JPH0255296A - Method for vapor synthesis of diamond - Google Patents
Method for vapor synthesis of diamondInfo
- Publication number
- JPH0255296A JPH0255296A JP20616788A JP20616788A JPH0255296A JP H0255296 A JPH0255296 A JP H0255296A JP 20616788 A JP20616788 A JP 20616788A JP 20616788 A JP20616788 A JP 20616788A JP H0255296 A JPH0255296 A JP H0255296A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- substrate
- plasma
- diamond
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 43
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 41
- 230000015572 biosynthetic process Effects 0.000 title description 10
- 238000000034 method Methods 0.000 title description 10
- 238000003786 synthesis reaction Methods 0.000 title description 8
- 239000007789 gas Substances 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000010891 electric arc Methods 0.000 claims abstract description 16
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 11
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 7
- 150000001722 carbon compounds Chemical class 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 6
- 238000001308 synthesis method Methods 0.000 claims 1
- 239000000112 cooling gas Substances 0.000 abstract description 7
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 3
- 239000010408 film Substances 0.000 abstract 2
- 125000004429 atom Chemical group 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 239000010409 thin film Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- -1 acetylene alcohol Chemical compound 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000002065 inelastic X-ray scattering Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要)
ダイヤモンドの気相合成方法に関し、
均一性に優れたダイヤモンドを高速に成長させる方法の
提供を目的とし、
放電用ガスおよび炭素化合物ガスを放電用ガス流路に供
給する一方、チャンバー内を常時排気してチャンバー内
圧力を30 [Torr]以下に保ち、上記放電用ガス
流路を挟んで配置したプラズマ発生用の陽極と陰極との
間に直流電圧を印加して電極間でアーク放電させ、上記
放電用ガスおよび上記炭素化合物ガスをプラズマ化し、
プラズマ化した上記放電用ガスおよび上記炭素化合物ガ
スを、上記放電用ガス流路の下流側に傾けて配置した基
板に衝突させ、水素原子や炭化水素ラジカル等からなる
活性種を基板上に供給して、炭素原子を基板上にダイヤ
モンド結晶成長させることを含み構成する。[Detailed Description of the Invention] [Summary] Regarding a method for vapor phase synthesis of diamond, the present invention aims to provide a method for rapidly growing diamond with excellent uniformity, by introducing a discharge gas and a carbon compound gas into a discharge gas flow path. While supplying gas, the chamber is constantly evacuated to keep the chamber pressure below 30 Torr, and a DC voltage is applied between the anode and cathode for plasma generation, which are placed across the discharge gas flow path. arc discharge between the electrodes to turn the discharge gas and the carbon compound gas into plasma,
The discharge gas and the carbon compound gas that have been turned into plasma are made to collide with a substrate tilted toward the downstream side of the discharge gas flow path, and active species consisting of hydrogen atoms, hydrocarbon radicals, etc. are supplied onto the substrate. The method includes growing diamond crystals of carbon atoms on a substrate.
本発明は、ダイヤモンドの気相合成方法に関する。 The present invention relates to a method for vapor phase synthesis of diamond.
ダイヤモンドは、熱伝導率が2000 [W/mK]と
銅の4倍に相当し、さらに硬度および絶縁性にも優れて
おり、半導体素子のヒートシンク、回路基板の材料とし
て理想的な材料である。また、広い波長範囲で透光性に
優れており、光学材料としても優れている。さらに、ダ
イヤモンドは、バンドギャップが5.45 [eV]と
広く、キャリヤ移動度の高い半導体でもあり、高温トラ
ンジスタ、高速トランジスタ等の高性能デバイスとして
も注目されている。Diamond has a thermal conductivity of 2000 [W/mK], which is four times that of copper, and also has excellent hardness and insulation properties, making it an ideal material for heat sinks for semiconductor devices and circuit boards. Furthermore, it has excellent translucency over a wide wavelength range, making it an excellent optical material. Furthermore, diamond is a semiconductor with a wide band gap of 5.45 [eV] and high carrier mobility, and is attracting attention as a high-performance device such as high-temperature transistors and high-speed transistors.
ダイヤモンドを高い成長速度で合成する方法としては、
直流アーク放電により発生させた熱プラズマジェットを
冷却された基板に衝突させ、熱プラズマを急冷して基板
上にダイヤモンドを成長させる方法(直流アーク放電熱
プラズマジェットCVD法)がある。As a method to synthesize diamond at a high growth rate,
There is a method (DC arc discharge thermal plasma jet CVD method) in which a thermal plasma jet generated by DC arc discharge collides with a cooled substrate to rapidly cool the thermal plasma and grow diamond on the substrate.
第6図は、従来例に係る直流アーク放電熱プラズマジェ
ットCVD法によるダイヤモンド合成の説明図である。FIG. 6 is an explanatory diagram of diamond synthesis by the conventional DC arc discharge thermal plasma jet CVD method.
放電用ガス流路に水素7と炭素化合物を含むガスを流し
ながら、定電流電a104によりプラズマ発生用の陽極
lO1と陰極102との間に直流電圧を印加してアーク
放電させ、上記ガスを電極間で急激に加熱してプラズマ
化する。このとき、プラズマ化した上記ガスは象、激な
温度上昇で体積が膨張し、ノズル103から減圧下のチ
ャンバー105内にプラズマジェントとなって噴射され
る。While flowing a gas containing hydrogen 7 and a carbon compound through the discharge gas flow path, a DC voltage is applied between the anode 101 and the cathode 102 for plasma generation using a constant current electrode a104 to cause an arc discharge, and the gas is transferred to the electrode. It rapidly heats up and turns into plasma. At this time, the volume of the plasma-turned gas expands due to the rapid temperature rise, and is injected from the nozzle 103 into the chamber 105 under reduced pressure as a plasma agent.
電橋下部に配置した冷却用ガス噴射ノズル108で、プ
ラズマジエントに冷却用ガスを吹きつけて急冷し、この
プラズマジェントを冷却した基板106に衝突させて、
水素原子や炭化水素ラジカル等からなる活性種を消滅以
前に基板106に接触させ、活性状態にある炭素原子を
基板1−にダイヤモンド結晶成長させてダイヤモンド膜
+07を得ている。A cooling gas injection nozzle 108 disposed at the bottom of the electric bridge sprays cooling gas onto the plasma agent to rapidly cool it, and causes the plasma agent to collide with the cooled substrate 106.
Activated species consisting of hydrogen atoms, hydrocarbon radicals, etc. are brought into contact with the substrate 106 before they disappear, and the carbon atoms in the active state grow diamond crystals on the substrate 1- to obtain a diamond film +07.
ダイヤモンドを気相成長させる際、通常はチャンバー内
圧力を200 [Torr]程度に保って行っている。When diamond is grown in a vapor phase, the pressure inside the chamber is usually maintained at about 200 Torr.
しかし、この方法によるダイヤモンドの気相成長では、
放電の際のアーク電圧は非常に不安定である。チャンバ
ー内圧力が200 [Torr]におけるアーク電圧の
時間的変化図を第3図に示す。このため、基板に水素原
子や炭化水素ラジカル等の活性種を安定して供給できな
いので、滑らかな表面の均一性に優れたダイヤモンド膜
を作製することができないといった問題がある。However, in the vapor phase growth of diamond using this method,
The arc voltage during discharge is very unstable. FIG. 3 shows a temporal change diagram of the arc voltage when the chamber pressure is 200 Torr. For this reason, active species such as hydrogen atoms and hydrocarbon radicals cannot be stably supplied to the substrate, so there is a problem that a diamond film with a smooth surface and excellent uniformity cannot be produced.
本発明は、表面の均一性に優れたダイヤモンド膜を高速
に形成する方法の提供を目的とする。An object of the present invention is to provide a method for rapidly forming a diamond film with excellent surface uniformity.
上記目的は、放電用ガスおよび炭素化合物ガスを放電用
ガス流路に供給する一方、チャンバー内を常時排気して
チャンバー内圧力を30 [Torr]以下に保ち、上
記放電用ガス流路を挟んで配置したプラズマ発生用の陽
極と陰極との間に直流電圧を印加して電極間でアーク放
電させ、上記放電用ガスおよび上記炭素化合物ガスをプ
ラズマ化し、プラズマ化した上記放電用ガスおよび上記
大索化合物ガスを、上記放電用ガス流路の下流側に傾け
て配置した基板に衝突させ、水素原子や炭化水素ラジカ
ル等からなる活性種を基板上に供給して、炭素原子を基
板上にダイヤモンド結晶成長させることを特徴とするダ
イヤモンドの気相合成方法によって達成される。The above purpose is to supply the discharge gas and carbon compound gas to the discharge gas flow path, while constantly evacuating the chamber to maintain the chamber internal pressure at 30 [Torr] or less, and to A direct current voltage is applied between the placed anode and cathode for plasma generation to cause arc discharge between the electrodes, and the discharge gas and the carbon compound gas are turned into plasma, and the discharge gas and the main rope are turned into plasma. The compound gas is made to collide with the substrate tilted toward the downstream side of the discharge gas flow path, and active species consisting of hydrogen atoms, hydrocarbon radicals, etc. are supplied onto the substrate, and carbon atoms are formed into diamond crystals on the substrate. This is achieved by a method of vapor phase synthesis of diamond, which is characterized by the growth of diamond.
C作用〕
本発明では、アーク放電させる際にチャンバー内圧力を
30 [Torr]以下にして行う。チャンバー内圧力
を30 [Torr]に保ってアーク放電させた場合に
おけるアーク電圧の時間的変化図を第2図に示すように
、アーク電圧の平均値は89.82 [V]分散は4.
70064となり、従来(第3図)に比べて非常に安定
する。この結果、炭化水素ラジカル等の活性種を安定に
供給できるようになる。C Effect] In the present invention, when performing arc discharge, the pressure inside the chamber is set to 30 [Torr] or less. As shown in Figure 2, which shows the temporal change in arc voltage when arc discharge is performed while maintaining the chamber pressure at 30 Torr, the average value of the arc voltage is 89.82 [V], and the variance is 4.
70064, which is much more stable than the conventional one (Fig. 3). As a result, active species such as hydrocarbon radicals can be stably supplied.
また、チャンバー内圧力が200 [Torr]および
30 [Torr]におけるプラズマジェットの発光ス
ペクトルを第4図(a)および(b)に示すように、チ
ャンバー内圧力が低い方がCHラジカルの発光強度が強
く、活性なCIラジカルをプラズマジェット内に多く含
む。このようにアーク放電させる際にチャンバー内圧力
を低くするほど、プラズマ化した炭素化合物ガス(たと
えば、メタン、アセチレン アルコール、アセトン等)
内におけるCHラジカルの濃度が高くなる。現在、ダイ
ヤモンド結晶成長する炭素活性種の多くは(Jlラジカ
ルであると言われており、チャンバー内圧力を低くして
ダイヤモンドを気相成長させるため、その成長速度が向
上すると考えられる。なお、チャンバー内圧力の変化に
対するCI+およびC2の相対強度を第5図に示す。In addition, as shown in Figure 4 (a) and (b), the emission spectra of the plasma jet at chamber pressures of 200 [Torr] and 30 [Torr], the emission intensity of CH radicals is higher when the chamber pressure is lower. The plasma jet contains many strong and active CI radicals. The lower the chamber pressure during arc discharge, the more carbon compound gas (for example, methane, acetylene alcohol, acetone, etc.) that has become plasma
The concentration of CH radicals within the pores increases. Currently, many of the carbon active species that grow diamond crystals are said to be (Jl radicals), and since diamond is grown in a vapor phase by lowering the pressure inside the chamber, the growth rate is thought to be improved. The relative intensities of CI+ and C2 with respect to changes in internal pressure are shown in FIG.
本発明において、炭素源としては炭素化合物であれば、
どのようなものでもよいが、炭化水素や分子中に酸素、
窒素、ハロゲン等を含む炭化水素またはハロゲン化炭素
が好ましい。In the present invention, if the carbon source is a carbon compound,
It can be anything, but hydrocarbons, oxygen in the molecule,
Hydrocarbons or halogenated carbons containing nitrogen, halogen, etc. are preferred.
放電ガスに、Ar、 He等の不活性ガスを混合して、
アーク放電の安定性を向上させることができる。By mixing an inert gas such as Ar or He with the discharge gas,
The stability of arc discharge can be improved.
この場合、成膜速度は低下するが、より安定したプラズ
マジェットが供給されるようになり、ダイヤモンド膜表
面の均一性が高まる利点がある。In this case, although the film formation rate decreases, a more stable plasma jet is supplied, which has the advantage of increasing the uniformity of the diamond film surface.
放電ガスに、Ox、 HzO,HzO□、 CO等の酸
化性ガスを少量混入して、グラファイト非晶質炭素とい
った非ダイヤモンド炭素を除去するエンチング効果を高
めることができる。By mixing a small amount of oxidizing gas such as Ox, HzO, HzO□, CO, etc. into the discharge gas, the etching effect for removing non-diamond carbon such as graphite amorphous carbon can be enhanced.
放電ガスにはイオン化ボテンソヤルが高く放電しにくい
水素を用いるため、電極材料としては耐熱性が高く、安
定した放電を発生させるものがよい。例えば、酸化ラン
タン、酸化イツトリウム。Since hydrogen, which has a high ionization rate and is difficult to discharge, is used as the discharge gas, the electrode material is preferably one that has high heat resistance and can generate stable discharge. For example, lanthanum oxide, yttrium oxide.
酸化セリウム等を添加したタングステンが電極材料とし
て優れている。Tungsten doped with cerium oxide or the like is an excellent electrode material.
〔実施例]
第1図は、本発明の実施例に係る直流アーク放電熱プラ
ズマジェットCVD法によるダイヤモンド合成の説明図
である。[Example] FIG. 1 is an explanatory diagram of diamond synthesis by direct current arc discharge thermal plasma jet CVD method according to an example of the present invention.
図示しないロータリーポンプで、チャンバー1内の圧力
をI XIO”’ [Torr]まで排気した後、2重
量%酸化イツトリウム添加タングステンからなるプラズ
マ発生用の陽極および陰極を備えたプラズマトーチ2に
、水素とメタンの混合ガスを、それぞれH2ガスを20
[1/min] 、 CH−ガスを100[cc/m
in]の流量で供給する一方、ロータリーポンプで常時
排気してチャンバー1内圧力を30[Torr]に保ち
、上記プラズマ発生用の陽極と陰極との間に直2it電
圧を印加し、放電出力を2[kw3 、 アーク電圧を
110[ν]に維持しつつ、電橋間でアーク放電させて
上記混合ガスをプラズマ化し、鉛直下方向にプラズマジ
ェットを噴射する。After evacuating the pressure inside the chamber 1 to IXIO"' [Torr] using a rotary pump (not shown), hydrogen and Mixed gas of methane, 200 H2 gas each
[1/min], CH-gas at 100 [cc/m]
While supplying the chamber 1 at a flow rate of 1 in], the internal pressure of the chamber 1 was maintained at 30 Torr by constantly evacuating with a rotary pump, and a voltage of 2 it was directly applied between the anode and cathode for plasma generation to increase the discharge output. While maintaining the arc voltage at 2 [kw3] and 110 [ν], an arc is discharged between the electric bridges to turn the mixed gas into plasma, and a plasma jet is injected vertically downward.
プラズマトーチ2の鉛直下方向に配置した、水平面に対
して45°傾いた基板設置面を存する基板ホルダー3に
固定した50[止] X50 [鵬1×5[止1のSi
基板4にプラズマジェットを衝突させる際に、プラズマ
トーチの下部に配置した冷却用ガス噴射ノズル5にI+
2ガスを5 [f/min]の1ALtで供給し、鉛直
下方向に噴射するプラズマジェットに、基板4の上部か
つ近傍で、水平方向からH2ガスを吹きつけてプラズマ
ジェットを冷却し、水素原子や炭化水素ラジカル等から
なる活性種を基板4に供給して、活性状態の炭素原子を
基板4上でダイヤモンド結晶成長させ、基板4上にダイ
ヤモンド膜6を形成する。A 50 [stop]
When the plasma jet is made to collide with the substrate 4, I+ is applied to the cooling gas injection nozzle 5 arranged at the bottom of the plasma torch.
2 gas was supplied at 1 ALt of 5 [f/min], and H2 gas was sprayed from the horizontal direction above and near the substrate 4 to the plasma jet injected vertically downward, and the plasma jet was cooled and hydrogen atoms were Activated species consisting of carbon atoms, hydrocarbon radicals, etc. are supplied to the substrate 4, carbon atoms in an active state grow diamond crystals on the substrate 4, and a diamond film 6 is formed on the substrate 4.
なお、図において、7はプラズマ発生用の電極に直流電
圧を印加する定電流電源、8はプラズマトーチ2の周部
を循環して冷却する冷却水を供給するトーチ冷却水供給
管、9はプラズマトーチ2にH2ガスおよびC114ガ
スを、冷却用ガス噴射ノズル5にH2ガスを流量計lO
を介して供給するガスボンベ、11はプラズマトーチ2
を上下および水平に移動させ、さらに向きを変えるトー
チマニュブレータ、12は基板ホルダー3を上下に移動
する基板マニュプレータであり、これら二つのマニュブ
レータ(トーチマニュブレータ11.基ヰ反マユュブレ
ーク12)によって、ノズル−基板間距離、プラズマジ
ェットの照射位置、ノズルの向きが調整して、大面積の
基板や複雑な表面形状をした被処理物上にも均一なダイ
ヤモンド膜を成長させることができる。In the figure, 7 is a constant current power supply that applies a DC voltage to the electrode for plasma generation, 8 is a torch cooling water supply pipe that supplies cooling water that circulates around the circumference of the plasma torch 2, and 9 is a plasma generator. H2 gas and C114 gas are supplied to the torch 2, and H2 gas is supplied to the cooling gas injection nozzle 5 using a flowmeter lO.
11 is a plasma torch 2 supplied through a gas cylinder.
12 is a substrate manipulator that moves the substrate holder 3 vertically and horizontally, and also changes its direction. These two manipulators (torch manubrator 11 and base Mayu brake 12) By adjusting the distance between the nozzle and the substrate, the irradiation position of the plasma jet, and the direction of the nozzle, it is possible to grow a uniform diamond film even on a large-area substrate or a workpiece with a complicated surface shape.
さらに、プラズマジェットを基板に斜めから照射し、基
板に対して同じ角度で反対方向から冷却用ガスを基板上
で交わるように吹きつけるので、プラズマジェットを偏
心させることなく基板に供給できるようになり、均一性
に優れたダイヤモンドを成長させることができるように
なる。Furthermore, the plasma jet is irradiated obliquely onto the substrate, and the cooling gas is blown from opposite directions at the same angle to the substrate, crossing the substrate, making it possible to supply the plasma jet to the substrate without eccentricity. , it becomes possible to grow diamonds with excellent uniformity.
形成されたダイヤモンド膜をX線回折、ラマン分光によ
り評価したところ、ラマン分光ではダイヤモンドのピー
クを示す膜が作製された。また、ビッカース硬度は過重
500[g]で約10000を示し、この値は天然ダイ
ヤモンドと同等である。このときのダイヤモンドの成膜
速度は300(μm/h )を示し、従来の200 [
μm/h ]に比べて50%向上し、滑らかな表面のダ
イヤモンド膜が得られた。When the formed diamond film was evaluated by X-ray diffraction and Raman spectroscopy, it was found that the film showed a diamond peak in Raman spectroscopy. Further, the Vickers hardness is about 10,000 at an overweight of 500 [g], and this value is equivalent to that of natural diamond. The diamond film formation rate at this time was 300 (μm/h), compared to the conventional 200 [μm/h].
[μm/h]], and a diamond film with a smooth surface was obtained.
〔発明の効果]
本発明によれば、アーク放電を安定化し、ダイヤモンド
成長する炭素系活性種を基板に安定かつ大量に供給する
ことができるようになる。これにより、均一性に優れた
ダイヤモンド膜を高速に形成することが可能になる。[Effects of the Invention] According to the present invention, arc discharge can be stabilized, and carbon-based active species for diamond growth can be stably and abundantly supplied to a substrate. This makes it possible to form a diamond film with excellent uniformity at high speed.
第1図は、本発明の実施例に係る直流アーク放電熱プラ
ズマジェットCVD法によるダイヤモンド合成の説明図
、
第2図は、チャンバー内圧力が30 [Torrlにお
けるアーク電圧の時間的変化図、
第3図は、チャンバー内圧力が200 [Torrlに
おけるアーク電圧の時間的変化図、
第4図(a)、 (b)は、チャンバー内圧力が20
0 [Torrlおよび30 ETorr]におけるプ
ラズマジェットの発光スペクトル図、
第5図は、チャンバー内圧力に対するCI+およびC2
の相対強度図、
第6図は、従来例に係る直流アーク放電熱プラズマジェ
ットCVD法によるダイヤモンド合成の説明図である。
(符号の説明)
1・・・チャンバー
2・・・プラズマトーチ、
3・・・基板ホルダー
4・・・Si基板、
5・・・冷却用ガス噴射ノズル、
6・・・ダイヤモンド膜、
7・・・定電流電源、
8・・・トーチ冷却水供給管、
9・・・ガスボンへ、
10・・・流量計、
11・・・トーチマニュブレータ、
12・・・基板マニュプレーク。FIG. 1 is an explanatory diagram of diamond synthesis by direct current arc discharge thermal plasma jet CVD method according to an embodiment of the present invention. FIG. The figure shows a temporal change in arc voltage at a chamber pressure of 200 Torrl.
Emission spectrum diagram of the plasma jet at 0 [Torrl and 30 ETorr], FIG.
FIG. 6 is an explanatory diagram of diamond synthesis by the conventional DC arc discharge thermal plasma jet CVD method. (Explanation of symbols) 1... Chamber 2... Plasma torch, 3... Substrate holder 4... Si substrate, 5... Cooling gas injection nozzle, 6... Diamond film, 7... - Constant current power supply, 8...Torch cooling water supply pipe, 9...To gas cylinder, 10...Flow meter, 11...Torch manipulator, 12...Board manipulator.
Claims (1)
給する一方、チャンバー内を常時排気してチャンバー内
圧力を30[Torr]以下に保ち、上記放電用ガス流
路を挟んで配置したプラズマ発生用の陽極と陰極との間
に直流電圧を印加して電極間でアーク放電させ、上記放
電用ガスおよび上記炭素化合物ガスをプラズマ化し、 プラズマ化した上記放電用ガスおよび上記炭素化合物ガ
スを、上記放電用ガス流路の下流側に傾けて配置した基
板に衝突させ、 水素原子や炭化水素ラジカル等からなる活性種を基板上
に供給して、炭素原子を基板上にダイヤモンド結晶成長
させることを特徴とするダイヤモンドの気相合成方法。[Scope of Claims] While supplying the discharge gas and carbon compound gas to the discharge gas flow path, the chamber is constantly evacuated to maintain the chamber internal pressure at 30 [Torr] or less, and the discharge gas flow path is A direct current voltage is applied between an anode and a cathode for plasma generation which are arranged in between to cause an arc discharge between the electrodes, and the above discharge gas and the carbon compound gas are turned into plasma, and the above discharge gas and the above are turned into plasma. The carbon compound gas is made to collide with the substrate tilted toward the downstream side of the discharge gas flow path, and active species consisting of hydrogen atoms, hydrocarbon radicals, etc. are supplied onto the substrate, and the carbon atoms are transferred to the substrate to form diamonds. A diamond vapor phase synthesis method characterized by crystal growth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20616788A JP2633640B2 (en) | 1988-08-18 | 1988-08-18 | Gas phase synthesis of diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20616788A JP2633640B2 (en) | 1988-08-18 | 1988-08-18 | Gas phase synthesis of diamond |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0255296A true JPH0255296A (en) | 1990-02-23 |
JP2633640B2 JP2633640B2 (en) | 1997-07-23 |
Family
ID=16518920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20616788A Expired - Lifetime JP2633640B2 (en) | 1988-08-18 | 1988-08-18 | Gas phase synthesis of diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2633640B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181843A (en) * | 1999-12-10 | 2001-07-03 | Saint Gobain Ceramics & Plastics Inc | Plasma jet chemical vapor deposition system, and method for coating nonplanar surface with diamond |
-
1988
- 1988-08-18 JP JP20616788A patent/JP2633640B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001181843A (en) * | 1999-12-10 | 2001-07-03 | Saint Gobain Ceramics & Plastics Inc | Plasma jet chemical vapor deposition system, and method for coating nonplanar surface with diamond |
Also Published As
Publication number | Publication date |
---|---|
JP2633640B2 (en) | 1997-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910006784B1 (en) | Method and apparatus for vapor deposition of diamond | |
JPH0477710B2 (en) | ||
RU2032765C1 (en) | Method of diamond coating application from vapor phase and a device for it realization | |
JPH01179789A (en) | Vapor growth method for diamond and thermal plasma deposition method and plasma injection device | |
JPH01242141A (en) | High pressure microwave plasma reactor | |
JP3043744B1 (en) | Method for growing single crystal SiC | |
JPH0255296A (en) | Method for vapor synthesis of diamond | |
JPH0372038B2 (en) | ||
JP2646439B2 (en) | Method and apparatus for vapor phase synthesis of diamond | |
JPH01100092A (en) | Diamond vapor-phase synthesis and device therefor | |
JPH0255295A (en) | Apparatus for vapor synthesis of diamond and method therefor | |
JPH0449517B2 (en) | ||
JPH01172294A (en) | Vapor phase synthesizing method for diamond | |
JPH0226895A (en) | Method and device for synthesizing diamond in vapor phase | |
JP2646438B2 (en) | Diamond vapor phase synthesis method | |
JPH05306192A (en) | Method and device for synthesizing diamond film | |
JPH01201481A (en) | Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride | |
JPH0264097A (en) | Thermal plasma-generating device and gas phase synthesis of diamond | |
JPH01239090A (en) | Method for thermal plasma vapor-phase synthesis of diamond and apparatus therefor | |
JP2947036B2 (en) | Vapor-grown diamond production equipment | |
JPS63270393A (en) | Method for synthesizing diamond | |
JPH02208290A (en) | Gas phase synthesis of diamond | |
JPH06183886A (en) | Production of diamond and apparatus therefor | |
JPH01286993A (en) | Method for synthesizing diamond | |
JPH01164796A (en) | Method for synthesizing diamond membrane |