気圧力5kg/cm2以上の条
件で気流式粉砕機を用いて粉砕し、該粉砕機から排出さ
れたアルミナ粉末をサイクロンおよび/またはバグフィ
ルター等によって捕集、回収すればよい。
In carrying out the production method of the present invention, aluminum hydroxide obtained by the Bayer method is usually calcined in a rotary kiln and has an average secondary particle diameter of about 30 μm.
m to about 100 μm, and the average primary particle diameter is about 0.5 μm.
Alumina having a BET specific surface area of about 2 m 2 / g or less and a Blaine specific surface area of 9500 cm 2 / g or less is milled using a pneumatic mill at a pulverizing air pressure of 5 kg / cm 2 or more. Then, the alumina powder discharged from the pulverizer may be collected and collected by a cyclone and / or a bag filter.

【0016】本発明により得られた焼結体用アルミナ粉
末は、通常、平均二次粒子径が0.5μm〜5μm、好
ましくは1μm〜4μmであり、+15μm粗粒が約2
%以下、好ましくは0.5%以下、さらに好ましくは
0.1%以下であり、ロジン−ラムラー(Rosin-
Rammler)線図で表すところの傾き(n値)が、
累積重量20%〜90%の範囲内で2.5以上のシャー
プな粒度分布を有する。また、該焼結体用アルミナ粉末
は、IC基板等の焼結体原料として用いることは勿論、
透光管、軸受及び切削工具等の焼結体原料、フロッピー
ディスク及び磁気テープ等への充填材、研磨材または耐
火物等に用いることができるものである。
The alumina powder for a sintered body obtained by the present invention generally has an average secondary particle diameter of 0.5 μm to 5 μm, preferably 1 μm to 4 μm, and has a coarse particle of +15 μm of about 2 μm.
%, Preferably 0.5% or less, more preferably 0.1% or less, and rosin-ramlar (Rosin-
The slope (n value) represented by a Rammler diagram is
It has a sharp particle size distribution of 2.5 or more in the range of 20% to 90% of the cumulative weight. In addition, the alumina powder for a sintered body is used as a raw material for a sintered body such as an IC substrate.
It can be used as a raw material for a sintered body such as a light transmitting tube, a bearing and a cutting tool, a filler for a floppy disk and a magnetic tape, an abrasive or a refractory.

【0017】[0017]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は実施例により制限を受けるものではな
い。尚、アルミナ及びアルミナ粉末の物性測定は以下の
方法で行った。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. The physical properties of alumina and alumina powder were measured by the following methods.

【0018】アルミナの物性測定 平均一次粒子径(μm): 顕微鏡写真により100個
のアルミナについて、各々の一次粒子径を測定し、これ
らの平均より求めた。 平均二次粒子径(μm): 篩別法により測定した。 BET比表面積(m2/g): BET比表面積測定装
置QS−9(湯浅−カンタクローム社製)により測定し
た。 ブレーン比表面積(cm2/g): ブレーン比表面積
測定装置SS−100(島津製作所製)を用い、恒圧空
気式測定方法により測定した。
Measurement of Physical Properties of Alumina Average Primary Particle Diameter (μm): The primary particle diameter of each of 100 alumina particles was measured from a micrograph, and the average particle diameter was determined. Average secondary particle diameter (μm): Measured by a sieving method. BET specific surface area (m 2 / g): Measured by a BET specific surface area measuring device QS-9 (manufactured by Yuasa-Kantachrome). Blaine specific surface area (cm 2 / g): Measured by a constant-pressure pneumatic measurement method using a brane specific surface area measuring device SS-100 (manufactured by Shimadzu Corporation).

【0019】アルミナ粉末の物性測定 平均二次粒子径(μm): アルミナ粉末の粒度分布を
セディグラフ5000−ET(島津−マイクロメリテッ
クス社製)により測定し、50%径を平均二次粒子径と
した。 +15μm量(重量%): アルミナ粉末の粒度分布を
セディグラフ5000−ET(島津−マイクロメリテッ
クス社製)により測定し、+15μm量を求めた。 n値(−): アルミナ粉末の粒度分布をセディグラフ
5000−ET(島津−マイクロメリテックス社製)に
より測定し、ロジン−ラムラー(Rosin−Ramm
ler)線図に粒度分布の結果をプロットした。その累
積重量が20重量%〜90重量%の範囲の傾きよりta
nθを求め、n値とした。
Measurement of Physical Properties of Alumina Powder Average secondary particle diameter (μm): The particle size distribution of the alumina powder was measured by a Sedigraph 5000-ET (manufactured by Shimadzu-Micromeritex Co., Ltd.), and the 50% diameter was determined as the average secondary particle diameter. And +15 μm amount (% by weight): The particle size distribution of the alumina powder was measured by Sedigraph 5000-ET (manufactured by Shimadzu-Micromeritex Co., Ltd.), and the +15 μm amount was determined. n value (-): The particle size distribution of the alumina powder was measured by Sedigraph 5000-ET (manufactured by Shimadzu-Micromeritex Co., Ltd.), and rosin-Rammer (Rosin-Ramm) was measured.
The results of the particle size distribution were plotted on a ler) diagram. When the accumulated weight is in the range of 20% by weight to 90% by weight, ta
nθ was obtained and set as an n value.

【0020】実施例1 バイヤー法により得た水酸化アルミニウムをロータリー
キルンで焼成して得た、平均二次粒子径が45μmであ
り、平均一次粒子径が3.5μmであり、BET比表面
積が0.56m2/gであり、ブレーン比表面積が49
50cm2/gであるアルミナを、フィード量30kg
/hr、粉砕空気圧力6kg/cm2の条件で気流衝撃
式粉砕機(商品名:PJM−280SP型、日本ニュー
マチック製)を用いて粉砕し、該粉砕機から排出された
アルミナ粉末をサイクロンによって捕集、回収した。得
られたアルミナ粉末の物性を第1表に示す。
Example 1 Aluminum hydroxide obtained by the Bayer method was calcined in a rotary kiln and had an average secondary particle diameter of 45 μm, an average primary particle diameter of 3.5 μm, and a BET specific surface area of 0.5 μm. 56 m 2 / g and a Blaine specific surface area of 49
50 cm 2 / g of alumina was fed in an amount of 30 kg
/ Hr, pulverization using a pneumatic impact pulverizer (trade name: PJM-280SP type, manufactured by Nippon Pneumatic) under the conditions of pulverization air pressure of 6 kg / cm 2 , and alumina powder discharged from the pulverizer is subjected to cyclone. Collected and collected. Table 1 shows the physical properties of the obtained alumina powder.

【0021】次いで、このアルミナ粉末96重量部にS
iO2/MgO/CaO組成のフラックス成分を4重量
部を加え、バインダーとしてポリビニルブチラール(商
品名:B−76、三菱モンサント株式会社製)5.3重
量部及び可塑剤としてジブチルフタレート(和光試薬工
業株式会社製)2.6重量部を加えて、6hr乾式混合
を行った後、トリクレン−パークレン−ブタノール組成
の溶媒63.5重量部と分散剤1重量を加えて、更に2
0hr湿式混合を行った。得られたスラリーを脱泡し、
粘度約2000cpsに調整した後、ドクターブレード
成形法によりグリーンシートを得た。
Next, 96 parts by weight of the alumina powder was added with S
4 parts by weight of a flux component of iO 2 / MgO / CaO composition was added, 5.3 parts by weight of polyvinyl butyral (trade name: B-76, manufactured by Mitsubishi Monsanto Co., Ltd.) as a binder and dibutyl phthalate (Wako Reagents Co., Ltd.) as a plasticizer After adding 2.6 parts by weight and dry-mixing for 6 hours, 63.5 parts by weight of a solvent of a tricrene-perchrene-butanol composition and 1 part by weight of a dispersant were added, and further 2 parts by weight were added.
The mixture was wet mixed for 0 hr. Degas the obtained slurry,
After adjusting the viscosity to about 2000 cps, a green sheet was obtained by a doctor blade molding method.

【0022】得られたグリーンシートを、H2/H2
(モル比7)雰囲気で昇温速度200℃/hrで900
℃まで昇温し、そのまま1hr保持して焼結した。焼結
前後の減量割合を測定した。結果を第2表に示す。
The obtained green sheet was subjected to H 2 / H 2 O
(Molar ratio: 7) 900 in the atmosphere at a heating rate of 200 ° C./hr
The temperature was raised to 0 ° C., and the mixture was sintered for 1 hour. The weight loss ratio before and after sintering was measured. The results are shown in Table 2.

【0023】また、同じ方法で得られたグリーンシート
を、H2/H2O(モル比7)雰囲気で昇温速度200℃
/hrで1600℃まで昇温し、そのまま2hr保持し
て焼結した。得られた焼結体の焼結密度を測定した。そ
の結果を第2表に示す。
The green sheet obtained by the same method was heated in a H 2 / H 2 O (molar ratio 7) atmosphere at a heating rate of 200 ° C.
The temperature was raised to 1600 ° C. at / hr, and sintered for 2 hours. The sintered density of the obtained sintered body was measured. Table 2 shows the results.

【0024】実施例2〜5 バイヤー法により得た水酸化アルミニウムをロータリー
キルンで焼成して得た、第1表に示す平均二次粒子径、
平均一次粒子径、BET比表面積、ブレーン比表面積を
有するアルミナを、実施例1と同じ粉砕装置を用いて粉
砕し、該粉砕機から排出されたアルミナ粉末をサイクロ
ンによって捕集、回収した。得られたアルミナ粉末の粉
体物性を実施例1と同様にして調べた。その結果を第1
表に示す。また、グリーンシートの焼結前後の減量割合
及び焼結体の焼結密度を実施例1と同様にして調べた。
その結果を第2表に合わせて示す。
Examples 2-5 Aluminum hydroxide obtained by the Bayer method was calcined in a rotary kiln, and the average secondary particle diameter shown in Table 1 was obtained.
Alumina having an average primary particle size, a BET specific surface area, and a Blaine specific surface area was pulverized using the same pulverizer as in Example 1, and the alumina powder discharged from the pulverizer was collected and collected by a cyclone. The powder properties of the obtained alumina powder were examined in the same manner as in Example 1. The result is
It is shown in the table. Further, the reduction ratio before and after sintering of the green sheet and the sintered density of the sintered body were examined in the same manner as in Example 1.
The results are shown in Table 2.

【0025】実施例6 バイヤー法により得た水酸化アルミニウムをロータリー
キルンで焼成して得た、平均二次粒子径が45μmであ
り、平均一次粒子径が3.5μmであり、BET比表面
積が0.53m2/gであり、ブレーン比表面積が51
50cm2/gであるアルミナを、フィード量10kg
/hr、粉砕空気圧力6kg/cm2の条件で気流衝突
板式粉砕機(商品名:IDS−2型、日本ニューマチッ
ク製、)を用いて粉砕し、該粉砕機から排出されたアル
ミナ粉末をサイクロンによって捕集、回収した。得られ
たアルミナ粉末の物性を第1表に示す。また、グリーン
シートの焼結前後の減量割合及び焼結体の焼結密度を実
施例1と同様にして調べた。その結果を第2表に合わせ
て示す。
Example 6 Aluminum hydroxide obtained by the Bayer method was calcined in a rotary kiln and had an average secondary particle diameter of 45 μm, an average primary particle diameter of 3.5 μm, and a BET specific surface area of 0.5 μm. 53 m 2 / g and a Blaine specific surface area of 51 m 2 / g.
Alumina of 50 cm 2 / g was fed in an amount of 10 kg.
/ Hr, pulverization using a gas impingement plate type pulverizer (trade name: IDS-2, manufactured by Nippon Pneumatic) under the conditions of pulverization air pressure of 6 kg / cm 2 , and alumina powder discharged from the pulverizer is cyclone. And collected. Table 1 shows the physical properties of the obtained alumina powder. Further, the reduction ratio before and after sintering of the green sheet and the sintered density of the sintered body were examined in the same manner as in Example 1. The results are shown in Table 2.

【0026】比較例1〜2 バイヤー法により得た水酸化アルミニウムをロータリー
キルンで焼成して得た、第1表に示す平均二次粒子径、
平均一次粒子径、BET比表面積、ブレーン比表面積を
有するアルミナを、ボール/アルミナ比9、粉砕時間1
0hrの条件でボールミル(内容積110L)を用いて
粉砕した。得られたアルミナ粉末の物性を第1表に示
す。また、グリーンシートの焼結前後の減量割合及び焼
結体の焼結密度を実施例1と同様にして調べた。その結
果を第2表に合わせて示す。
Comparative Examples 1-2 The average secondary particle diameter shown in Table 1 was obtained by calcining aluminum hydroxide obtained by the Bayer method in a rotary kiln.
Alumina having an average primary particle size, a BET specific surface area, and a Blaine specific surface area was prepared by mixing a ball / alumina ratio of 9 and a pulverization time of 1
Pulverization was performed using a ball mill (internal volume 110 L) under the condition of 0 hr. Table 1 shows the physical properties of the obtained alumina powder. Further, the reduction ratio before and after sintering of the green sheet and the sintered density of the sintered body were examined in the same manner as in Example 1. The results are shown in Table 2.

【0027】比較例3 バイヤー法により得た水酸化アルミニウムをロータリー
キルンで焼成して得た、平均二次粒子径が45μmであ
り、平均一次粒子径が0.8μmであり、BET比表面
積が3.02m2/gであり、ブレーン比表面積が11
400cm2/gであるアルミナを、フィード量30k
g/hr、粉砕空気圧力6kg/cm2の条件でジェッ
トミル(商品名:PJM−280SP型、日本ニューマ
チック製)を用いて粉砕し、該粉砕機から排出されたア
ルミナ粉末をサイクロンによって捕集、回収した。得ら
れたアルミナ粉末の物性を第1表に示す。また、グリー
ンシートの焼結前後の減量割合及び焼結体の焼結密度を
実施例1と同様にして調べた。その結果を第2表に合わ
せて示す。
Comparative Example 3 Aluminum hydroxide obtained by the Bayer method was calcined in a rotary kiln, and the average secondary particle diameter was 45 μm, the average primary particle diameter was 0.8 μm, and the BET specific surface area was 3. 02 m 2 / g, and the Blaine specific surface area is 11
Alumina of 400 cm 2 / g was fed at a feed rate of 30 k
g / hr, pulverizing air pressure 6 kg / cm 2 , using a jet mill (trade name: PJM-280SP, manufactured by Nippon Pneumatic), and collecting the alumina powder discharged from the pulverizer with a cyclone. , Collected. Table 1 shows the physical properties of the obtained alumina powder. Further, the reduction ratio before and after sintering of the green sheet and the sintered density of the sintered body were examined in the same manner as in Example 1. The results are shown in Table 2.

【0028】[0028]

【発明の効果】以上詳述した如く、本発明は、非酸化性
雰囲気においても脱バインダー性が良好であって高密度
焼結体が得られる焼結体用アルミナ粉末を簡易に提供す
る方法であり、その工業的価値は大なるものである。
As described above in detail, the present invention provides a method for easily providing alumina powder for a sintered body having a good binder removal property even in a non-oxidizing atmosphere and obtaining a high-density sintered body. Yes, its industrial value is great.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 透 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4D067 CA02 CA05 GA07 4G030 AA36 BA12 BA15 BA19 BA25 BA33 CA04 GA03 4G076 AA02 BA46 BE20 BH01 CA05 CA26 CA28  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Ogawa 5-1, Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical Co., Ltd. F-term (reference) 4D067 CA02 CA05 GA07 4G030 AA36 BA12 BA15 BA19 BA25 BA33 CA04 GA03 4G076 AA02 BA46 BE20 BH01 CA05 CA26 CA28

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均一次粒子径が0.5μm〜5μmで
あり、BET比表面積が2m2/g以下であり、ブレー
ン比表面積が9500cm2/g以下であるアルミナを
気流式粉砕機を用いて粉砕することを特徴とする焼結体
用アルミナ粉末の製造方法。
An alumina having an average primary particle size of 0.5 μm to 5 μm, a BET specific surface area of 2 m 2 / g or less, and a Blaine specific surface area of 9500 cm 2 / g or less, using a pneumatic mill. A method for producing alumina powder for a sintered body, characterized by pulverizing.
JP10370827A 1998-12-25 1998-12-25 Production of alumina powder or sintered body Pending JP2000191320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10370827A JP2000191320A (en) 1998-12-25 1998-12-25 Production of alumina powder or sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10370827A JP2000191320A (en) 1998-12-25 1998-12-25 Production of alumina powder or sintered body

Publications (1)

Publication Number Publication Date
JP2000191320A true JP2000191320A (en) 2000-07-11

Family

ID=18497669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10370827A Pending JP2000191320A (en) 1998-12-25 1998-12-25 Production of alumina powder or sintered body

Country Status (1)

Country Link
JP (1) JP2000191320A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316111A (en) * 2000-04-28 2001-11-13 Showa Denko Kk Aluminum oxide powder with superior filling-up property and its manufacturing method
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
JP2004155630A (en) * 2002-11-08 2004-06-03 Showa Denko Kk Alumina particle and method of manufacturing the same
JP2008126214A (en) * 2006-11-24 2008-06-05 Bridgestone Corp Jet mill
CN112745105A (en) * 2020-12-24 2021-05-04 深圳技术大学 High-sintering-activity alumina ceramic powder and preparation method thereof
CN114436302A (en) * 2022-01-10 2022-05-06 中铝山东新材料有限公司 Particulate aluminum hydroxide, preparation method, production system and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316111A (en) * 2000-04-28 2001-11-13 Showa Denko Kk Aluminum oxide powder with superior filling-up property and its manufacturing method
JP4514894B2 (en) * 2000-04-28 2010-07-28 昭和電工株式会社 Aluminum oxide powder with excellent fillability and process for producing the same
JP2003176127A (en) * 2001-08-08 2003-06-24 Showa Denko Kk alpha-ALUMINA FOR CORDIERITE CERAMIC, METHOD OF PRODUCING THE SAME, AND STRUCTURE OF CORDIERITE CERAMIC USING THE alpha-ALUMINA
JP2004155630A (en) * 2002-11-08 2004-06-03 Showa Denko Kk Alumina particle and method of manufacturing the same
JP2008126214A (en) * 2006-11-24 2008-06-05 Bridgestone Corp Jet mill
CN112745105A (en) * 2020-12-24 2021-05-04 深圳技术大学 High-sintering-activity alumina ceramic powder and preparation method thereof
CN112745105B (en) * 2020-12-24 2022-06-14 深圳技术大学 High-sintering-activity alumina ceramic powder and preparation method thereof
CN114436302A (en) * 2022-01-10 2022-05-06 中铝山东新材料有限公司 Particulate aluminum hydroxide, preparation method, production system and application thereof

Similar Documents

Publication Publication Date Title
EP0819104B1 (en) Firing sol-gel alumina particles
US6083622A (en) Firing sol-gel alumina particles
GB2035281A (en) Macrocrystalline aluminium oxide and the preparation thereof
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
JP2000191320A (en) Production of alumina powder or sintered body
JP2007055888A (en) FINE alpha-ALUMINA PARTICLE
JP3280056B2 (en) Sintered microcrystalline ceramic material and method for producing the same
JP5726279B2 (en) Aluminum nitride powder
US7758845B2 (en) Method for producing an alpha alumina particle
JP4310834B2 (en) Method for producing alumina powder for sintered body
JP3316872B2 (en) Dry grinding of alumina
JP2008261054A (en) Heat treating method for metal powder
JP2708160B2 (en) Ferrite manufacturing method
JP5495748B2 (en) Aluminum nitride powder
CN111484016A (en) Production process of silicon carbide fine powder (70F)
JP3387555B2 (en) Method for producing α-alumina
JP2022515699A (en) Sintered balls made from tungsten carbide
JP2010222201A (en) Method for producing aluminum nitride sintered body
JP6939741B2 (en) Method for producing rare earth compound particles
JP3960924B2 (en) High wear-resistant boron carbide sintered body, manufacturing method thereof, and sandblast nozzle using the same
JP2007186379A (en) Method for manufacturing alpha alumina particle
JPH07101723A (en) Production of alpha alumina powder
JPS62230614A (en) Production of alumina powder
WO1996020127A1 (en) Aluminum nitride powders having high green density, and process for making same
JPH0873233A (en) Production of glass ceramic green sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516