JPH01179789A - Vapor growth method for diamond and thermal plasma deposition method and plasma injection device - Google Patents

Vapor growth method for diamond and thermal plasma deposition method and plasma injection device

Info

Publication number
JPH01179789A
JPH01179789A JP63003043A JP304388A JPH01179789A JP H01179789 A JPH01179789 A JP H01179789A JP 63003043 A JP63003043 A JP 63003043A JP 304388 A JP304388 A JP 304388A JP H01179789 A JPH01179789 A JP H01179789A
Authority
JP
Japan
Prior art keywords
plasma
raw material
diamond
gas
arc discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63003043A
Other languages
Japanese (ja)
Inventor
Kazuaki Kurihara
和明 栗原
Kenichi Sasaki
謙一 佐々木
Motonobu Kawarada
河原田 元信
Nagaaki Etsuno
越野 長明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63003043A priority Critical patent/JPH01179789A/en
Priority to DE88302836T priority patent/DE3884653T2/en
Priority to EP88302836A priority patent/EP0286306B1/en
Priority to CN 88101737 priority patent/CN1028772C/en
Priority to KR1019880003737A priority patent/KR910006784B1/en
Priority to US07/177,504 priority patent/US5368897A/en
Publication of JPH01179789A publication Critical patent/JPH01179789A/en
Priority to CN 91109955 priority patent/CN1029135C/en
Priority to US07/905,226 priority patent/US5403399A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/276Diamond only using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize a good-quality diamond film having excellent surface smoothness at a high film forming speed by supplying gaseous raw materials to the center of the plasma jet generating end without passing the same through an arc discharge part. CONSTITUTION:A discharge gas 3 such as gaseous hydrogen is heated to form hot plasma when an arc discharge 11 is generated by impressing a DC voltage between an internal electrode 1 and an external electrode 2 while passing the discharge gas. This hot plasma is made into the supersonic jet plasma 5 by an abrupt temp. rise and is ejected from a nozzle 4. The gaseous raw materials 7 formed by mixing a carbon source such as hydrocarbons, and in some cases, an inert gas such as A or Ne, gaseous oxygen such as oxygen and hydrides such as B2H6, NH3 and PH3 are supplied from a gaseous raw material port 6 provided in the central part of the internal electrode 1 into the plasma jet 5 without allowing the gaseous materials to contact the arc 11 and are bombarded against a substrate 5, by which the gaseous raw materials are rapidly cooled and the diamond film 9 is formed on the substrate.

Description

【発明の詳細な説明】 〔概 要〕 ダイヤモンドを高い成長速度で気相合成させる方法およ
びプラズマジェット噴射装置に関し、ダイヤモンド基板
上をエピタキシャル成長させる方法、および放電の安定
性がすぐれ、かつ均一性と平滑性が良好な結晶膜を形成
するプラズマジェット噴射装置を提供することを目的と
し、アーク放電によって放電ガスおよび少なくとも炭素
源を含む原料を熱プラズマ化し、ブラズ→ジェットとし
て噴出させ、急冷してダイヤモンドを成長させる方法で
あって、少なくともアーク放電を不安定とする原料につ
いては、該アーク放電部を通過することなく、該プラズ
マジェット開始端中央に供給するように、ダイヤモンド
結晶の気相成長方法を構成し、特にダイヤモンド基板上
にダイヤモンド膜をエピタキシャル成長させるように構
成し、かつ包囲体を形成する外部電極と、電気的に絶縁
されて外部電極を貫通する内部電極とからなり、外部電
極が放電ガス導入孔と、噴出ノズルとを開口し、内部電
極の端部の側面が外部電極の噴出ノズルの側面に近接し
て相互にアーク放電面を形成し、アーク放電によって原
料ガスをプラズマ化するプラズマ噴射装置であって、内
部電極の中心軸に沿って延在する原料ガス導入孔が、内
部電極の端部の端面の中央に開口するようにプラズマジ
ェット噴射装置を構成する。
[Detailed Description of the Invention] [Summary] A method for epitaxially growing diamond on a diamond substrate, a method for epitaxially growing diamond on a diamond substrate, a method for vapor phase synthesis of diamond at a high growth rate, and a method for producing diamond with excellent stability, uniformity and smoothness. The purpose of this project is to provide a plasma jet injection device that forms a crystalline film with good properties.The purpose is to turn a discharge gas and a raw material containing at least a carbon source into thermal plasma by arc discharge, eject it as a plasma → jet, and rapidly cool it to form a diamond. The vapor phase growth method for diamond crystals is configured such that at least a raw material that makes arc discharge unstable is supplied to the center of the starting end of the plasma jet without passing through the arc discharge section. In particular, it is configured to epitaxially grow a diamond film on a diamond substrate, and consists of an external electrode that forms an enclosure, and an internal electrode that is electrically insulated and penetrates the external electrode, and the external electrode is used to introduce discharge gas. A plasma injection device that opens a hole and a jet nozzle, and forms an arc discharge surface with the side surface of the end of the internal electrode in close proximity to the side surface of the jet nozzle of the external electrode, and turns source gas into plasma by arc discharge. The plasma jet injection device is configured such that the raw material gas introduction hole extending along the central axis of the internal electrode opens at the center of the end surface of the end portion of the internal electrode.

〔産業上の利用分野〕[Industrial application field]

本発明は、ダイヤモンドを高い成長速度で気相合成させ
る方法およびプラズマジェット噴射装置に関する。
The present invention relates to a method for vapor phase synthesis of diamond at a high growth rate and a plasma jet injection device.

〔従来の技術〕[Conventional technology]

ダイヤモンド膜は、熱伝導率が2000W/mKと銅の
4倍にも相当し、しかも硬度、絶縁性もすぐれており、
半導体用のヒートシンク、回路基板材料として、理想的
な材料である。また、広い波長範囲で透光性にすぐれて
おり、光学材料としてすぐれている。
Diamond film has a thermal conductivity of 2000 W/mK, which is four times that of copper, and has excellent hardness and insulation properties.
It is an ideal material for semiconductor heat sinks and circuit board materials. It also has excellent translucency over a wide wavelength range, making it an excellent optical material.

さらに、ダイヤモンドは半導体として、バンドギャップ
が5.4eVと広く、キャリア移動度がシリコンより高
いため、500℃以上の高温でも動作する高速デバイス
として、宇宙間、自動車とうさい用の耐環境素子として
、またコンピュータ等の高速素子として、期待されてい
る。このように、半導体素子としてダイヤモンドを用い
るには、ダイヤモンド基板上へのダイヤモンド膜のエピ
タキシャル成長が必要不可欠であるが、従来のCVD法
では製膜速度が1um/h程度と遅いうえ、厚みが10
pMをこえると多結晶化して、単結晶膜をエピタキシャ
ル成長させることができなかった。
Furthermore, as a semiconductor, diamond has a wide bandgap of 5.4 eV and carrier mobility higher than silicon, so it can be used as a high-speed device that can operate at temperatures above 500 degrees Celsius, and as an environmentally resistant element for interspace, automobiles, and noise. It is also expected to be used as a high-speed device in computers and the like. As described above, in order to use diamond as a semiconductor element, epitaxial growth of a diamond film on a diamond substrate is essential. However, in the conventional CVD method, the film formation rate is slow at about 1 um/h, and the thickness is only 10 μm/h.
When it exceeds pM, it becomes polycrystalline and a single crystal film cannot be epitaxially grown.

ダイヤモンドを高い成長速度で合成させる方法としては
、DCアーク放電により発生させた熱プラズマをプラズ
マジェットとして基板にぶつけ、熱プラズマを急冷させ
て、基板上にダイヤモンドを成長させる方法があり、原
料の炭素源、例えば炭素化合物ガスを供給するのに、プ
ラズマガスとして供給する方法と、プラズマジェットに
横から吹きつける方法とがある。
As a method for synthesizing diamond at a high growth rate, there is a method in which thermal plasma generated by DC arc discharge is used as a plasma jet to strike a substrate, rapidly cooling the thermal plasma, and growing diamond on the substrate. There are two methods for supplying a source, for example, a carbon compound gas: one is to supply it as a plasma gas, and the other is to spray it from the side into a plasma jet.

これらの方法を実施する装置としては、原料の炭素源、
例えばガス7の炭素化合物を放電ガス3とともに、極間
に供給して、ノズル4からプラズマジェット5を噴射す
る装置(第3図)、と極間には放電ガス3のみを供給し
て、ノズル4から噴射したプラズマジェット5に横から
原料ガス7を吹きつける装置(第4図)とがある。
The equipment for carrying out these methods includes raw carbon sources,
For example, there is a device (Fig. 3) that supplies the carbon compound of gas 7 together with the discharge gas 3 between the electrodes and injects the plasma jet 5 from the nozzle 4; There is a device (FIG. 4) that blows a raw material gas 7 from the side onto a plasma jet 5 ejected from a plasma jet 4.

前者によると、結晶粒の粗大化によりダイヤモンド膜の
表面の凹凸が激しくなりやすく、またアーク中に炭素源
、例えば炭素化合物ガスが入るため、放電が不安定にな
りやすい、他方、後者によると、表面平滑性は良いが、
原料ガスがプラズマジェット中に均一に供給されず、膜
厚にむらができたり、まわりにグラファイトができてし
まう。
According to the former, the roughness of the surface of the diamond film tends to become severe due to coarsening of crystal grains, and the discharge tends to become unstable because a carbon source, such as carbon compound gas, enters the arc.On the other hand, according to the latter, Although the surface smoothness is good,
The raw material gas is not uniformly supplied into the plasma jet, resulting in uneven film thickness and the formation of graphite around it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、ダイヤモンド単結晶をエピタキシャル成長さ
せる方法、および放電の安定性がすぐれ、かつ均一性と
平滑性が良好な結晶膜を形成するプラズマジェット噴射
装置を提供することを課題とする。 7 〔課題を解決するための手段〕 上記課題点は、アーク放電によって放電ガスおよび少な
くとも炭素源を含む原料を熱プラズマ化し、プラズマジ
ェットとして噴出させ、急冷してダイヤモンドを成長さ
せる方法であって、該原料 ゛のうち少くともアーク放
電を不安定とする原料については、該アーク放電部を通
過させることなく、該プラズマジェット開始端中央に供
給することを特徴とする、ダイヤモンドの気相成長方法
、アーク放電によって放電ガスおよび熱プラズマ堆積物
形成用原料を熱プラズマ化し、プラズマジェットとして
噴出させ、熱プラズマ堆積物を成長させる方法であって
、 該原料のうち少くともアーク放電を不安定とする原料に
ついては、該アーク放電部を通過させることなく、該プ
ラズマジェットの開始端中央に供給することを特徴とす
る熱プラズマ堆積方法、および包囲体を形成する外部電
極と、電気的に絶縁されて外部電極を貫通する内部電極
とからなり、外部電極が放電ガス導入孔と、噴出ノズル
とを開口し、内部電極の端部の側面が外部電極の噴出ノ
ズルの側面に近接して相互にアーク放電面を形成し、ア
ーク放電によって原料ガスをプラズマ化するプラズマ噴
射装置であって、内部電極の中心軸に沿って延在する原
料ガス導入孔が、内部電極の端部の端面の中央に開口し
ていることを特徴とするプラズマ噴射装置によって解決
することができる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for epitaxially growing a diamond single crystal, and a plasma jet injection device that forms a crystal film with excellent discharge stability and good uniformity and smoothness. 7 [Means for Solving the Problem] The above problem is a method of turning discharge gas and a raw material containing at least a carbon source into thermal plasma by arc discharge, ejecting it as a plasma jet, and rapidly cooling it to grow diamond, A method for vapor phase growth of diamond, characterized in that at least a raw material that makes arc discharge unstable among the raw materials is supplied to the center of the plasma jet starting end without passing through the arc discharge part. A method of turning a discharge gas and a raw material for forming a thermal plasma deposit into thermal plasma by arc discharge, ejecting it as a plasma jet, and growing a thermal plasma deposit, wherein at least one of the raw materials makes arc discharge unstable. The thermal plasma deposition method is characterized in that the plasma is supplied to the center of the starting end of the plasma jet without passing through the arc discharge part, and the external electrode forming the enclosure is electrically insulated from the external electrode. It consists of an internal electrode that penetrates the electrode, the external electrode opens the discharge gas introduction hole and the jet nozzle, and the side surface of the end of the internal electrode is close to the side surface of the jet nozzle of the external electrode so that the arc discharge surface This is a plasma injection device that forms a raw material gas into plasma by arc discharge, and the raw material gas introduction hole extending along the central axis of the internal electrode is opened at the center of the end face of the internal electrode. This problem can be solved by a plasma injection device characterized by:

〔作 用〕[For production]

本発明のダイヤモンド膜エピタキシャル成長方法は、炭
素源を含む原料を熱プラズマ化して噴出させ、急冷して
ダイヤモンドを成長させるものである。
The diamond film epitaxial growth method of the present invention is a method in which a raw material containing a carbon source is turned into thermal plasma, ejected, and rapidly cooled to grow diamond.

ダイヤモンドの成長方法においては、通常放電ガスは水
素とし、炭素源としての原料ガスとしては炭素化合物で
あれば、どのようなものでもかまわないが、炭化水素や
、分子内に0・N1ハロゲンなどを含む有機物が好まし
い。放電ガスや原料ガスに、Ar 、Heなどの不活性
ガスを混合してもかまわない。この場合、プラズマの安
定性はさらに向上するが、製膜速度は低下する。また、
原料ガスに非晶質炭素などの非ダイヤモンド炭素のエツ
チング効果を上げるため、0□ 、 It20 、 )
120□。
In the diamond growth method, the discharge gas is usually hydrogen, and the raw material gas as the carbon source can be any carbon compound, but hydrocarbons or 0/N1 halogens in the molecule may be used. Organic substances containing organic substances are preferred. An inert gas such as Ar or He may be mixed with the discharge gas or source gas. In this case, the stability of the plasma is further improved, but the film forming rate is reduced. Also,
In order to increase the etching effect of non-diamond carbon such as amorphous carbon in the raw material gas, 0□, It20, )
120□.

CO等の酸化性ガスを少量混合させてもかまわない。A small amount of oxidizing gas such as CO may be mixed.

また、原料ガスに水素ガスを混合させてももちろんかま
わない。
Moreover, it is of course possible to mix hydrogen gas with the raw material gas.

さらに、原料ガスに微量のB2H,、NH3,PH,な
どのガスを混合するか、または別にプラズマジェット中
に供給することにより、半導体ダイヤモンドを得ること
もできる。
Furthermore, semiconductor diamond can also be obtained by mixing a trace amount of gas such as B2H, NH3, PH, etc. with the raw material gas, or by separately supplying it into a plasma jet.

原料ガスは、アーク放電部を通過させることなく、プラ
ズマジェットの開始端中央に供給する。
The raw material gas is supplied to the center of the starting end of the plasma jet without passing through the arc discharge section.

それには、次に述べる本発明のプラズマジェット噴射装
置を使用することが有利である。高温超伝導酸化物(B
a −Y−Cu−0系等)のプラズマ溶射等に本発明の
プラズマジェット噴射装置を使用する場合には7よりキ
ャリアガスと供に超伝導酸化物の微粉末を供給し、プラ
ズマ中で溶融し、基板上に製膜する。もちろんこの場合
プラズマ雰囲気は酸化性の雰囲気、酸素雰囲気、大気中
雰囲気等を用いる。
For this purpose, it is advantageous to use the plasma jet injection device of the present invention described below. High temperature superconducting oxide (B
When using the plasma jet injection device of the present invention for plasma spraying of a-Y-Cu-0, etc., fine powder of superconducting oxide is supplied together with carrier gas from step 7, and the superconducting oxide powder is melted in the plasma. Then, a film is formed on the substrate. Of course, in this case, the plasma atmosphere is an oxidizing atmosphere, an oxygen atmosphere, an atmospheric atmosphere, or the like.

本発明のプラズマジェット噴射装置は、第1図に示すよ
うに、原料ガス(もしくは原料粉末を含むガス)7の導
入孔が内部電極1の中心軸に沿って延在し、原料ガス噴
出口6が外部電極2の噴出ノズル4の中央に位置し、し
かも内部電極1と外部電極2との間でアーク11を放電
するが、原料ガス(もしくは原料粉末を含むガス)7は
、アーク11とまったく接触しない。そのためアーク1
1の均一な生成を妨害することがない。しかも原料ガス
(もしくは原料粉末を含むガス)7はプラズマジェット
5の開始端の中心部に放出されるので、プラズマジェッ
ト5中に形成されるプラズマの分布を均一とし、これを
気相成長あるいは熱プラズマを用いる堆積物形成・成長
に利用するときは、均一で、平滑な膜を成長させること
ができる。
As shown in FIG. 1, in the plasma jet injection device of the present invention, the introduction hole for the raw material gas (or the gas containing raw material powder) 7 extends along the central axis of the internal electrode 1, and the raw material gas ejection port 6 is located at the center of the jet nozzle 4 of the external electrode 2, and discharges an arc 11 between the internal electrode 1 and the external electrode 2, but the raw material gas (or gas containing raw material powder) 7 is completely separate from the arc 11. No contact. Therefore arc 1
It does not interfere with the uniform production of 1. Moreover, since the raw material gas (or gas containing raw material powder) 7 is emitted to the center of the starting end of the plasma jet 5, the distribution of plasma formed in the plasma jet 5 is made uniform, and this can be achieved by vapor phase growth or heat treatment. When used for deposit formation and growth using plasma, a uniform and smooth film can be grown.

もちろん、ダイヤモンドの成長に於てこの装置を用いて
、基板としてダイヤモンド以外の材料を用いて、その表
面に多結晶ダイヤモンドを合成できる。
Of course, this apparatus can be used in diamond growth to synthesize polycrystalline diamond on the surface of a material other than diamond, using a material other than diamond as the substrate.

〔実施例〕〔Example〕

実施例1 第1図は、本発明の装置でダイヤモンド膜を成長させる
場合の原理図である。
Example 1 FIG. 1 is a diagram showing the principle of growing a diamond film using the apparatus of the present invention.

この装置は、原料ガスを陰極の中心に設けた噴出口から
プラズマジェット中に供給することにより、原料ガスが
プラズマジェット中に均一に供給されるようにして、膜
厚の均一性を上げ、原料ガスが炭素化合物の場合はグラ
ファイトの発生をおさえることができる。■は陰極、2
は陽極、3は放電ガス、4はノズル、5はプラズマジェ
ット、6は原料ガス噴出口、7は原料ガス、8は基板、
9はダイヤモンド膜、10はアーク電源、11はアーク
である。
This device supplies the raw material gas into the plasma jet from the jet nozzle provided at the center of the cathode, thereby ensuring that the raw material gas is uniformly supplied into the plasma jet, increasing the uniformity of the film thickness, and increasing the uniformity of the film thickness. When the gas is a carbon compound, the generation of graphite can be suppressed. ■ is a cathode, 2
is an anode, 3 is a discharge gas, 4 is a nozzle, 5 is a plasma jet, 6 is a source gas outlet, 7 is a source gas, 8 is a substrate,
9 is a diamond film, 10 is an arc power source, and 11 is an arc.

放電ガス3として水素ガスを20 II /min 、
原料ガス7としてメタンガスを0.21 /min流し
ながら、陽極2、陰極1間に90V、IOAの直流電圧
を印加し、アーク放電11をおこすことにより、放電ガ
スは加熱され、ノズル4付近で5000℃以上の熱プラ
ズマとなる。この際、急激な温度上昇による体積膨張に
より、熱プラズマは超音速のプラズマジェット5となり
、ノズル4から噴出する。原料ガスはアーク放電部を通
らず、プラズマジェット中に直接供給され、分解、活性
化される。
Hydrogen gas as discharge gas 3 at 20 II/min,
While flowing methane gas as the raw material gas 7 at a rate of 0.21/min, a DC voltage of 90 V and IOA is applied between the anode 2 and the cathode 1 to generate an arc discharge 11, whereby the discharge gas is heated and a voltage of 5,000 V/min is generated near the nozzle 4. It becomes a thermal plasma with temperatures above ℃. At this time, the thermal plasma becomes a supersonic plasma jet 5 due to the volume expansion caused by the rapid temperature rise, and is ejected from the nozzle 4. The raw material gas is directly supplied into the plasma jet without passing through the arc discharge section, where it is decomposed and activated.

このプラズマジェットを5 ×5 X 0.5 +nm
のモリブデン基板8にぶつけて急冷させ、ダイヤモンド
膜を成長させたところ、1時間で厚さ200−の多結晶
ダイヤモンド膜を得た。この膜の表面粗さを測定したと
ころ、R□X 10Imで、原料ガスを放電ガスととも
に供給する第3図の方法でのR□や50mに比べ、大幅
に向上した。
This plasma jet is 5 × 5 × 0.5 + nm
A diamond film was grown by hitting a molybdenum substrate 8 to rapidly cool it, and a polycrystalline diamond film with a thickness of 200 mm was obtained in one hour. When the surface roughness of this film was measured, it was found that R□X was 10Im, which was significantly improved compared to R□ and 50m in the method shown in FIG. 3 in which the raw material gas was supplied together with the discharge gas.

この装置ではアーク中に原料ガスが入らないため、安定
な放電が得られる。また、原料ガスはすべてプラズマジ
ェット中に供給されるため、グラファイトの発生を抑え
ることができる。
With this device, no raw material gas enters the arc, so a stable discharge can be obtained. Furthermore, since all of the raw material gas is supplied into the plasma jet, generation of graphite can be suppressed.

ダイヤモンド成長の場合放電ガスとして、一般にイオン
化ポテンシャルが高く放電しにくい水素を用いることが
有利なため、電極材としては耐熱性が高く、安定した放
電を発生させやすいものが良い。酸化ランタン、酸化イ
ツトリウム、酸化セリウム等を添加したタングステンが
電極材としてすぐれている。また、電極からの不純物混
入をきらう場合には、高純度の炭素電極が良い。
In the case of diamond growth, it is generally advantageous to use hydrogen, which has a high ionization potential and is difficult to discharge, as a discharge gas, so the electrode material is preferably one that has high heat resistance and can easily generate a stable discharge. Tungsten to which lanthanum oxide, yttrium oxide, cerium oxide, etc. are added is excellent as an electrode material. Furthermore, if impurity contamination from the electrode is to be avoided, a high-purity carbon electrode is preferable.

本発明のプラズマジェット噴射装置は、上述のように、
ダイヤモンドの合成に有利に使用できるが、その他の方
法にも勿論利用することができる。
As mentioned above, the plasma jet injection device of the present invention has the following features:
Although it can be advantageously used for diamond synthesis, it can of course also be used for other methods.

実施例2 第2図は本発明の方法を実施するプラズマジェッ)CV
D装置の模式図で、13はプデズマトーチ、14は放電
ガス供給管、15はアーク電源、16はトーチ用冷却水
配管、17は基板ホルダ、18はダイヤモンド基板、1
9は真空チャンバ、20は排気系、21はトーチマニニ
プレーク、22は流量計、23はガスボンベ、24は原
料ガス供給管、25は基板マニュブレークである。
Example 2 Figure 2 shows a plasma jet CV carrying out the method of the present invention.
In the schematic diagram of device D, 13 is a Pudesma torch, 14 is a discharge gas supply pipe, 15 is an arc power supply, 16 is a cooling water pipe for the torch, 17 is a substrate holder, 18 is a diamond substrate, 1
9 is a vacuum chamber, 20 is an exhaust system, 21 is a torch manifold, 22 is a flow meter, 23 is a gas cylinder, 24 is a source gas supply pipe, and 25 is a substrate manifold.

プラズマトーチ13は陽極、陰極ともに、2wt%酸化
イ酸化イツトリウム添加タングステ水製構造となってい
る。プラズマトーチ13および基板ホルダ17は、それ
ぞれマニュプレーク21.25により、位置と向きをコ
ントロールでき、プラズマジェットと基板とを相対的に
移動可能でするため、大面積の基板や複雑な表面形状の
被処理物の上にも均一にダイヤモンド膜を成長させるこ
とができる。また、本模式図には示していないが、基板
温度を制御するために基板加熱用ヒータや水冷機構が取
りつけられても良い。
The plasma torch 13 has a structure in which both the anode and the cathode are made of tungsten water doped with 2 wt% yttrium oxide. The position and orientation of the plasma torch 13 and substrate holder 17 can be controlled by manipulators 21 and 25, respectively, and the plasma jet and the substrate can be moved relative to each other. A diamond film can be grown uniformly on the object to be treated. Further, although not shown in this schematic diagram, a heater for heating the substrate or a water cooling mechanism may be attached to control the substrate temperature.

基板として2 X 2 X O,5mのla型の人工ダ
イヤモンド基板を用い、チャンバ内を2 X 10−’
Torrまで排気後、放電ガスとして水素を1kg/c
++tの圧力で201 /min 、原料ガスとしてメ
タンを1kg/cI11の圧力で0.1 j2 /mi
n流し、チャンバ内の圧力を120Torrに保持した
A 2 x 2 x O, 5m LA-type artificial diamond substrate was used as the substrate, and the inside of the chamber was 2 x 10-'.
After exhausting to Torr, 1kg/c of hydrogen is used as discharge gas.
201/min at a pressure of ++t, and 0.1 j2/mi at a pressure of 1 kg/cI11 using methane as the raw material gas.
n flow, and the pressure inside the chamber was maintained at 120 Torr.

定電流アーク電源より、2OAの電流をトーチに流し、
電圧が一定になるまで約5分、保持した。
A current of 2OA is passed through the torch from a constant current arc power supply,
The voltage was held for about 5 minutes until it became constant.

この時の電圧は50Vであった。基板をゆっくりトーチ
に近づけ、ノズル−基板間距離を15m口で固定し、こ
の状態で1時間製膜を行った。
The voltage at this time was 50V. The substrate was slowly brought close to the torch, the distance between the nozzle and the substrate was fixed at 15 m, and film formation was performed for 1 hour in this state.

できたダイヤモンドをラマン分光、硬度測定により評価
したところ、ラマン分光ではダイヤモンドのみのピーク
が検出され、ビッカース硬度は荷重500gで約100
00と天然ダイヤモンドと同等の値であった。また、ダ
イヤモンドの膜厚は約150−であり、製膜速度は15
0a/ hであった。
When the resulting diamond was evaluated by Raman spectroscopy and hardness measurement, only a diamond peak was detected in Raman spectroscopy, and the Vickers hardness was approximately 100 at a load of 500 g.
00, a value equivalent to that of natural diamond. In addition, the diamond film thickness is approximately 150-1, and the film-forming speed is 15
It was 0a/h.

また、ラウェ法によるX線回折、低速電子線回折(LE
!E!D)により、下地ダイヤモンド基板上に、単結晶
ダイヤモンド膜がエピタキシャル成長していることを確
言忍した。
In addition, X-ray diffraction using the Laue method, low-speed electron diffraction (LE
! E! D) confirmed that a single crystal diamond film was epitaxially grown on the underlying diamond substrate.

なおアーク電圧の変動は本実施例では約10%であり、
従来の方法の約20%に対し、アークの安定性も向上し
た。
Note that the variation in arc voltage is approximately 10% in this example,
The arc stability was also improved by about 20% compared to the conventional method.

さらに本実施例ではグラファイトの発生はまったく認め
られなかった。
Further, in this example, no graphite was observed to be generated.

実施例3 原料ガスにB211.をQ、l II7/minの流量
でまぜたことの他は、実施例1と同じ方法で、同様に1
0分間製膜したところ、比抵抗が10−2ΩcmのP型
半導体となっていることがわかった。
Example 3 B211. 1 in the same manner as in Example 1 except that Q, l II was mixed at a flow rate of 7/min.
When the film was formed for 0 minutes, it was found that the film was a P-type semiconductor with a specific resistance of 10 −2 Ωcm.

実施例4 基板として5X5X0.2mmのS1ウエハを用い、チ
ャンバ内を2 X 10−3Torrまで排気後、放電
ガスとして水素を1kg/Cl11の圧力で201t 
/min 。
Example 4 A S1 wafer of 5 x 5 x 0.2 mm was used as the substrate, and after exhausting the chamber to 2 x 10-3 Torr, 201 tons of hydrogen was added as a discharge gas at a pressure of 1 kg/Cl11.
/min.

原料ガスとしてメタンを1kg/cm!の圧力で0.5
1/m i n流し、チャンバ内の圧力を100Tor
rに保持した。
1kg/cm of methane as raw material gas! 0.5 at a pressure of
1/min flow, and the pressure inside the chamber was 100 Torr.
It was held at r.

定電流アーク電源より、2OAの電流をトーチに流し、
電圧が一定になるまで約5分、保持した。
A current of 2OA is passed through the torch from a constant current arc power supply,
The voltage was held for about 5 minutes until it became constant.

この時の電圧は50Vであった。基板をゆっくりトーチ
に近すけ、ノズル−基板間距離を20mmで固定し、こ
の状態で1時間製膜を行った。
The voltage at this time was 50V. The substrate was slowly brought closer to the torch, the distance between the nozzle and the substrate was fixed at 20 mm, and film formation was carried out for 1 hour in this state.

できたダイヤモンドをX線回折、ラマン分光、硬度測定
により評価したところ、X線回折やラマン分光ではダイ
ヤモンドのみのピークが検出され、ビッカース硬度は荷
重500gで約10000と天然ダイヤモンドと同等の
値であった。また、ダイヤモンドの膜厚は約200角で
あり、製膜速度は200μ/hであった。
When the resulting diamond was evaluated by X-ray diffraction, Raman spectroscopy, and hardness measurement, only diamond peaks were detected in the X-ray diffraction and Raman spectroscopy, and the Vickers hardness was approximately 10,000 at a load of 500 g, which is the same value as natural diamond. Ta. Further, the diamond film thickness was approximately 200 squares, and the film forming rate was 200 μ/h.

合成したダイヤモンド膜の表面粗さを測定したところR
□8が約10μであり、原料ガスを放電ガスに含ませて
供給した場合の値50−に比べ大きく向上していた。
When the surface roughness of the synthesized diamond film was measured, R
□8 was approximately 10μ, which was significantly improved compared to the value of 50- when the raw material gas was supplied by being included in the discharge gas.

ダイヤモンド合成時のアーク電圧の変動は本実施例では
約10%であり、従来の方法の約20%に対し、アーク
の安定性も向上した。
The variation in arc voltage during diamond synthesis was about 10% in this example, compared to about 20% in the conventional method, and arc stability was also improved.

さらに本実施例では基板の周辺部のグラファイトの発生
はまったく認められなかった。
Furthermore, in this example, no graphite was observed at the periphery of the substrate.

プラズマ噴射装置の形状は、第1図にその断面図が示さ
れるが、陰極1、陽極2が同心円状に配設する、陰極1
の原料ガス噴出口およびノズル4の口がアーク放電特性
に不均一性をもたらさない限りにおいて多角形(長方形
等)、楕円形状としても良い。また、必要に応じ、電極
に放電に影響しないような耐熱性絶縁物をくし歯状に設
けたりすることも可能である。大面積のコーティングに
有利である。基板としては、ダイヤモンドの他に、石英
ガラス、タングステン、モリブデン等を表面処理せずに
、膜状の成長が可能である。
The shape of the plasma injection device, whose cross-sectional view is shown in FIG.
The raw material gas ejection port and the mouth of the nozzle 4 may have a polygonal (rectangular, etc.) or elliptical shape as long as they do not cause non-uniformity in arc discharge characteristics. Furthermore, if necessary, it is also possible to provide the electrodes with a heat-resistant insulator in the form of a comb so as not to affect the discharge. It is advantageous for coating large areas. As the substrate, in addition to diamond, silica glass, tungsten, molybdenum, etc. can be used to grow a film without surface treatment.

放電雰囲気としては放電安定化のために減圧下での適用
が好ましいものの、大気圧下もしくは加圧下でも適用し
ろる。上記例ではダイヤモンド膜成長を例にあげたが、
ダイヤモンド粉末の合成にも適用しうる。
Although it is preferable to apply the discharge atmosphere under reduced pressure in order to stabilize the discharge, it may also be applied under atmospheric pressure or increased pressure. In the above example, we used diamond film growth as an example.
It can also be applied to the synthesis of diamond powder.

また本発明のプラズマジェット噴射装置を用い、前述の
如< Ba −Y−Cu −0系等の高温超伝導酸化物
のプラズマ溶射等にも適用しうる。
Furthermore, the plasma jet spraying apparatus of the present invention can be applied to plasma spraying of high-temperature superconducting oxides such as the Ba-Y-Cu-0 system as described above.

〔発明の効果〕〔Effect of the invention〕

本発明の改良型DCプラズマジェットCVD装置によっ
て、ダイヤモンド膜を成長させる場合、200p/h程
度の迷い製膜速度で表面平滑性の優れた良質のダイヤモ
ンド膜合成することができ、ダイヤモンド膜の応用範囲
を大幅に広げることができる。
When growing a diamond film using the improved DC plasma jet CVD apparatus of the present invention, it is possible to synthesize a high quality diamond film with excellent surface smoothness at a deposition rate of about 200 p/h, and the application range of the diamond film is can be expanded significantly.

DCプラズマジェットCVD法でダイヤモンドのエビ成
長を行なうことにより、150p/hという極めて高い
製膜速度で、150Jaもの厚いエビ膜を得ることがで
きる。
By performing the diamond shrimp growth using the DC plasma jet CVD method, a shrimp film as thick as 150 Ja can be obtained at an extremely high film forming rate of 150 p/h.

半導体装晋用のダイヤモンドヒートシンクやダイヤモン
ド回路基板の実現を太き(漸進させることができる。さ
らに半導体ダイヤモンドを合成することができる。又無
機化合物例えば高温超伝導酸化物等のプラズマ溶射にも
適用しうる。
It is possible to gradually realize diamond heat sinks and diamond circuit boards for semiconductor devices.It is also possible to synthesize semiconductor diamonds.It can also be applied to plasma spraying of inorganic compounds such as high-temperature superconducting oxides. sell.

4、  l!f4面の簡単な説明 第1図は本発明のプラズマジェット噴射装置の原理図で
あり、 第2図は本発明の方法を実施するダイヤモンド膜エピタ
キシャル成長装置の模式図であり、第3図および第4図
は従来のプラズマジェット噴射装置の原理図である。
4.l! Brief explanation of f4 plane FIG. 1 is a principle diagram of the plasma jet injection device of the present invention, FIG. 2 is a schematic diagram of a diamond film epitaxial growth device implementing the method of the present invention, and FIGS. The figure is a principle diagram of a conventional plasma jet injection device.

■・・・陰極、        2・・・陽極、3・・
・放電ガス、      4・・・ノズル、5・・・プ
ラズマジェット、 6・・・原料ガス噴出口、 7・・・原料ガスもしくは原料粉末を含むガス、訃・・
基板、       9・・・ダイヤモンド膜、10・
・・アーク電源、    11・・・アーク、13・・
・プラズマトーチ、 14・・・放電ガス供給管、 15・・・アーク電源、 16・・・トーチ用冷却水配管、 17・・・基板ホルダ、 18・・・ダイヤモンド基板、 19・・・真空チャンバ、  20・・・排気系、21
・・・トーチマニュプレーク、 22・・・流量計、     23・・・ガスボンベ、
24・・・原料ガス供給管、 25・・・基板マニュプレーク。
■...Cathode, 2...Anode, 3...
・Discharge gas, 4... Nozzle, 5... Plasma jet, 6... Raw material gas jetting port, 7... Gas containing raw material gas or raw material powder, etc.
Substrate, 9... Diamond film, 10.
...Arc power supply, 11...Arc, 13...
- Plasma torch, 14... Discharge gas supply pipe, 15... Arc power supply, 16... Cooling water piping for torch, 17... Substrate holder, 18... Diamond substrate, 19... Vacuum chamber , 20...exhaust system, 21
...torch manipulator, 22...flow meter, 23...gas cylinder,
24... Raw material gas supply pipe, 25... Substrate manipulator.

Claims (1)

【特許請求の範囲】 1、アーク放電によって放電ガスおよび少くとも炭素源
を含む原料を熱プラズマ化し、プラズマジェットとして
噴出させ、急冷してダイヤモンドを成長させる方法であ
って、 該原料のうち少くともアーク放電を不安定とする原料に
ついては、該アーク放電部を通過させることなく、該プ
ラズマジェット開始端中央に供給することを特徴とする
、ダイヤモンドの気相成長方法。 2、放電ガスが水素である、請求項1記載の方法。 3、放電ガスが不活性ガスを含む、請求項2記載の方法
。 4、原料が水素、不活性ガスまたは酸化性ガスを含む、
請求項1記載の方法。 5、原料が微量のほう素、窒素もしくはりんの水素化物
を含むか、またはこれらのガスをプラズマジェット中に
吹きつけて供給する、請求項1または4記載の方法。 6、プラズマジェットを基板に衝突させて、該基板上に
ダイヤモンド膜を成長する、請求項1〜5のいずれかに
記載の方法。 7、プラズマジェットをダイヤモンド基板に衝突させて
、該基板上にダイヤモンド膜をエピタキシャル成長させ
る、請求項1〜5のいずれかに記載の方法。 8、減圧下アーク放電をなす、請求項1〜7のいずれか
に記載の方法。 9、アーク放電によって放電ガスおよび熱プラズマ堆積
物形成用原料を熱プラズマ化し、プラズマジェットとし
て噴出させ、熱プラズマ堆積物を成長させる方法であっ
て、 該原料のうち少くともアーク放電を不安定とする原料に
ついては、該アーク放電部を通過させることなく、該プ
ラズマジェットの開始端中央に供給することを特徴とす
る熱プラズマ堆積方法。 10、上記原料が原料粉末を含む、請求項9記載の熱プ
ラズマ堆積方法。 11、上記原料粉末が高温超伝導酸化物である、請求項
10記載の方法。 12、包囲体を形成する外部電極と、電気的に絶縁され
て外部電極を貫通する内部電極とからなり、外部電極が
放電ガス導入孔と、噴出ノズルとを開口し、内部電極の
端部の側面が外部電極の噴出ノズルの側面に近接して相
互にアーク放電面を形成し、アーク放電によって原料ガ
スを熱プラズマ化するプラズマ噴射装置であって、 内部電極の中心軸に沿って延在する原料ガス導入孔が、
内部電極の端部の端面の中央に開口していることを特徴
とするプラズマ噴射装置。 13、電極が希土類元素酸化物を添加したタングステン
電極、または炭素電極である、請求項12記載の装置。
[Claims] 1. A method for growing diamond by turning discharge gas and a raw material containing at least a carbon source into thermal plasma by arc discharge, ejecting it as a plasma jet, and rapidly cooling it, comprising: A diamond vapor phase growth method characterized in that a raw material that makes arc discharge unstable is supplied to the center of the plasma jet starting end without passing through the arc discharge section. 2. The method according to claim 1, wherein the discharge gas is hydrogen. 3. The method of claim 2, wherein the discharge gas comprises an inert gas. 4. The raw material contains hydrogen, inert gas or oxidizing gas,
The method according to claim 1. 5. The method according to claim 1 or 4, wherein the raw material contains a trace amount of boron, nitrogen, or phosphorus hydride, or these gases are supplied by being blown into a plasma jet. 6. The method according to any one of claims 1 to 5, wherein the diamond film is grown on the substrate by impinging a plasma jet on the substrate. 7. The method according to any one of claims 1 to 5, wherein the diamond film is epitaxially grown on the diamond substrate by impinging the plasma jet on the diamond substrate. 8. The method according to any one of claims 1 to 7, wherein arc discharge is performed under reduced pressure. 9. A method of turning a discharge gas and a raw material for forming a thermal plasma deposit into thermal plasma by arc discharge, ejecting it as a plasma jet, and growing a thermal plasma deposit, the method comprising at least one of the raw materials that makes the arc discharge unstable. A method for thermal plasma deposition, characterized in that the raw material is supplied to the center of the starting end of the plasma jet without passing through the arc discharge section. 10. The thermal plasma deposition method according to claim 9, wherein the raw material includes raw material powder. 11. The method according to claim 10, wherein the raw material powder is a high temperature superconducting oxide. 12. Consisting of an external electrode forming an enclosure and an electrically insulated internal electrode penetrating the external electrode, the external electrode opens a discharge gas introduction hole and a jet nozzle, and the end of the internal electrode A plasma injection device whose side surface is close to the side surface of the ejection nozzle of the external electrode to mutually form an arc discharge surface, and which converts raw material gas into thermal plasma by arc discharge, and extends along the central axis of the internal electrode. The raw material gas introduction hole is
A plasma injection device characterized by having an opening at the center of an end face of an internal electrode. 13. The device according to claim 12, wherein the electrode is a tungsten electrode doped with a rare earth element oxide or a carbon electrode.
JP63003043A 1987-04-03 1988-01-12 Vapor growth method for diamond and thermal plasma deposition method and plasma injection device Pending JPH01179789A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63003043A JPH01179789A (en) 1988-01-12 1988-01-12 Vapor growth method for diamond and thermal plasma deposition method and plasma injection device
DE88302836T DE3884653T2 (en) 1987-04-03 1988-03-30 Method and device for the vapor deposition of diamond.
EP88302836A EP0286306B1 (en) 1987-04-03 1988-03-30 Method and apparatus for vapor deposition of diamond
CN 88101737 CN1028772C (en) 1987-04-03 1988-04-02 Method and apparatus for vapor deposition of diamond
KR1019880003737A KR910006784B1 (en) 1987-04-03 1988-04-02 Method and apparatus for vapor deposition of diamond
US07/177,504 US5368897A (en) 1987-04-03 1988-04-04 Method for arc discharge plasma vapor deposition of diamond
CN 91109955 CN1029135C (en) 1987-04-03 1991-10-19 Method and apparatus for vapor deposition of diamond
US07/905,226 US5403399A (en) 1987-04-03 1992-06-29 Method and apparatus for vapor deposition of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003043A JPH01179789A (en) 1988-01-12 1988-01-12 Vapor growth method for diamond and thermal plasma deposition method and plasma injection device

Publications (1)

Publication Number Publication Date
JPH01179789A true JPH01179789A (en) 1989-07-17

Family

ID=11546284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003043A Pending JPH01179789A (en) 1987-04-03 1988-01-12 Vapor growth method for diamond and thermal plasma deposition method and plasma injection device

Country Status (1)

Country Link
JP (1) JPH01179789A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388861A2 (en) * 1989-03-20 1990-09-26 Onoda Cement Company, Ltd. Method for making diamond and apparatus therefor
US5256205A (en) * 1990-05-09 1993-10-26 Jet Process Corporation Microwave plasma assisted supersonic gas jet deposition of thin film materials
US5356673A (en) * 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
US5356672A (en) * 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
WO1995034376A1 (en) * 1994-06-16 1995-12-21 Komatsu Ltd. Surface treatment method by gas jetting and surface treatment device
US5481081A (en) * 1992-03-30 1996-01-02 Sumitomo Electric Industries, Ltd. Method and apparatus of synthesizing diamond in vapor phaase
US5571332A (en) * 1995-02-10 1996-11-05 Jet Process Corporation Electron jet vapor deposition system
JP2009533872A (en) * 2006-04-14 2009-09-17 シリカ テック リミテッド ライアビリティ カンパニー Plasma deposition apparatus and method for manufacturing solar cells
JP2016008334A (en) * 2014-06-25 2016-01-18 国立大学法人 大分大学 Production method of conductive diamond electrode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388861A2 (en) * 1989-03-20 1990-09-26 Onoda Cement Company, Ltd. Method for making diamond and apparatus therefor
US5256205A (en) * 1990-05-09 1993-10-26 Jet Process Corporation Microwave plasma assisted supersonic gas jet deposition of thin film materials
US5356672A (en) * 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
US5356673A (en) * 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
US5481081A (en) * 1992-03-30 1996-01-02 Sumitomo Electric Industries, Ltd. Method and apparatus of synthesizing diamond in vapor phaase
US5539176A (en) * 1992-03-30 1996-07-23 Sumitomo Electric Industries, Ltd. Method and apparatus of synthesizing diamond in vapor phase
WO1995034376A1 (en) * 1994-06-16 1995-12-21 Komatsu Ltd. Surface treatment method by gas jetting and surface treatment device
US5571332A (en) * 1995-02-10 1996-11-05 Jet Process Corporation Electron jet vapor deposition system
JP2009533872A (en) * 2006-04-14 2009-09-17 シリカ テック リミテッド ライアビリティ カンパニー Plasma deposition apparatus and method for manufacturing solar cells
JP2016008334A (en) * 2014-06-25 2016-01-18 国立大学法人 大分大学 Production method of conductive diamond electrode

Similar Documents

Publication Publication Date Title
EP0286306B1 (en) Method and apparatus for vapor deposition of diamond
Matsumoto et al. Synthesis of carbon nitride in plasma arc
JPH01179789A (en) Vapor growth method for diamond and thermal plasma deposition method and plasma injection device
JPH0477710B2 (en)
RU2032765C1 (en) Method of diamond coating application from vapor phase and a device for it realization
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPS63310795A (en) Vapor phase synthesis method for diamond by microwave plasma jet
JP2646438B2 (en) Diamond vapor phase synthesis method
JPH01100092A (en) Diamond vapor-phase synthesis and device therefor
Schmolla et al. Properties of BN films produced by a low-temperature double-plasma process
JPH0226895A (en) Method and device for synthesizing diamond in vapor phase
JPH0449520B2 (en)
JPH05306192A (en) Method and device for synthesizing diamond film
JPS63270393A (en) Method for synthesizing diamond
JPH0449517B2 (en)
JP2840750B2 (en) Coating method
JPH0660411B2 (en) Optical plasma vapor phase synthesis method and apparatus
JPH0255296A (en) Method for vapor synthesis of diamond
Yu et al. Growth and structure of aligned B–C–N nanotubes
Zhang et al. Diamond growth by hollow cathode arc chemical vapor deposition at low pressure range of 0.02–2 mbar
JPH01239090A (en) Method for thermal plasma vapor-phase synthesis of diamond and apparatus therefor
Yang et al. A DC plasma discharge source and its application to synthesis of carbon and carbon nitride thin films
JPH0255295A (en) Apparatus for vapor synthesis of diamond and method therefor
Chen et al. Diamond films synthesis with a DC arc plasma jet: effect of substrate temperature on quality of diamond films