JP2016008334A - Production method of conductive diamond electrode - Google Patents

Production method of conductive diamond electrode Download PDF

Info

Publication number
JP2016008334A
JP2016008334A JP2014130477A JP2014130477A JP2016008334A JP 2016008334 A JP2016008334 A JP 2016008334A JP 2014130477 A JP2014130477 A JP 2014130477A JP 2014130477 A JP2014130477 A JP 2014130477A JP 2016008334 A JP2016008334 A JP 2016008334A
Authority
JP
Japan
Prior art keywords
nitrogen
diamond
boron
electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014130477A
Other languages
Japanese (ja)
Other versions
JP6415133B2 (en
Inventor
太郎 衣本
Taro Kinumoto
太郎 衣本
龍大 市來
Ryusuke Ichiki
龍大 市來
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita University
Original Assignee
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita University filed Critical Oita University
Priority to JP2014130477A priority Critical patent/JP6415133B2/en
Publication of JP2016008334A publication Critical patent/JP2016008334A/en
Application granted granted Critical
Publication of JP6415133B2 publication Critical patent/JP6415133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a surface area of a diamond electrode, and further to obtain a conductive diamond electrode with high speed by doping the diamond with nitrogen.SOLUTION: In a production method of a diamond electrode, a nitrogen plasma jet is generated by using nitrogen as working gas at atmospheric pressure and making the nitrogen contain boron, hydrogen and/or a rare gas, and a surface of a diamond thin film is doped with boron and nitrogen and the surface area thereof is increased by making the surface of the diamond thin film irradiated with the nitrogen plasma jet. The diamond thin film may be doped with boron in advance.

Description

本発明は、導電性ダイヤモンド電極の製造方法および導電性ダイヤモンド電極に関する。   The present invention relates to a method for producing a conductive diamond electrode and a conductive diamond electrode.

ダイヤモンドは、機械的強度、化学的安定性に優れるが、電流を流せない難点がある。しかし、ダイヤモンドにホウ素を高濃度にドープしたホウ素ドープダイヤモンド(Boron Doped Diamond;以下、単にBDDとも称する)は、金属的導電性が付与され、広い電位窓と、小さいバックグラウンド電流、ダイヤモンド由来の高い物理的・化学的安定性などの特徴を持ち、貴金属や炭素などの電極材料に比べ、電気化学分析や電気分解に有効な機能性電極材料として注目されている。そして、BDD電極は、燃料電池用酸素還元電極やガスセンサの検出電極などへの応用が期待されている。さらに、BDD電極は、電位窓が広く、バックグラウンド電流が小さいといった電気化学的特性を有することから、高感度な電気化学センサや高効率な電解用電極(例えば、水処理などで使用する電解用電極)としての利用が期待されている。しかしながら、この電極は、平滑な結晶面が表面に露出し、表面積が小さく、さらなる用途開発には表面積を増大させる技術が必要とされている。しかしながら、ダイヤモンドの機械的強度は極めて高いため、物理的処理が困難であり、化学的処理が主に用いられる。   Diamond is excellent in mechanical strength and chemical stability, but has a drawback that current cannot flow. However, boron doped diamond (hereinafter simply referred to as BDD) in which boron is doped at a high concentration in diamond is imparted with metallic conductivity, a wide potential window, a small background current, and a high diamond-derived diamond. It has features such as physical and chemical stability, and is attracting attention as a functional electrode material effective for electrochemical analysis and electrolysis compared to electrode materials such as precious metals and carbon. The BDD electrode is expected to be applied to an oxygen reduction electrode for fuel cells, a detection electrode of a gas sensor, and the like. Furthermore, since the BDD electrode has electrochemical characteristics such as a wide potential window and a small background current, a highly sensitive electrochemical sensor and a highly efficient electrolysis electrode (for example, for electrolysis used in water treatment, etc.) Use as an electrode is expected. However, this electrode has a smooth crystal face exposed on the surface and a small surface area, and a technique for increasing the surface area is required for further application development. However, since the mechanical strength of diamond is extremely high, physical treatment is difficult, and chemical treatment is mainly used.

従来、ダイヤモンド電極の表面処理方法には、気相法(特許文献1)、溶液法、および低圧プラズマ処理が知られている(特許文献2)。しかしながら、気相法では金属触媒が必要で処理が高温であり、かつ触媒の除去が必要であり;溶液法では、基板への影響が大きくなること、さらには含酸素官能基が多く生成し、親水性は向上するが、ダイヤモンド電極の特長である電位窓(ある電気化学系(溶媒・支持塩・電極の組み合わせ)において、有意義な電気化学測定が可能な電位領域)や安定性が大きく損なわれること;そして低圧プラズマ処理においては、酸素プラズマの場合は含酸素官能基が生成するため、親水性は向上するが、ダイヤモンド電極の特長である電位窓や安定性が大きく損なわれること、水素、フッ素終端ダイヤモンドを作製できる特徴もあるが、一般的には処理コストが大きいことが問題となる。   Conventionally, a gas phase method (Patent Document 1), a solution method, and a low-pressure plasma treatment are known as surface treatment methods for diamond electrodes (Patent Document 2). However, in the gas phase method, a metal catalyst is required, the treatment is at a high temperature, and the catalyst needs to be removed; in the solution method, the influence on the substrate is increased, and more oxygen-containing functional groups are generated. Although the hydrophilicity is improved, the potential window (potential region where meaningful electrochemical measurement is possible in a certain electrochemical system (a combination of solvent, supporting salt, and electrode)) and stability are greatly impaired. In the low-pressure plasma treatment, oxygen-containing functional groups are generated in the case of oxygen plasma, so that the hydrophilicity is improved, but the potential window and stability, which are the features of the diamond electrode, are greatly impaired, hydrogen, fluorine Although there is a feature that a terminal diamond can be produced, in general, a problem is that the processing cost is high.

特開2006−183102号公報JP 2006-183102 A 特開2010−96623号公報JP 2010-96623 A

本発明は、上記の課題を解決し、ダイヤモンド電極の表面積を増大させるとともに、ダイヤモンドへの窒素等の導入により高速な導電性のダイヤモンド電極を確実に得ることを目的とする。   An object of the present invention is to solve the above problems, increase the surface area of the diamond electrode, and reliably obtain a high-speed conductive diamond electrode by introducing nitrogen or the like into the diamond.

本発明は上記の課題を解決するために、以下の発明を提供するものである。
(1)大気圧下において、窒素を作動ガスとして、これにホウ素、水素および/または希ガスを含有させて窒素プラズマジェットを生成し、この窒素プラズマジェットをダイヤモンド薄膜の表面に照射してホウ素と窒素をドープするとともに表面積を増大させることを特徴とするダイヤモンド電極の製造方法。
(2)ダイヤモンド薄膜が、予めホウ素をドープされてなる上記(1)に記載のダイヤモンド電極の製造方法。
(3)上記(1)または(2)に記載の製造方法により得られたダイヤモンド電極。
In order to solve the above problems, the present invention provides the following inventions.
(1) Under atmospheric pressure, nitrogen is used as a working gas, and boron, hydrogen, and / or a rare gas is contained therein to generate a nitrogen plasma jet, and the surface of the diamond thin film is irradiated with this nitrogen plasma jet to form boron and A method for producing a diamond electrode, comprising doping nitrogen and increasing the surface area.
(2) The method for producing a diamond electrode according to (1), wherein the diamond thin film is previously doped with boron.
(3) A diamond electrode obtained by the production method according to (1) or (2) above.

本発明によれば、ダイヤモンド電極の表面積が増大し、さらにはダイヤモンドへの窒素等の導入を効率的に行い得る。たとえば、本発明によれば、BDD電極の電位窓は安定し、電気化学的に測定されうる電気容量から見積もられる表面積が未処理に比較して好適には0.5V〜0.6Vの間で1.5〜4倍,0.2V〜1.2Vの間で20〜30倍程度まで向上し得る。   According to the present invention, the surface area of the diamond electrode is increased, and nitrogen or the like can be efficiently introduced into the diamond. For example, according to the present invention, the potential window of the BDD electrode is stable, and the surface area estimated from the electric capacity that can be measured electrochemically is preferably between 0.5V and 0.6V compared to untreated. It can be improved up to about 20 to 30 times between 1.5 to 4 times and 0.2 V to 1.2 V.

すなわち、本発明のダイヤモンド電極は、母材がホウ素ドープダイヤモンドの場合、大気圧下でプラズマジェットノズルに窒素、水素および/または希ガスを含有する作動ガスを供給して、電極間にパルス高電圧を印加してプラズマジェットを生成し、このプラズマジェット生成時に外気からの侵入酸素を水素で還元除去して窒素およびダイヤモンド電極の酸化を防止し、窒素主体のプラズマジェットとしてダイヤモンド薄膜の表面に照射することにより、ダイヤモンド薄膜の表面に微細な凹凸を形成して表面積を大幅に増大するとともに、既ドープBに加えてNを若干ドープして導電性を増大させる処理をするのである。これにより高速な導電性のダイヤモンド電極を確実に得ることができるものである。   That is, when the base material is boron-doped diamond, the diamond electrode of the present invention supplies a working gas containing nitrogen, hydrogen and / or a rare gas to the plasma jet nozzle under atmospheric pressure, and a pulse high voltage is applied between the electrodes. Is applied to generate a plasma jet, and when this plasma jet is generated, the invading oxygen from the outside air is reduced and removed with hydrogen to prevent oxidation of the nitrogen and diamond electrodes, and the surface of the diamond thin film is irradiated as a nitrogen-based plasma jet As a result, fine irregularities are formed on the surface of the diamond thin film to greatly increase the surface area, and in addition to the already doped B, a process of increasing the conductivity by slightly doping N is performed. As a result, a high-speed conductive diamond electrode can be obtained with certainty.

一方、母材がホウ素をドープしていないダイヤモンドの場合は大気圧下でプラズマジェットノズルに窒素、ホウ素、水素および/または希ガスを含有する作動ガスを供給して、窒素主体のプラズマジェットを生成すればよい。   On the other hand, when the base material is diamond that is not doped with boron, a working gas containing nitrogen, boron, hydrogen and / or a rare gas is supplied to the plasma jet nozzle at atmospheric pressure to generate a nitrogen-based plasma jet. do it.

窒素プラズマ処理後の試料のSEM画像。SEM image of the sample after nitrogen plasma treatment. 窒素プラズマ処理後の試料の顕微レーザーラマン分光測定(Raman)スペクトル。Microscopic laser Raman spectroscopy (Raman) spectrum of the sample after nitrogen plasma treatment. 窒素プラズマ処理後の試料のXPS測定結果。The XPS measurement result of the sample after nitrogen plasma treatment. 窒素プラズマ処理後の試料のEDS測定結果。The EDS measurement result of the sample after nitrogen plasma processing. 窒素プラズマ処理後の試料のCV測定結果。CV measurement result of the sample after nitrogen plasma treatment.

本発明のダイヤモンド電極は、大気圧下において、窒素を作動ガスとして、これにホウ素、水素および/または希ガスを含有させた混合ガスで、窒素プラズマジェットを生成し、この窒素プラズマジェットをダイヤモンド薄膜の表面に照射してホウ素と窒素をドープするとともに表面積を大幅に増大させることにより得られる。   The diamond electrode of the present invention generates a nitrogen plasma jet at a atmospheric pressure, using nitrogen as a working gas, and a mixed gas containing boron, hydrogen and / or a rare gas. It is obtained by irradiating the surface of the substrate with boron and nitrogen and greatly increasing the surface area.

ダイヤモンド薄膜の製造には、CVD(化学蒸着)法や、PVD(物理蒸着)法等を使用し得るが、マイクロ波プラズマ化学蒸着(MPCVD)法が好適である。   For the production of the diamond thin film, a CVD (chemical vapor deposition) method, a PVD (physical vapor deposition) method or the like can be used, but a microwave plasma chemical vapor deposition (MPCVD) method is preferable.

窒素プラズマジェットを生成する窒素、ホウ素、水素および/または希ガスを含有する混合ガスは、窒素80%〜99.9%,混入酸素還元用の水素0.1%〜20%の窒素/水素混合ガスをベースとし,そこにホウ素含有物質や希ガスを微量添加するのが好適である。   The mixed gas containing nitrogen, boron, hydrogen and / or noble gas that generates a nitrogen plasma jet is based on a nitrogen / hydrogen mixed gas of 80% to 99.9% nitrogen and 0.1% to 20% hydrogen for mixed oxygen reduction. It is preferable to add a small amount of a boron-containing substance or a rare gas thereto.

窒素源としては、アンモニア、窒素/水素混合ガスが好適であり、ホウ素源としては、ジボラン(B)、ホウ酸、固体ホウ素等が挙げられる。 As the nitrogen source, ammonia and a nitrogen / hydrogen mixed gas are suitable, and as the boron source, diborane (B 2 H 6 ), boric acid, solid boron and the like can be mentioned.

また、希ガスの添加により放電が生じやすくなるペニング効果が誘発され,生成される活性種やラジカル種密度を上昇し得る。   In addition, the addition of a rare gas induces a Penning effect that tends to cause discharge, and the generated active species and radical species density can be increased.

ダイヤモンド薄膜として、予めホウ素がドープされた、ホウ素ドープダイヤモンド(BDD)を用いてもよく、この場合には、窒素、水素および/または希ガスを含有する混合ガスで窒素プラズマジェットを生成する。窒素プラズマジェットは、プラズマ発生量を増加させて効率的処理をおこなうために、大気圧(常圧)窒素プラズマジェットが好適である。ダイヤモンド薄膜の昇温も同時に達成する熱プラズマ,例えばアーク型プラズマ,パルスアーク型プラズマが用いられ得る。非熱プラズマである誘電体バリア放電プラズマを用いることもでき,ダイヤモンド薄膜の温度制御は外部ヒーターにより達成し得る。   As the diamond thin film, boron-doped diamond (BDD) doped with boron in advance may be used. In this case, a nitrogen plasma jet is generated with a mixed gas containing nitrogen, hydrogen and / or a rare gas. The nitrogen plasma jet is preferably an atmospheric pressure (normal pressure) nitrogen plasma jet in order to increase the amount of plasma generated and perform efficient processing. Thermal plasma, such as arc-type plasma or pulsed arc-type plasma, that simultaneously achieves temperature rise of the diamond thin film can be used. Dielectric barrier discharge plasma which is non-thermal plasma can also be used, and the temperature control of the diamond thin film can be achieved by an external heater.

真空装置の不使用,取り回しの良さ,活性種やラジカル種の高密度生成の観点から、大気圧窒素プラズマジェットが最適に用いられる。すなわち、窒素プラズマジェット吹き付けを組み込んだライン処理により,高速な導電性ダイヤモンド電極の生成が可能となる。   An atmospheric pressure nitrogen plasma jet is optimally used from the viewpoint of non-use of a vacuum apparatus, good handling, and high density generation of active species and radical species. That is, a high-speed conductive diamond electrode can be generated by a line process incorporating nitrogen plasma jet spraying.

たとえば、大気圧窒素プラズマジェットは、好適には、次のような条件で実施される。プラズマ生成電力が10W〜1kW,照射時間は1 秒〜1 時間,窒素に水素を1%〜20%混合することにより,プラズマ内でNHラジカルが生成される。   For example, the atmospheric pressure nitrogen plasma jet is preferably performed under the following conditions. When the plasma generation power is 10 W to 1 kW, the irradiation time is 1 second to 1 hour, and 1% to 20% of hydrogen is mixed with nitrogen, NH radicals are generated in the plasma.

本発明において、得られるダイヤモンド電極は、最も好ましくは窒素およびホウ素をドープされてなる。   In the present invention, the resulting diamond electrode is most preferably doped with nitrogen and boron.

ダイヤモンド薄膜の厚さは、用途等により異なるが、通常20nm〜50μm程度から選択される。   Although the thickness of a diamond thin film changes with uses etc., it is normally selected from about 20 nm-50 micrometers.

ダイヤモンド薄膜にドープするホウ素および窒素の量は、用途等により異なるが、通常、少なくともダイヤモンドの炭素に対してホウ素を100ppm以上、好ましくは、1000ppm以上、さらに好ましくは5000ppm以上である。   The amount of boron and nitrogen to be doped in the diamond thin film varies depending on the application and the like, but is usually 100 ppm or more, preferably 1000 ppm or more, more preferably 5000 ppm or more with respect to at least carbon of diamond.

本発明により得られるダイヤモンド電極は、各種電解反応に用いられ、たとえばフッ化物イオンを含有する電解浴を用いた電解フッ素化反応や食塩電解のような無機電解反応、電解めっき等が挙げられる。   The diamond electrode obtained by the present invention is used in various electrolytic reactions, and examples thereof include an electrolytic fluorination reaction using an electrolytic bath containing fluoride ions, an inorganic electrolytic reaction such as salt electrolysis, and electrolytic plating.

以下、実施例により本発明をさらに詳細に説明する。
実施例1
ペルメレック電極株式会社製ボロンドープダイヤモンド薄膜(Nb-BDD,ボロン濃度9000ppm)の表面に,大気圧窒素プラズマ発生装置を用いて、5,10,20,25,および30分間、窒素を含有する雰囲気中で、プラズマジェットと接触させて賦活化処理を行った。基盤温度:520℃、アーク電圧:4.5kV/A,パルスアーク:21kHZ,ガス:窒素20slmおよび水素0.22sccmであった。三極式セルを用い、電解液として0.5M硫酸水溶液を用いた。処理後に、得られたダイヤモンド薄膜を、顕微レーザーラマン分光測定(Raman),電界放出型走査電子顕微鏡(FE−SEM),エネルギー分散型蛍光X線分析装置(EDS),およびX線光電子分光分析(XPS)で評価した。また、電気化学特性を0.5M硫酸水溶液中でのサイクリックボルタンメトリー(CV)により試験した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
In an atmosphere containing nitrogen for 5, 10, 20, 25, and 30 minutes on the surface of a boron-doped diamond thin film (Nb-BDD, boron concentration 9000 ppm) manufactured by Permerek Electrode Co., Ltd. using an atmospheric pressure nitrogen plasma generator Then, the activation treatment was performed in contact with the plasma jet. Base temperature: 520 ° C., arc voltage: 4.5 kV / A, pulsed arc: 21 kHZ, gas: nitrogen 20 slm and hydrogen 0.22 sccm. A tripolar cell was used, and a 0.5 M aqueous sulfuric acid solution was used as the electrolytic solution. After the treatment, the obtained diamond thin film was subjected to microscopic Raman spectroscopy (Raman), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray fluorescence spectrometer (EDS), and X-ray photoelectron spectroscopy ( XPS). The electrochemical properties were also tested by cyclic voltammetry (CV) in 0.5M aqueous sulfuric acid.

1)SEM画像(表面形態観察)
図1に窒素プラズマ処理を10〜30分間行った試料のSEM画像を示す。窒素プラズマ処理されていない試料との比較から,処理によって,ダイヤモンド構造由来の三角錐の形態が壊され,未処理では確認されなかった孔が確認された。その孔の径は,処理時間が長くなるにつれ大きくなった.よって,窒素プラズマ処理で,表面が微細に凹凸形成され表面積が増大することが示された。
1) SEM image (surface morphology observation)
FIG. 1 shows an SEM image of a sample subjected to nitrogen plasma treatment for 10 to 30 minutes. From the comparison with the sample that was not treated with nitrogen plasma, the shape of the triangular pyramid derived from the diamond structure was destroyed by the treatment, and holes that were not confirmed without treatment were confirmed. The diameter of the hole increased as the processing time increased. Thus, nitrogen plasma treatment showed that the surface was finely formed with irregularities and the surface area increased.

2)Raman測定(微細構造の評価)
図2のスペクトルにおいて、480cm−1におけるピークは、基盤に由来し、1200cm−1におけるピークは、不規則なダイヤモンド構造に由来するピークである。I/Iは,sp炭素に起因するDバンド(1300cm−1)強度/sp炭素に起因するGバンド(1520cm−1)強度比を示す。
2) Raman measurement (evaluation of microstructure)
In the spectrum of FIG. 2, the peak at 480 cm −1 is derived from the base, and the peak at 1200 cm −1 is a peak derived from an irregular diamond structure. I D / I G indicates a D band (1300 cm −1 ) intensity attributed to sp 3 carbon / G band (1520 cm −1 ) intensity ratio attributed to sp 2 carbon.

Raman測定から,プラズマ処理後もダイヤモンド構造由来のピークであるDバンドが確認されたので、ダイヤモンド構造が維持されていることがわかった。   From the Raman measurement, it was found that the diamond structure was maintained because the D band, which is a peak derived from the diamond structure, was confirmed even after the plasma treatment.

3)XPS測定(結合状態の評価)
図3のXPS測定結果から、5分間の窒素プラズマ処理で窒素が導入されたことが確認された。
3) XPS measurement (assessment of binding state)
From the XPS measurement result of FIG. 3, it was confirmed that nitrogen was introduced by the nitrogen plasma treatment for 5 minutes.

4)EDS測定(元素分析)
図4は、EDS測定結果を示す。5分間の窒素プラズマ処理で窒素の含有量が最大であった。
4) EDS measurement (elemental analysis)
FIG. 4 shows the EDS measurement results. The nitrogen content was maximum after 5 minutes of nitrogen plasma treatment.

5)CV測定(表面積の評価)
図5は、CV測定結果を示す。二重層容量を用いて比較した結果、窒素プラズマ処理で表面積が増大したことが確認された。二重層容量の増加率(未処理に対する)は、0.5V〜0.6Vの間で5分間:174%;10分間:143%;20分間:263%、25分間:148%;および30分間:389%、であった。
5) CV measurement (surface area evaluation)
FIG. 5 shows the CV measurement results. As a result of comparison using the double layer capacity, it was confirmed that the surface area was increased by the nitrogen plasma treatment. The rate of increase in double layer capacity (vs. untreated) is between 0.5V and 0.6V for 5 minutes: 174%; 10 minutes: 143%; 20 minutes: 263%, 25 minutes: 148%; and 30 minutes : 389%.

また、0.2V〜1.2Vの間で5分間:112%;10分間:1340%;20分間:2930%;25分間:2930%;30分間:1940%であった。   Moreover, it was 5 minutes: 112% between 0.2V-1.2V; 10 minutes: 1340%; 20 minutes: 2930%; 25 minutes: 2930%; 30 minutes: 1940%.

本発明によれば、ダイヤモンド電極の表面積の増大とBドープ,Nドープにより高速に導電性のダイヤモンド電極を容易に達成し得て、燃料電池用酸素還元電極やガスセンサの検出電極などに有利に活用されこの種産業に貢献すること多大なものがある。   According to the present invention, a diamond electrode that is electrically conductive can be easily achieved at a high speed by increasing the surface area of the diamond electrode and by B-doping or N-doping, and it can be advantageously used for an oxygen reduction electrode for a fuel cell or a detection electrode for a gas sensor. There is a great deal to contribute to this kind of industry.

Claims (3)

大気圧下において、窒素を作動ガスとして、これにホウ素、水素および/または希ガスを含有させて窒素プラズマジェットを生成し、この窒素プラズマジェットをダイヤモンド薄膜の表面に照射してホウ素と窒素をドープするとともに表面積を増大させることを特徴とするダイヤモンド電極の製造方法。   Under atmospheric pressure, nitrogen is used as a working gas, and boron, hydrogen, and / or a rare gas is contained therein to generate a nitrogen plasma jet. The surface of the diamond thin film is irradiated with this nitrogen plasma jet to be doped with boron and nitrogen. And increasing the surface area of the diamond electrode. ダイヤモンド薄膜が、予めホウ素をドープされてなる請求項1に記載のダイヤモンド電極の製造方法。   The method for producing a diamond electrode according to claim 1, wherein the diamond thin film is previously doped with boron. 請求項1または2に記載の製造方法により得られたダイヤモンド電極。   A diamond electrode obtained by the production method according to claim 1.
JP2014130477A 2014-06-25 2014-06-25 Method for producing conductive diamond electrode Expired - Fee Related JP6415133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130477A JP6415133B2 (en) 2014-06-25 2014-06-25 Method for producing conductive diamond electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130477A JP6415133B2 (en) 2014-06-25 2014-06-25 Method for producing conductive diamond electrode

Publications (2)

Publication Number Publication Date
JP2016008334A true JP2016008334A (en) 2016-01-18
JP6415133B2 JP6415133B2 (en) 2018-10-31

Family

ID=55226121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130477A Expired - Fee Related JP6415133B2 (en) 2014-06-25 2014-06-25 Method for producing conductive diamond electrode

Country Status (1)

Country Link
JP (1) JP6415133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688971A (en) * 2016-02-29 2016-06-22 大连理工大学 Electrochemical reduction CO2 catalyst based on boron and nitrogen co-doped nano-diamond and preparation method and application of catalyst
CN113125536A (en) * 2021-03-31 2021-07-16 吉林大学 Preparation method of electrochemical sensor electrode material for detecting aniline

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179789A (en) * 1988-01-12 1989-07-17 Fujitsu Ltd Vapor growth method for diamond and thermal plasma deposition method and plasma injection device
JPH04266020A (en) * 1991-02-20 1992-09-22 Semiconductor Energy Lab Co Ltd Semiconductor diamond
JPH0620982A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Introduction of impurity atom
JPH0748198A (en) * 1993-08-05 1995-02-21 Sumitomo Electric Ind Ltd Method for synthesizing diamond
JPH0769794A (en) * 1993-08-30 1995-03-14 Sumitomo Electric Ind Ltd Semiconductor diamond and method for forming the same
JPH08165580A (en) * 1994-12-14 1996-06-25 Kyocera Corp Slide member
JP2004031022A (en) * 2002-06-24 2004-01-29 Sumitomo Electric Ind Ltd Conductive diamond and forming method of conductive diamond
JP2011184749A (en) * 2010-03-09 2011-09-22 Shinshu Univ Electrochemical electrode and method of manufacturing the same
EP2431327A1 (en) * 2009-04-28 2012-03-21 Xi Chu Method and apparatus for producing large particle diamond
JP2013023769A (en) * 2011-07-15 2013-02-04 Plasma Sogo Kenkyusho:Kk Surface hardening method for metal or resin
JP2013033603A (en) * 2011-08-01 2013-02-14 Shunsuke Hosokawa Creepage surface discharge type plasma jet generation apparatus
WO2013069711A1 (en) * 2011-11-09 2013-05-16 Shinshu University Electrode for electrochemistry and manufacturing method for the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179789A (en) * 1988-01-12 1989-07-17 Fujitsu Ltd Vapor growth method for diamond and thermal plasma deposition method and plasma injection device
JPH04266020A (en) * 1991-02-20 1992-09-22 Semiconductor Energy Lab Co Ltd Semiconductor diamond
JPH0620982A (en) * 1991-10-04 1994-01-28 Matsushita Electric Ind Co Ltd Introduction of impurity atom
JPH0748198A (en) * 1993-08-05 1995-02-21 Sumitomo Electric Ind Ltd Method for synthesizing diamond
JPH0769794A (en) * 1993-08-30 1995-03-14 Sumitomo Electric Ind Ltd Semiconductor diamond and method for forming the same
JPH08165580A (en) * 1994-12-14 1996-06-25 Kyocera Corp Slide member
JP2004031022A (en) * 2002-06-24 2004-01-29 Sumitomo Electric Ind Ltd Conductive diamond and forming method of conductive diamond
EP2431327A1 (en) * 2009-04-28 2012-03-21 Xi Chu Method and apparatus for producing large particle diamond
JP2011184749A (en) * 2010-03-09 2011-09-22 Shinshu Univ Electrochemical electrode and method of manufacturing the same
JP2013023769A (en) * 2011-07-15 2013-02-04 Plasma Sogo Kenkyusho:Kk Surface hardening method for metal or resin
JP2013033603A (en) * 2011-08-01 2013-02-14 Shunsuke Hosokawa Creepage surface discharge type plasma jet generation apparatus
WO2013069711A1 (en) * 2011-11-09 2013-05-16 Shinshu University Electrode for electrochemistry and manufacturing method for the same
JP2014521828A (en) * 2011-11-09 2014-08-28 国立大学法人信州大学 Electrochemical electrode and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105688971A (en) * 2016-02-29 2016-06-22 大连理工大学 Electrochemical reduction CO2 catalyst based on boron and nitrogen co-doped nano-diamond and preparation method and application of catalyst
CN105688971B (en) * 2016-02-29 2018-04-10 大连理工大学 A kind of electrochemical reduction CO based on the nitrogen co-doped Nano diamond of boron2Catalyst, preparation method and applications
CN113125536A (en) * 2021-03-31 2021-07-16 吉林大学 Preparation method of electrochemical sensor electrode material for detecting aniline

Also Published As

Publication number Publication date
JP6415133B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
US7166206B2 (en) Plasma electroplating
Hammer et al. Improvement of the performance of graphite felt electrodes for vanadium-redox-flow-batteries by plasma treatment
Scendo et al. Influence of laser power on the corrosive resistance of WC-Cu coating
JPH1058236A (en) Machining method using hydroxyl group in ultrapure water
Vasiliev et al. Oxygen reduction reaction at few-layer graphene structures obtained via plasma-assisted electrochemical exfoliation of graphite
Rangel et al. Effect of the fluorination of DLC film on the corrosion protection of aluminum alloy (AA 5052)
Ke et al. Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H 2 O 2 reduction
WO2007023543A1 (en) Process for producing crystalline titanium oxide coating film through electrolytic anodizing
JP2009187754A (en) Evaluation method of electrode material for fuel cell
JP6415133B2 (en) Method for producing conductive diamond electrode
Favaro et al. In‐Situ Carbon Doping of TiO2 Nanotubes Via Anodization in Graphene Oxide Quantum Dot Containing Electrolyte and Carburization to TiOxCy Nanotubes
Mani et al. Formation of a protective nitride layer by electrochemical nitridation on 316L SS bipolar plates for a proton exchange membrane fuel cell (PEMFC)
Andoralov et al. Oxygen reduction reaction on polycrystalline gold. Pathways of hydrogen peroxide transformation in the acidic medium
Yang et al. Optimized Fabrication of TiO 2 Nanotubes Array/SnO 2-Sb/Fe-Doped PbO 2 Electrode and Application in Electrochemical Treatment of Dye Wastewater
Wu et al. Cathodic plasma electrolysis for preparation of diamond-like carbon particles in glycerol solution
Spătaru et al. Effect of the chemical termination of conductive diamond substrate on the resistance to carbon monoxide-poisoning during methanol oxidation of platinum particles
JP6536819B2 (en) Method of forming copper film
JP6943782B2 (en) Method of manufacturing separator material
KR20160120377A (en) Electrode manufacturing method having a carbon nano-plane structure
Vasiliev et al. Electrical Conductivity of Films Formed by Few‐Layer Graphene Structures Obtained by Plasma‐Assisted Electrochemical Exfoliation of Graphite
KR20150092935A (en) Methods of manufacturing metal oxide electrodes
Topala et al. Nanostructures obtained using electric discharges at atmospheric pressure
Smirnov et al. Vertically aligned carbon nanotubes for microelectrode arrays applications
Jovanović et al. Modification of glassy carbon properties under low energy proton irradiation
Karpushenkov et al. Microplasma electrochemical deposition of aluminum oxide-polyethylene composite coatings on iron surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees